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Institut de Robòtica i Informàtica Industrial, Consejo Superior de Investigaciones Cient́ıficas,

Universitat Politecnica de Catalunya, Barcelona 08028, Spain

Francesc J. Corcho and Juan J. Pérez
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This paper presents a new method for exploring conformational energy landscapes. The method, called
T-RRT, combines ideas from robotics path planning and statistical physics. A search tree is constructed on
the conformational space starting from a given state. The tree expansion is driven by a double strategy: On
the one hand, it is naturally biased toward yet unexplored regions of the space. On the other hand, a Monte
Carlo-like transition test guides the expansion toward energetically favorable regions. The balance between
these two strategies is automatically achieved thanks to a self-tuning mechanism. The method is able to
efficiently find both energy minima and transition paths between them. As a proof of concept, the method is
applied to several academic benchmarks and to the alanine dipeptide.

I. INTRODUCTION

Estimation of the physicochemical properties of
molecules from their atomic structure requires the char-
acterization of the stationary points on the underlying
energy landscape. However, for complex systems, the
states of interest may subsume an exponentially large
number of local minima that require appropriate sam-
pling. This is a hard problem that has attracted the inter-
est of scientists from decades and that has been addressed
using different approaches. These can be grouped into
three categories: i) canonical sampling methods that pro-
duce a Boltzmann weighted set of configurations; ii) non-
canonical sampling methods that aim to enhance sam-
pling; iii) methods that characterize non-related station-
ary points on the potential energy surface1,2.

Methods in the first category include the Metropolis
Monte Carlo (MC) algorithm and Molecular Dynamics
(MD)3,4. Even though both methods provide Boltzmann
weighted distributions, the former allows only comput-
ing thermodynamic properties of the system, whereas
the latter allows computing both thermodynamic and dy-
namic properties of the system though the analysis of the
metastable states and the transitions that may occur be-
tween them. Unfortunately, both methods are inefficient
for sampling conformations that are beyond high poten-
tial energy barriers.

Generalized-ensemble methods such as Replica Ex-
change and Simulated Tempering5,6, which explore the
conformational space at different temperatures, have be-
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come popular techniques to enhance coverage and con-
vergence properties of MD and MC methods. In addi-
tion, different non-canonical methods have been devel-
oped to enhance the sampling of infrequent events or of
transitions between conformational states7–9, to focus the
simulation on regions of interest10, or to bias the evolu-
tion of the system11,12 within MD simulations. Variants
of MC methods involving sophisticated moves (e.g. the
Activation-Relaxation Technique13) have also been de-
veloped for a more effective exploration of the energy
landscape.

The third category of methods includes algorithms
that combine conformational sampling and energy mini-
mization. The stochastic method can be considered the
simplest procedure, where the starting points for mini-
mization are generated through random sampling. Al-
gorithms that bias the search to characterize the global
energy minimum also allow a sampling of the most rele-
vant energy minima. The two most widely used methods
are the genetic algorithms and the simulated annealing
procedure using either MC or MD as drivers14. A differ-
ent approach to find stable conformations of polypeptides
is the building-up procedure by assembling the conforma-
tions of short fragments15,16.

In addition to the aforementioned conformational sam-
pling methods, various approaches have been proposed
to extract ensemble properties from multiple trajecto-
ries (obtained by MD or MC methods), with the aim
of providing a clearer representation of the conforma-
tional landscape, i.e. a set of stable conformations and
the most probable transitions between them. The gen-
eral idea is to analyze the set of trajectories by statistical
mechanics tools (e.g. Markovian models) and transition
rate theory in order to construct a transition network
over the conformational space17–21. The main drawback
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of such methods is that they require information pro-
vided by numerous and computationally expensive simu-
lations. As an alternative, several methods22,23 inspired
by robotic path planning algorithms propose to build net-
works (called roadmaps) that capture the most relevant
regions of the the energy landscape using random con-
formational sampling combined with local interpolation
methods to connect neighbor samples. Such methods
represent important seminal work on the application of
robotic path planning to problems in computational biol-
ogy, and have interesting applications such as the charac-
terization of (un)folding pathways. However, these meth-
ods that rely on a simple sampling scheme over the entire
conformational space are not adapted to accurately ex-
plore the high-dimensional energy landscape of biological
molecules.

