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C-CROC: Continuous and Convex Resolution of
Centroidal dynamic trajectories for legged robots in

multi-contact scenarios
Pierre Fernbach, Steve Tonneau, Olivier Stasse, Justin Carpentier and Michel Taı̈x

Abstract—Synthesizing legged locomotion requires planning1

one or several steps ahead (literally): when and where, and with2

which effector should the next contact(s) be created between3

the robot and the environment? Validating a contact candidate4

implies a minima the resolution of a slow, non-linear optimization5

problem, to demonstrate that a Center Of Mass (COM) trajec-6

tory, compatible with the contact transition constraints, exists.7

We propose a conservative reformulation of this trajectory8

generation problem as a convex 3D linear program, CROC.9

It results from the observation that if the COM trajectory is10

a polynomial with only one free variable coefficient, the non-11

linearity of the problem disappears. This has two consequences.12

On the positive side, in terms of computation times CROC13

outperforms the state of the art by at least one order of14

magnitude, and allows to consider interactive applications (with15

a planning time roughly equal to the motion time). On the16

negative side, in our experiments our approach finds a majority17

of the feasible trajectories found by a non-linear solver, but18

not all of them. Still, we demonstrate that the solution space19

covered by CROC is large enough to achieve the automated20

planning of a large variety of locomotion tasks for different21

robots, demonstrated in simulation and on the real HRP-2 robot,22

several of which were rarely seen before.23

Another significant contribution is the introduction of a Bezier24

curve representation of the problem, which guarantees that the25

constraints of the COM trajectory are verified continuously, and26

not only at discrete points as traditionally done. This formulation27

is lossless, and results in more robust trajectories. It is not28

restricted to CROC, but could rather be integrated with any29

method from the state of the art.30

Index Terms—Multi contact locomotion, centroidal dynamics,31

Humanoid robots, legged robots, motion planning32

I. INTRODUCTION33

ONE long standing challenge in the domain of legged34

robotics is the proposition of a generic method, able to35

automatically synthesize motions for arbitrary robots in arbi-36

trary environments. Resolving this issue is required to achieve37

a long term objective: the deployment of autonomous legged38

robots, able to navigate safely among unknown environments,39

outside of their research laboratories.40

The term “multi-contact motion” has been proposed to41

distinguish this problem from the gaited locomotion problem42

[1], [2], because in this context no assumption can be made43

regarding the nature of the environment, or the contacts that44

will be created with it. In the multi contact case, the open45

problem of controlling a robot while satisfying dynamic and46

geometric constraints is made harder by the combinatorial47
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Fig. 1: An instance of the transition feasibility problem: can
we guarantee that the contact sequence shown in this picture
can be used to produce a feasible motion for the robot? To
address this issue in this example we need to account for 7
different contact phases (including phases where the effector
is flying, not displayed here).

aspect introduced by the choice (among an infinity of pos- 48

sibilities), of when and a where to create a contact between 49

the robot and the environment, and with which effector. So 50

far, this non-linear problem has remained out of reach of any 51

existing method. 52

However, an increasing number of contributions consider 53

the multi-contact problem, roughly following one of the two 54

apparently different options: a) decompose the problem into 55

a sequence of smaller problems, easier to solve [3]–[6]. In 56

this case the difficulty is to find a formulation of the smaller 57

problems equivalent to the original one, which results so far 58

in approximations; b) Tackle the initial problem entirely, but 59

in a computationally efficient way, through a reduction of the 60

dimensionality, also obtained through approximations [7]–[9]. 61

Both approaches have obtained significant successes, and 62

while the authors lay in the former family of methods [10], 63

[11], the objective of this paper is not to claim that one 64

prevails. We rather claim that despite being different in spirit, 65

those approaches face the same fundamental challenge: how to 66

make sure that the solution computed using a reformulation of 67

the multi-contact problem provides a straightforward solution 68

to the original problem? As an example, both families of 69

approaches propose contributions that rely on a model-based 70

approach called the centroidal model, which only considers the 71

dynamics of the Center Of Mass of the robot, rather than the 72

whole-body dynamics. This model introduces approximations 73

regarding the geometric constraints that lie on the robot, 74

and also regarding the angular momentum variation induced 75

by the motion of the rigid bodies that compose the robot. 76

The question is then to determine whether it is possible to 77
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formulate additional constraints on the centroidal dynamics,78

that would take into account the whole-body constraints.79

Finding what we call the “reduction properties”: formal80

theorems or empirical properties that will prove the validity of81

the problem decomposition or approximation, is the original82

scientific issue that we propose to tackle.83

In particular, in this work, we consider what we call the84

transition feasibility problem: given two states of the robot,85

can we guarantee that there exists (or not) a dynamically86

and kinematically consistent motion that connects these two87

states (Figure 1)? Being able to address efficiently this issue88

is desirable in the context of the authors’ framework, but89

not only, as the objective is to provide additional guaran-90

tees to the centroidal model, and to improve significantly91

its computational efficiency. From an applicative point of92

view, its resolution would also allow to address the N-step93

capturability problem [12]–[14]: given the current state of the94

robot, determine whether it will be able to come to a stop95

without falling in at most N steps (N ≥ 0). This issue is96

very important to guarantee the safety of the robot and its97

surroundings.98

A. The transition feasibility in a divide and conquer context99

Over the last few years, we have proposed a methodology100

to tackle the multi-contact motion problem, which relies on101

its decomposition into three sub-problems solved sequentially102

(Figure 2). This approach follows a “divide and conquer”103

pattern, with the idea that three sub-problems should be ad-104

dressed in a sequentially independent fashion: P1, the planning105

of a trajectory for the root of the robot, P2 the generation106

of a discrete contact sequence along the root’s trajectory107

and P3 the generation of a whole-body motion from this108

contact sequence. We have proposed several contributions109

to each sub-problems [15]–[17], and built a prototype that110

demonstrated its capability to find solutions for various robots111

and environments, with interactive computation times (a few112

seconds of computation for several steps of motion).113

The decoupling between each sub-problem allows to break114

the complexity, and comes with a cost that is the introduction115

of a feasibility problem: each sub-problem must be solved in116

the feasibility domain of the next sub-problems: ie. there must117

exist a sequence of contacts (problem P2) that can follow the118

root’s trajectory found (solution of P1), and similarly there119

must exists a feasible whole-body motion (problem P3) from120

the computed contact sequence (solution of P2). The latter121

problem is an instance of the transition feasibility problem122

that we address in this paper (The former was considered in123

[15]).124

It is important to observe that in this context, establishing125

the transition feasibility as fast as possible is crucial: P2 is126

a combinatorial problem, which implies that many contact127

sequences (thousands) must possibly be tried before finding128

a feasible contact sequence.129

Recent contributions have proposed centroidal trajectory130

generation methods that could theoretically be used to answer131

the transition feasibility problem [18]–[20]. However, because132

of the combinatorial aspect of contact planning, the computa-133

tional time required by these methods is too important to use134

a trial-and-error approach to verify the feasibility. Caron et al. 135