Besides global exploration methods, various local
methods have been proposed to find transition paths be-
tween two given stable states. In general, the idea is to
start from a trivial path and to deform it iteratively in
order to improve its energy profile. Examples of these
methods are Nudged Elastic Band24–26, Zero Temper-
ature String27,28, and Transition Path Sampling29,30. A
recent approach called Forward Flux Sampling31 does not
require an initial path, but needs to define series of in-
terfaces between the initial and the goal state. Methods
for computing conformational transitions have also been
developed based on biased or targeted MD32,33, and Nor-
mal Mode Analysis34,35.

This paper presents a conformational exploration
method called Transition-RRT (T-RRT)36 which is in-
spired by robotic path planning algorithms and by meth-
ods in statistical physics. T-RRT can be seen as a
non-canonical sampling method and/or as a method to
compute energetically favorable conformational transi-
tion paths. Similarly to MC methods, T-RRT applies
small moves and a transition test based on the Metropo-
lis criterion. However, instead of generating a single path
on the conformational space, it constructs a tree with
better coverage properties. Such a data structure en-
ables the simultaneous exploration of different regions of
the space. Moreover, it avoids the ineffective behavior of
MC algorithms, which tend to waste time getting back to
regions of the space already explored. Finally, T-RRT is
a reactive search method37 that uses a self-tuning mech-
anism to improve its overall efficiency. Starting from a
given conformation, the tree branches grow first on the
more favorable regions (the valleys of the landscape), and
tend to cover the whole search-space while the number
of iterations increases. Such exploration enables to find
the local minima and the saddle-points of the landscape.
Besides, paths extracted from the tree can be directly
exploited as a good approximation of transition paths
between stable conformations.

II. METHOD

This section describes the Transition RRT algorithm
(T-RRT), whose pseudo-code is sketched in Figure 1.
T-RRT extends the Rapidly-exploring Random Tree
(RRT) algorithm38 by incorporating a stochastic state-
transition test, similarly to MC methods. RRT is a ran-
domized space-filling method that was initially developed
for path planning in robotics. Its most interesting fea-
ture is the implicit bias of the tree expansion toward yet
unexplored regions of the space (Subsection II A).

The proposed variant, T-RRT, also holds this inter-
esting property. In addition, the integrated transition
test rejects some of the generated states if they do not
correspond to energetically acceptable moves (Subsec-
tion II B). Thus, the expansion is biased toward both
unexplored and low energy regions. The appropriate bal-
ance between these two types of bias relies on a reactive
scheme presented in Subsection II C. Also, a filtering pro-
cedure rejects new states if they are too close to nodes of
the tree, which improves the space-covering property of
the method (Subsection II D). Overall, T-RRT is an ef-
fective and general exploration method that can be used
to find stable states, or to compute probable transition
paths between given pairs of states (Subsection II E).

A. RRT Principle: Bias Toward Unexplored Regions

The core of the T-RRT algorithm (Figure 1) is inher-
ited from the basic RRT38. RRT is an efficient path plan-
ning method able to tackle complex problems in high-
dimensional spaces. It has been successively used in
many disciplines such as robotics, computer animation,
and structural biology39,40. The idea is to iteratively
construct a tree data structure made of nodes and edges
that correspond to states and small-amplitude motions
between neighbor states, respectively. At each iteration,
a state (i.e. a conformation in the context of structural
biology) is randomly sampled (SampleConf function). The
nearest state already contained in the search tree is then
searched (NearestNeighbor function). Finally, a new node
is created by extending the nearest neighbor toward the
random sample (Extend function). Employing the sim-
plest expansion strategy (called RRT-Extend in related
literature38), the extension step-size δ remains constant
for all the iterations. Following such a construction pro-
cedure (illustrated in Figure 2) the tree is implicitly bi-
ased toward yet unexplored regions. This behavior comes
from the probability for a node to be extended, which is
proportional to the volume of its Voronoi cell (i.e. the
set of points closer to this node than to any other node).
Note that this property does not require the explicit con-
struction of the Voronoi cells, which would be computa-
tionally expensive.

Classically, RRT has been used to search paths in
a continuous state-space composed of feasible-state and
infeasible-state subsets. In this context, RRT is much
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FIG. 1. Transition-RRT

more efficient than a simple random walk method, since
it avoids wandering around in already explored regions41.
By inference, T-RRT is expected to be more effective
than standard MC methods to explore molecular energy
landscapes.

B. Transition Test: Hindering Steep Climbing

T-RRT extends RRT by integrating a transition test
to hinder the tree expansion toward energetically unfa-
vorable regions of the space (Transition Test function).
Similarly to MC methods, the acceptance rule of a lo-
cal move is defined by comparing the energy Ej of the
new state with the energy Ei of the previous state (i.e.
the parent node in the tree). This test is based on the
Metropolis criterion, with a transition probability pij de-
fined as follows:

pij =

{

exp(−
∆Eij

kT
), if ∆Eij > 0

1, otherwise
(1)

where ∆Eij = Ej −Ei is the energy variation between
the two states, k is the Boltzmann constant, and T is
the temperature. Note however that T-RRT is a non-
canonical sampling method, which is not expected to
produce a Boltzmann weighted set of conformations, but
to efficiently find energy minima and probable conforma-
tional transition paths. Therefore, T does not necessarily
carry any physical meaning. Indeed, T is simply a pa-
rameter of the algorithm.

Within search methods involving the Metropolis
criterion, the temperature is usually kept constant
(e.g. MC simulation) or is subject to predefined varia-
tions (e.g. heating and cooling phases in simulated an-
nealing). In the case of T-RRT, the Transition Test

function incorporates a reactive scheme to dynamically

FIG. 2. RRT construction scheme. In blue/thin lines, the
RRT tree. In red/bold lines, the Voronoi cells associated with
the states contained in the tree. At each step, a state qrand is
randomly sampled, and its nearest neighbor in the search tree
qnear is selected. It corresponds to the node in the Voronoi cell
where qrand has been sampled. A new node qnew is created
by moving from qnear a distance δ in the direction of qrand.
The Voronoi bias favors the tree expansion toward unexplored
regions of the space.

tune this parameter. It allows to control the level of diffi-
culty of the transition test, according to the information
acquired during the exploration.

C. Automatic Temperature Tuning

During the construction of the search tree, the num-
ber of attempts necessary to add a new node is a good
indicator to measure the evolution of the exploration pro-
cess. A large number of consecutive failures means that
the exploration is stuck because the tree cannot be fur-
ther expanded toward favorable regions. Within T-RRT,
this information is used to regulate the temperature that
determines the difficulty of the transition test.

At the initialization, T is set to a low value in order
to only permit the tree expansion on very easy positive
slopes (and negative ones). Then, during the exploration,
the number of consecutive times the Metropolis criterion
discards a state is recorded and used for temperature
tuning. When the T-RRT search reaches a maximum
number of consecutive rejections Failmax, the temper-
ature increases by a factor λ. Contrarily, each time an
uphill transition test succeeds, the temperature decreases
by the same factor λ. Thus, the temperature automat-
ically adapts itself in such a way that an extension cor-
responding to a positive energy variation is performed
every Failmax times in average. This temperature reg-
ulation strategy is a way to balance the search between
unexplored regions and low energy regions.
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D. Exploration Guarantee

The adaptive temperature tuning introduced earlier
may however lead to bottleneck situations. The tem-
perature T may be stabilized by the insertion of new
states very similar to the ones already contained in the
tree, whereas the expansion toward new regions of the
space would require an increment of T . The insertion
of such states only contributes to the refinement of the
exploration in regions already reached by the tree. This
situation is illustrated on a 2D fictive energy landscape
in Figure 3-a.

To overcome this drawback, the selected state qnear is
not extended if the the distance to the random state qrand

is smaller than the extension step-size δ (ExploGuarantee
function). Such a simple filtering avoids an excessive re-
finement of low-energy regions, therefore facilitating the
tree expansion toward new regions of the space. Further-
more, the size of the tree (in number of nodes) is limited,
which reduces the computational cost of operations such
as neighbor search. The improvement provided by this
filtering process is illustrated in Figure 3-b.