recently proposed a computationally efficient method [21], but 136

its application range is restricted to single-contact to single- 137

contact transitions. 138

The work that is the closest to the present paper is the 139

one of Ponton et al. [22]. By integrating the dynamic con- 140

straints inside a mixed-integer programming problem [8], they 141

addressed the transition feasibility problem at the contact 142

planning level. However the constraints are only approximated 143

through a convex relaxation (convex approximation is also 144

done in [23]), and mixed-integer approaches remain subject to 145

combinatorial explosion. The main difference between their 146

formulation and the method presented in this paper lies in 147

the fact that the presented method uses conservative dynamics 148

constraints rather than approximated ones, and is also more 149

computationally efficient. 150

151

152

B. Contribution 153

In this paper, as we tackle the transition feasibility issue, 154

we also complete a framework able to automatically generate 155

dynamic, collision free and multi-contact whole-body motions 156

for a legged robot in complex environments. This framework 157

has been presented in previous work: [15] [16] for P1 and 158

P2, and [17] [18] for P3. The framework is thus not directly 159

a contribution of this paper. 160

The main contribution is the formulation of a transition 161

feasibility criterion, able to test if there exists a kinematically 162

and dynamically valid motion that connects two states of the 163

robot, called CROC (which stands for Convex Resolution of 164

Centroidal dynamic trajectories). Thanks to a conservative and 165

convex reformulation of the problem, this is achieved in a 166

fraction of the computational cost required by standard non- 167

linear solvers. This method also produces a feasible CoM tra- 168

jectory. This trajectory can be used as a valuable initial guess 169

by a non-conservative non-linear solver to converge towards 170

an optimal solution. Noticeably, this formulation is, along 171

with [24], one of the few able to continuously guarantee 172

that the computed trajectories respect the constraints of 173

the problem, when other approaches require to discretize the 174

trajectory and check punctually the constraints. 175

Thanks to this criterion, we can provide strong guarantees 176

that the computed contact sequence will lead to a feasible 177

whole body motion. This results in a major technical con- 178

tribution, as we obtain and demonstrate a framework able 179

to automatically and robustly generate complex motions, in 180

simulation and on the real HRP-2 robot. 181

In the following section we recall the formal definition of 182

the problem. In section III we present our approach for the 183

feasibility criterion. 184

We then present our framework in section IV. Finally, we 185

present our experimental results in section V. 186

C. Situation of the contribution with respect to the authors 187

previous work 188

The present paper is an extension of an IROS conference 189

paper [25], where we propose a convex optimization method 190
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Start / Goal positions Guide trajectory Feasible
contact sequence Whole body motion

Fig. 2: Complete framework overview of our decoupled approach. In this work we only focus on addressing the transition
feasibility problem, from P2 to P3.