E. Applicability of T-RRT

1. Main Minima Search Method

The proposed method can be used to find the main
minima of a conformational landscape. Hereafter, this
type of operating mode is called T-RRTmin. Starting
from a given conformation, the method explores the land-
scape until a stop condition is reached. This condition
can be defined by an amount of computing time, a max-
imum number of created conformations, or from an esti-
mation of the space coverage. Once the search is stopped,
a minima extraction method can be applied to the con-
formations contained in the tree. In the current imple-
mentation, we apply a method based on the the root
mean square deviation (RMSD) between conformations:
the main minima are the conformations whose energy
is lower than the energy of all its neighbors for a given
RMSD threshold.

2. Transition Path Search Method

T-RRT can also be applied to find low-energy paths
between a given pair of stable conformations, and the
transitions states associated with. This operating mode
is called T-RRTtrans. For such a search, the tree is rooted
at one of the stable conformations, and the algorithm is
iterated until one of the tree leaves reaches the target con-
formation (i.e. the distance between both conformations
is less than the extension step-size δ). The transition
path is then extracted from the tree structure, by follow-
ing the branches from the leaf to the root. The quality
of the computed path relies on two points. First, the

FIG. 3. Impact of the Exploration Guarantee on the T-RRT
algorithm. The trees in both pictures have the same size
(800 nodes), and are rooted at the same coordinate (-30, -30).
Without this filtering process (a), the insertion of nodes very
close to existing ones tends to slow down the exploration by
decreasing the temperature. With filtering (b), the algorithm
continues to explore new regions of the space.

Voronoi bias avoids backtrack motions, contrarily to ba-
sic MC techniques that propagate a single state. Second,
the temperature is regulated all over the tree construc-
tion process, so that heating phases only occur when nec-
essary for passing through higher energy barriers in or-
der to reach other conformational regions. Consequently,
paths computed by T-RRT tend to minimize both the
total amount of positive energy variation and the length
(empirical proofs have been provided by Jaillet et al.

42).
Therefore, such paths are good candidates to represent
transitions between pairs of stable conformations.

III. RESULTS

As a proof of concept, this section first presents results
on two academic benchmarks, for which the energy land-
scape is represented by a two-parameter analytic func-
tion. Then, the method is applied to study the energy
landscape of the alanine dipeptide using an implicit de-
scription of the solvent.

For each problem, T-RRT is first used to find the main
energy minima (T-RRTmin search), and then to find
the transition paths between these states (T-RRTtrans

search). The algorithm parameters are the following.
The Boltzmann constant k being 3.297 · 10−27 kcal/K,
the initial temperature is set to T = 70 K. These val-
ues make that, at the initialization of the algorithm,
the probability of accepting an energy increment of
0.1 kcal/mol is around 50%. The maximum number of
consecutive expansion failures before a temperature in-
crease is set to Failmax = 10 and Failmax = 100 for
T-RRTmin and T-RRTtrans, respectively. With these
settings, T-RRTmin covers the space more rapidly than
T-RRTtrans, while T-RRTtrans finds the saddle-points
more accurately. The temperature variation factor is
λ = 0.1 in all the cases.
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FIG. 4. Zorro potential. In bold black, a T-RRT transition
path found between minima A and B. It circumvents two
energy barriers and passes through a higher energy saddle-
point. In thin black, other branches of the associated search
tree.

A. 2D Academic Benchmarks

The apparently simple landscapes described below43

represent tricky test systems for benchmarking methods
that search for conformational transition pathways.

The Zorro potential, represented in Figure 4, involves
two low-energy regions with respective minima A and B.
The pathway connecting these minima needs to circum-
vent two energy barriers and passes through a saddle-
point located in the middle part of the landscape. The
analytic expression of this energy landscape is:

E(x, y) = 0.2((x/8)4 + (y/8)4)

− 3e−0.2(0.05(x+5)2+(y+5)2) − 3e−0.2(0.05(x−5)2+(y−5)2)

+ 5e−0.2(x+3(y−3))2/(1 + e−x−3)

+ 5e−0.2(x+3(y+3))2/(1 + ex−3) + 3e−0.01(x2+y2)

+ 0.06 ∗ (sin (5x +
√

2y) + cos (
√

5x +
√

3y)

+ sin (3 ∗ y −
√

2x) + cos (3 ∗ x −
√

5y)).

The variation of parameters x and y is limited to the
interval [−15, 15]. Within these bounds, the energy varies
from 0.5 up to 9.7 (in arbitrary units).

The Alien potential is represented in Figure 5. Like the
previous benchmark, it involves two low-energy basins
with respective minima A and B. These regions are con-
nected through two main pathways, which we refer to
as lower and upper (l and u in Figure 5). The energy
value of the transition states for these two pathways is
very similar. However, the upper pathway is much larger
than the lower one. The analytic expression of this en-
ergy landscape is given by:

FIG. 5. Alien potential. Minima A and B can be connected
through two pathways, u and l. In bold black, two paths
found with T-RRT. In thin black, branches of the associated
search trees.

E(x, y) = 3 +
3

e5( x2

4
+

(2+
y
2
)2

10
)

−
3

e5((−2+ x
2
)2+(2+

y

2
)2)

−
3

e5((2+ x
2
)2+(2+ y

2
)2)

+
(x2

4
+ y2

8
)4

10000
+

1 + erf (1 + y

2
)

2

+
3

50

“

cos(
√

5x +
√

3y) + cos(3x −
√

5y))
”

+
3

50

“

sin(5x +
√

2y) − sin(
√

2x − 3y)
”

.

Like in the previous example, the variation of param-
eters x and y is limited to the interval [−15, 15]. Within
these bounds, the energy varies from 0.1 up to more than
5000 (in arbitrary units).

The low-dimensionality of these benchmarks enables
comparison of results with those obtained by exhaustive
search. A 128 × 128 grid discretizing the search-space
was used to perform such search. In order to analyze
the variability of T-RRT results (due to the randomized
exploration), the algorithm was run several times on each
problem. Results presented below show the average and
the standard deviation over 100 runs.

1. T-RRTmin Search

Table I shows results of the T-RRTmin search for the
Zorro and the Alien benchmarks. In both cases, the min-
ima found are very similar (in position as well as in en-
ergy) to those extracted from an exhaustive grid search
method. Moreover, the low values of the standard devi-



6

Zorro

T-RRTmin Grid
A B A B

x 7.6 ± 0.2 -5.6 ± 0.1 7.7 -5.6
y -5.1 ± 0.2 5.1 ± 0.1 -5.1 5.1
E 0.59 ± 0.03 0.60 ± 0.02 0.55 0.57

Alien

T-RRTmin Grid
A B A B

x -4.0 ± 0.2 4.1 ± 0.2 -3.9 4.1
y -4.0 ± 0.2 -4.1 ± 0.2 -4.1 -3.9
E 0.30 ± 0.18 0.51 ± 0.18 0.14 0.34

TABLE I. Energy minima for the academic benchmarks.

ation confirms the robustness of T-RRT despite the ran-
dom nature of the search process. For these experiments,
the T-RRT iteration was stopped after the insertion of
1000 nodes. The extension step-size (i.e. the euclidean
distance between two connected states in the tree) was
set to δ = 0.5. The time performance for such a search
ranged from 20 to 30 seconds44. Then, the extraction
of the main minima from the T-RRT tree, required less
than 0.1 seconds.

2. T-RRTtrans Search

The localization of the minima being worked out,
T-RRT was used to find transition paths between them.
Table II shows the characteristics of the associated transi-
tion states found for the two benchmarks. In both cases,
the transition states computed with T-RRT are very close
to the ones found by exhaustive search. Moreover, in the
case of the Alien, both the lower and the upper path-
ways were found with T-RRT. Over the 100 computed
paths, 66 passed through the upper region part whereas
only 34 passed through the lower one. In other words
for energy barriers of similar height, the T-RRT exhibits
a higher probability to go through wider pass transition
regions than through narrow pass pathways. This result
illustrates that the preferred pathway chosen by the T-
RRT search is affected by the width of the pass pathway.
Accordingly, the T-RRT solutions do not only depend
on the potential energy of the explored states, but also
on the number of possible equivalent paths to reach the
other minium, and consequently the procedure searches
for the lowest (free) energy route.