to solve the transition feasibility problem. Our previous formu-191

lation, as others in the community, is limited by the necessity192

to use of the double description method [26], an unstable193

mean to compute the linear constraints that apply to the194

problem [18], which allows for fast computation times. As195

for all existing methods, it also requires a discretization of the196

solution trajectory, such that the constraints of the problem197

are only checked at specific instants. In this paper we also198

propose a continuous formulation of the problem. It removes199

the need for discretization, and is fast enough to avoid using200

the double description method. We advocate for its adoption201

for any centroidal generation method.202

Sections II and III present important similarities with respect203

to [25]. The novelty appears from section III-D, where we204

present a continuous formulation able to deal with contact205

switch during the trajectory.206

The other sections of the paper are also novel. These nov-207

elties include the completion of our experimental framework,208

which allows us to validate our method on several experiments.209

We also provide an empirical analysis of the performance of210

our method with respect to a non-linear solver, in terms of211

success rate and computational time.212

II. PROBLEM DEFINITION213

We define the transition feasibility problem as follows.214

Given two configurations of a robot; given the contact loca-215

tions associated to these two configurations; given the position,216

velocity and acceleration of the Center Of Mass of the robot217

at these two configurations; can we guarantee that there exists218

a feasible motion that connects the two configurations? A219

feasible motion should respect the kinematic constraints of220

the robot, as well as the dynamics expressed at its Center Of221

Mass. Depending on the use case, some constraints may be222

removed (for instance if the end configuration is unknown, or223

the problem is simply to put the robot to a stop).224

Thus, in this work we define the transition feasibility225

problem with respect to the centroidal dynamics of a robot,226

as now commonly done [27], [19], [18]. In this section we227

provide some formal definitions that are used in the rest of228

the paper.229

A. Contact sequence and state 230

A legged motion can be descretized into a sequence of 231

contact phases, each differing by exactly one contact creation 232

or removal. Each contact phase defines a number of active 233

contacts, and their locations remain constant during the phase 234

(for instance when walking, the contact sequence is gaited as 235

it follows a periodic pattern: both feet in contact, left foot in 236

contact, both feet in contact, right foot in contact. . . ). Thus, 237

each contact phase constrains kinematically and dynamically 238

the motion of the robot. 239

We define a state x = (c, ċ, c̈) ∈ R3 × R3 × R3 as 240

the triplet describing a Center Of Mass (COM) position, 241

velocity and acceleration. To indicate that a state is compatible 242

with the dynamic and kinematic constraints associated with 243

a contact phase p ∈ N, we use the superscript notation 244

x{p} = (c{p}, ċ{p}, c̈{p}). 245

Given two states x
{p}
s and x

{q}
g with q ≥ p, the transition 246

feasibility problem consists in determining whether there ex- 247

ists a feasible trajectory c(t), t ∈ R+ of duration T ∈ R+, 248

which connects exactly x
{p}
s and x

{q}
g . 249

B. Centroidal dynamic constraints on c(t) 250

For a contact phase {p}, for any t ∈ [0, T ] the centroidal 251

dynamic constraints are given by the Newton-Euler equations. 252

These constraints form a convex cone (or polytope), which can 253

be expressed under two different formulations, theoretically 254

equivalent [28]–[30], but really different in practice. In this 255

paper we present and discuss both formulations. 256

1) Equality constraint representation (or force formula- 257

tion): The Newton-Euler equations are: 258[
m(c̈− g)

mc× (c̈− g) + L̇

]
=

[
I3 ... I3
p̂1 ... p̂nc

]
f (1)

Where : 259

• m is the total mass of the robot; 260

• nc is the number of contact points; 261

• pi ∈ R3, 0 ≤ i ≤ nc is the location of the i-th contact 262

point; 263

• f =
[
f1, f2, ..., fnc

]T ∈ R3nc is the stacked vector of 264

contact forces applied at each contact point; 265

• g =
[
0 0 −9.81

]T
is the gravity vector; 266



JOURNAL NAME 4

• L̇ ∈ R3 is the derivative of the angular momentum267

(expressed at c).268

• p̂i denotes the skew-symmetric matrix of pi.269

The contact forces are further constrained to lie in their so-270

called friction cone, which we conservatively linearize with271

four generating rays. Thus f has the form f = Vβ, where272

V ∈ R3nc×4nc is the matrix containing the diagonally stacked273

generating rays of the friction cone of each contact point and274

β ∈ R4nc is a positive vector variable.275

This formulation has the disadvantage of introducing a large276

number of variables associated to the contact forces (one277

vector β for each instant where the constraints are verified).278

2) Inequality constraint representation (or Double Descrip-279

tion formulation): Because the set of admissible contact280

forces is a polytope, it is possible to use an equivalent “face281

representation” of the constraints that apply to the center of282

mass and angular momentum. With this formulation, the force283

variables disappear:284

H{p}
[

m(c̈− g)

mc× (c̈− g) + L̇

]
︸ ︷︷ ︸

w

≤ h{p} (2)

where H{p} and h{p} are respectively a matrix and a vector285

defined by the contact points of the phase and their friction286

coefficients.287

With this formulation, the dimension of the problem is288

greatly reduced. However, the computation of the matrices289

H{p} and h{p} is a non-trivial operation called the double290

description method [26]. It is computationally expensive, and291

subject to occasional failures.292

In the following theoretical sections, we will use the in-293

equality formulation because we believe our contribution is294

more intuitive with this representation. In terms of implemen-295

tation the equality formulation is more reliable but slower.296

However we show that under our formulation the computation297

times remain in the same order of magnitude in both cases.298

3) The dynamic constraints are not convex: Because of the299

cross product between c and c̈, the constraints are not linear,300

and the issue of finding a trajectory satisfying them in the301

general case is a non-convex problem.302

C. Centroidal kinematic constraints on c(t)303

Each active contact creates kinematic constraints on c(t).304

We use linear constraints to represent these constraints depend-305

ing on the 6D positions of each active contact frames. They306

give us a necessary but not sufficient condition for kinematic307

feasibility (evaluated and discussed in section V-A5). We refer308

the reader to [31] for the computation of these constraints. We309

write them K{p}c ≤ k{p} for phase {p}.310

III. CONVEX FORMULATION OF THE TRANSITION311

PROBLEM312

As previously proposed [25], in order to determine the313

existence of a valid centroidal trajectory c(t), we formulate314

the problem as a convex one by getting rid of the non-linear315

constraints induced by the cross product c× c̈. To achieve this316

we impose a conservative condition on c(t).317

However, a significant contribution with respect to [25] and 318

other contributions is a continuous reformulation of the prob- 319

lem, which guarantees that the resulting trajectory is always 320

valid. Indeed, traditionally the constraints are only verified at 321

specific points of the trajectory, using a discretization step 322

that must be carefully calibrated to avoid an explosion in the 323

number of variables and constraints, while guaranteeing that 324

the constraints won’t be violated in between. 325

A. Reformulation of c(t) as a Bezier curve 326

Let us assume that c(t) is described by an arbitrary polyno- 327

mial of degree n of unknown duration T . In such case, without 328

loss of generality, c(t) is equivalently defined as a constrained 329

Bezier curve of the same degree n: 330

c(t) =

n∑
i=0

Bn
i (t/T )Pi (3)

where the Bn
i are the Bernstein polynoms and the Pi are the 331

control points. 332

With this formulation we can easily constrain the initial 333

or final position, velocity or any other derivatives by setting 334

the value of the control points. To connect exactly two states 335

xs = (cs, ċs, c̈s) and xg = (cg, ċg, c̈g) we thus need at least 336

6 control points to ensure that the following constraints are 337

verified: 338

• P0 = cs and Pn = cg guarantee that the trajectory starts 339

and ends at the desired locations; 340

• P1 = ċs/n
T + P0 and Pn−1 = Pn − ċg/n

T guarantee that 341

the trajectory initial and final velocities are respected; 342

• P2 = c̈s/(n(n−1))
T 2 + 2P1 −P0 and 343

Pn−2 =
c̈g/(n(n−1))

T 2 + 2Pn−1 −Pn guarantee that the 344

initial and final accelerations are respected. 345

Depending on the considered problem, some constraints 346

on the boundary positions, velocities or accelerations can be 347

removed, without changing the validity of our approach. For 348

instance, if the objective is simply to put the robot to a stop, 349

the end velocities and accelerations can be set to zero, while 350

the end position is left unconstrained. We can also extend this 351

to any degree and add constraints on initial or final jerk or 352

higher derivatives and automatically compute the position of 353

the control points with a symbolic calculus script such as the 354

one that we provide at the url 1. We only need to compute the 355

equation of the control points once and for all so we do not 356

need to compute them at runtime. In the following equations, 357

we use a curve of degree 6 with the constraints on initial and 358

final position, velocity and acceleration as described above, 359

and the same reasoning applies to all cases. 360

B. Conservative reformulation of the transition problem 361

We now constrain c(t) to be a Bezier curve of degree n = 6. 362

This is a conservative approximation of the transition problem 363

as it does not cover the whole solution space. 364

As we already need 6 control points to ensure that we 365

connect exactly the two states, this leaves a free control point 366

P3 = y: 367

1http://stevetonneau.fr/files/publications/iros18/derivate.py
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c(t,y) =
∑

i∈{0,1,2,4,5,6}

B6
i (t/T )Pi +B6

3(t/T )y (4)

In this case, y and T are the only variables of the problem.368

For the time being, we fix T to a constant value. We derive369

twice to obtain c̈(t), and compute the cross product to get the370

expression of w(t) :371

w(t) =

[
m(c̈− g)

mc× (c̈− g) + L̇

]
(5)