B. Alanine Dipeptide in Implicit Solvent

The alanine dipeptide is a very frequent test-model
molecule for theoretical studies45–50. In this work, we
have studied the alanine residue acetylated in its N-
terminus and methylamidated in its C-terminus (see Fig-

Zorro

T-RRT Grid
A → B A → B

x -0.9 ± 0.6 0.5
y 0.7 ± 0.6 -0.6
E 4.96 ± 0.02 4.95

Alien

T-RRT Grid

A
l
−→ B A

u
−→ B A

l
−→ B A

u
−→ B

x 0.2 ± 0.1 0.8 ± 2.3 0.1 -0.9
y -8.6 ± 0.2 3.3 ± 2.4 -8.2 0.5
E 3.98 ± 0.03 4.13 ± 0.08 3.96 4.07

TABLE II. Transition states for the academic benchmarks.

ure 6). Despite its small size, alanine dipeptide shares
some structural features with larger peptides and pro-
teins. In particular, due to the flexibility of the φ and ψ
angles, the molecule is able of forming internal hydrogen
bonds.

For facilitating the analysis of results obtained with
T-RRT, an energy map on the {φ, ψ} coordinates of the
peptide was generated using a systematic procedure. The
two dihedral angles were varied with constant 10◦ step-
size. For each {φ, ψ} value, the conformation was energy-
minimized using a steepest descent method. In order to
fix the {φ, ψ} angles during the minimization, we used
an additional {φ, ψ}-harmonic potential whose minimum
was equal to the desired values of the two angles. The op-
timization was stopped when the RMSD for consecutive
iterations reached 1 · 10−3Å. The computed energy map
appears in background in Figure 7. For the construction
of the energy map, as well as for the energy evaluation
within T-RRT, we used the parm96 AMBER force field
together with an implicit representation of the solvent
with the Generalized Born approximation. The values of
the internal and external dielectric constants were set to
1.0 and 78.5 respectively.

The conformational exploration with T-RRT was per-
formed on an internal coordinate representation of ala-
nine dipeptide with constant bond lengths and bond an-
gles. Thus, the conformational parameters are the seven
bond torsions associated to the dihedral angles φ, ψ,
ω1,2, and χ1,2,3 represented in Figure 6. Note that, since
the peptide bond torsions ω1,2 are known to only vary
slightly, they were bound to the interval [170◦, 190◦].

1. T-RRTmin Search

The energy landscape exploration yielded six minima
that correspond to the PII , αR, αL, Cax

7 , αP and C5

stable states of the alanine dipeptide. Their position
and energy are presented in Table III (for reference, the
energy of the minimum-energy conformation is set to
zero). Figure 7.a shows these minima superimposed on
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FIG. 6. Alanine dipeptide and the seven conformational pa-
rameters used for the exploration.

PII αR αL Cax
7 αP C5

φ -66.7 -62.7 46.8 49.6 -148.4 -146.5
ψ 144.3 -44.0 51.3 -137.7 -70.3 161.6
E 0.3 1.1 4.4 4.2 1.7 0.0

TABLE III. Energy minima found by T-RRT for the alanine
dipeptide within a Generalized Born solvent.

the computed energy map of the {φ, ψ} internal coordi-
nates. It appears that T-RRT solutions fit very well the
minimum energy region of the map. This result shows
the capacity of the method to find multiple minima in
high-dimensional landscapes. For obtaining these results,
T-RRTmin was iterated until the insertion of 8000 nodes
in the tree. The exploration step-size δ was set such that
the maximal angular variation was of 5◦. The search
took 15 minutes. Finally the six minima were identi-
fied by applying the minima extracting method based
on RSMD. For improving quality of results, these min-
ima were locally optimized by a steepest descent method
with the same stop criterion than for the construction of
the {φ, ψ} energy map. Overall, this rapid optimization
process took about 1 second.