The non-convexity of the problem disappears, because the372

cross product of y by itself is 0, and all other terms are373

either constant or linear in y. w(t,y) is thus a six-dimensional374

Bezier curve of degree 2n − 3 [32] (9 in this case) linearly375

dependent of y:376

w(t,y) =
∑

i∈{0..9}

B9
i (t/T )wi(y) + L̇(t) (6)

where wi(y) ∈ R6 are the control points expressed as :377

wi(y) = wy
i y + ws

i (7)

The wy
i ∈ R6×3 and ws

i ∈ R6 are constants that only378

depend on the control points Pi of c(t) and of T .379

In what follows, for the sake of simplicity, we assume380

L̇(t) = 0. This is not a limitation: if we express L̇(t) as381

a polynomial in the problem the following reasoning stands.382

One way to include L̇(t) is to represent it as a Bezier curve383

with one or more free variables. However guaranteeing that we384

can generate a whole-body motion that tracks a variable L̇(t)385

requires additional information on the whole-body motion,386

which we leave for future work [19], [33].387

The existence of a valid trajectory c(t) can thus be388

determined by solving a convex problem.389

C. Application for a motion with no contact switch390

We first consider the case where p = q = 1.391

1) Continuous formulation: Using the fact that a Bezier392

curve is comprised in the convex hull of its control points, and393

assuming that the start and goal states are feasible (otherwise394

the problem has no solution), we only need to find a y395

such that y satisfy the kinematic constraints and the control396

points of w(t,y) satisfy the dynamic constraints of the contact397

phase (Figure 3). In this case, the whole trajectory necessarily398

satisfies the constraints everywhere, as they form a convex399

set. This problem is thus a linear Feasibility Problem (FP) in400

3 dimensions:401

find y

s. t. K{p}y ≤ k{p}

(mH{p}wy
i )y ≤ h{p} +mH{p}(

[
g
0

]
−ws

i ) ,∀i
(8)

Constraining the control points of w(t) to satisfy the402

constraints of the trajectory is a priori a conservative approach403

that further constrains the solution space (we will see that this404

Fig. 3: A bezier curve is comprised in the convex hull of its
control points. In this abstract view, the red polygon represents
the 6D constraints on w(t). If the control points of w(t)
satisfy the constraints, then the complete curve satisfies the
constraints.

limitation can be easily overcome). However, this approach 405

allows for a continuous solution to the problem and guarantees 406

that the trajectory is entirely valid. 407

2) Discrete formulation: Alternatively, we can remove the 408

constraint on the control points of w(t), and use a classical 409

discretized approach to verify that some of the points of w(t) 410

satisfy the constraints. This approach is less conservative, 411

although it increases the dimensionality of the problem, and 412

introduces the risk that the constraints be violated between 413

two discretization steps. Using a discretization step ∆t, we 414

discretize w(t,y) over T as follows : 415

w(j∆t,y) = wy
jy + ws

j (9)

Where wy
j , ws

j are constants given by P{0,1,2,4,5,6}, the 416

total duration T and the time step j∆t. j belongs to the phase 417

set J{p} : {j ∈ N : 0 ≤ j∆t ≤ T {p}}. We can now rewrite 418

inequality (2) expressed at the discretization point j∆t: 419

(mH{p}wy
j )︸ ︷︷ ︸

U
{p}
j

y ≤ h{p} +mH{p}(

[
g
0

]
−ws

j)︸ ︷︷ ︸
u

{p}
j

(10)

Thus we rewrite FP (8) in a discretized form : 420

find y

s. t.