2. T-RRTtrans Search

T-RRT was used to find transitions paths between sev-
eral pairs of minima. Figure 7.b-d, shows paths for the
transitions αL → Cax

7 , αR → PII and Cax
7 → C5, respec-

tively. The algorithm was run 50 times for each pair.
The solutions are all represented in the figure. The com-
puting time for each transition path ranged from 1 to 5
minutes. The projection of the computed paths on the
{φ, ψ} energy map underlines the ability of T-RRT to fol-
low the valleys of the energy landscape (remind that the
figure shows a two-dimensional projection of the results,
while the exploration takes place in a seven-dimensional
space). Table IV shows the distribution of the solutions
according to the different pathways connecting the pairs
of minima. For the αL → Cax

7 transition, two main path-
ways appear (I and II). The higher probability for class-I
paths can be explained by an energy barrier slightly lower
than for class-II paths. The variability of the solutions
within each pathway is low, as the corridors that con-
nect the two minima are quite narrow. Looking at the

αL → Cax
7 αR → CPII Cax

7 → C5

Pathway I II I II I II III IV V
Distrib. 31 19 33 17 22 10 9 7 2

TABLE IV. Distribution of T-RRT solutions into path classes
for three conformational transitions of alanine dipeptide.

αR → PII transition, T-RRT also detect two possible
pathways (I and II). Class-I paths are also more proba-
ble in this case. The variability of class-II paths is due
to the wideness and the flatness of the the saddle region
that connects the two minima. Finally, five pathways
(I to V) were found for the Cax

7 → C5 transition, with
very different probabilities. Note that the highest-energy
path found by T-RRT corresponds to an energy barrier
of approximately 6 kcal·mol−1. This example illustrates
the capacity of the method to capture a large variety of
possible transition paths when necessary. In particular,
it can be advantageous compared to many path sampling
methods based on an initial trajectory, or requiring a re-
action coordinate that bias the search. Regarding the
saddle-points that appear in Figure 7-d, 29 paths over 50
pass through S1, whereas only 10 pass through S2. Such
a distribution is in agreement with results of a restricted
perturbation-targeted MD method51.

IV. CONCLUSION

We have proposed a novel method, called T-RRT, to
explore conformational energy landscapes. The method
combines recent robotic path planning algorithms with
basic concepts of statistical physics. The T-RRT algo-
rithm can be applied to find reachable energy minima
from an arbitrary conformation. The same algorithm
(possibly with a different parameter setting for improving
performance) can also be applied to compute conforma-
tional transition paths between pairs of minima. Simple
benchmarks have been used in this work to validate the
approach, and to facilitate the interpretation of the main
features of the method.

This paper aims to provide a basic algorithmic frame-
work that could be extended for treating more complex
systems. Similarly to MC-based methods, more sophis-
ticated sampling schemes could be devised to enhance
the efficacy of the exploration. Additionally, when a tar-
get conformation is specified, a biased scheme could be
used to drive more quickly the tree toward the final con-
formation. In the short future, we expect to investigate
extensions of T-RRT to yield a more efficient exploration
of the conformational space of longer polypeptides.
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Robotics (2009), in press.

43These benchmarks were first proposed at the 2005 Workshop on
Conformational Dynamics in Complex Systems.

44The computing times mentioned in this paper correspond to tests
based on a non-optimized code and performed on a single PC
with an Intel Core 2 processor at 3.0 GHz.

45C. Brooks, D. A.Case, Chem. Rev. 93 (7), 2487 (1993).
46J. D. Chodera, W. C. Swope, J. W. Pitera, and K. A. Dill, Mul-

tiscale Model. Simul. 5 (4), 1214 (2006).
47D. S. Chekmarev, T. Ishida, and R. M. Levy, J. Phys. Chem. B

108 (50), 19487 (2004).
48H. Okumura and Y. Okamoto, J. Phys. Chem. B 112 (38), 12038

(2008).
49P. G. Bolhuis, C. Dellago, and D. Chandler, Proc. of the National

Academy of Sciences of the USA 97, 5877 (2000).
50B. Strodel and D. J. Wales, Chemical Physics Letters 466, 105

(2008).
51A. van der Vaart and M. Karplus, J. Chem. Phys 122, 114903

(2005).