[
K{p}cyj
U
{p}
j

]
︸ ︷︷ ︸

E
{p}
j

y ≤

[
k{p} −K{p}csj

u
{p}
j

]
︸ ︷︷ ︸

e
{p}
j

∀j ∈ J{p}

(11)

D. Application to a motion with one contact switch 421

We now consider the case where q = p+ 1. In this case we 422

define T {p} and T {q} as the time spent in each phase, such 423

that T = T {p} + T {q}. 424

When a contact switch occurs during a motion, the con- 425

straints applied to the CoM trajectory change at the switching 426

time t = T {p}. When t < T {p}, the constraints of phase 427

{p} must be applied and conversely, the constraints of phase 428

{q} must be applied and when t > T {p}. At t = T {p}, the 429

constraints of both phases must be applied. 430
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Fig. 4: Example of curve decomposition with the De Casteljau
algorithm. The original curve comprises 3 control points
(black). It is decomposed into two curves comprising the same
number of control points each (3). We can then constrain the
control points of the first curve (red) to lie in the first set of
constraints, and similarly constrain the control points of the
second curve (green) to lie in the second set of constraints.
As a result, if the constraints can be satisfied, the connecting
control point of both curves satisfies both set of constraints,
and we obtain the guarantee that each sub-curve satifies its
respective set of constraints. Interestingly, the control points
of the sub-curves are constrained to belong to their respective
cones, but those of the original curve can lie outside of the
constraints.

1) Continuous formulation: In this case, since w(t) spans431

2 distinct sets of linear inequalities, the convex hull of its432

control points is not guaranteed to lie in the constraint set.433

The key idea, and a main contribution with respect to the434

work of Lengagne et al. [24], is to fall back to the case435

where no contact switch occurs, by considering two curves436

that continuously connect at the switching time T {p}. We use437

the De Casteljau algorithm to divide the original curve into two438

curves c(t,y), each curve being subject to the constraints of439

their respective contact phase (Figure 4). The result is thus the440

expression of the control points of two Bezier curves c{p}(t,y)441

and c{q}(t,y) with the same degree as the original curve, such442

that :443 {
c{p}(t,y) = c(t,y) ∀t ∈ [0;T {p}]

c{q}(t,y) = c(t,y) ∀t ∈ [T {p};T ]
(12)

The De Casteljeau decomposition guarantees that444

c{p}(T
{p},y) = c{q}(T

{p},y), and that the composition of445

the curves in infinitely differentiable (C∞), as it is strictly446

equivalent to c(t,y). The control points of the new curves447

are linearly dependent on the control points of the original448

un-split curve, and thus have the form :449

c{z}(t,y) =

n∑
i=0

Bn
i (t/T{p})P

{z}
i (y) ∀z ∈ {p, q} (13)

where P
{z}
i has the form:450

P
{z}
i (y) = P

y{z}
i y + P

s{z}
i (14)

with P
y{z}
i and P

s{z}
i constants. 451

452

It follows that w{p}(t,y) and w{q}(t,y) are also linearly 453

dependent of y: 454

w{z}(t,y) =

n∑
i=0

Bn
i (t/T )w

{z}
i (y)

with w
{z}
i (y) = w

y{z}
i y + w

s{z}
i ,∀z ∈ {p, q}

(15)

Finally the constraints of (8) can be rewritten to deal with 455

the contact switch. The kinematics constraints expressed at 456

each control points are written: 457

K{z}P
y{z}
i︸ ︷︷ ︸

A
{z}
i

y ≤ k{z} + K{z}P
s{z}
i︸ ︷︷ ︸

a
{z}
i

,∀i,∀z ∈ {p, q} (16)

and the dynamic constraints: 458

(mH{z}w
y{z}
j )︸ ︷︷ ︸

D
{z}
j

y ≤ h{z} +mH{z}(

[
g
0

]
−w

s{z}
j )︸ ︷︷ ︸

d
{z}
j

,

∀j,∀z ∈ {p, q}

(17)

We can then stack the constraints: 459

A =



A
{p}
0
...

A
{p}
n

A
{q}
0
...

A
{q}
n


a =



a
{p}
0
...

a
{p}
n

a
{q}
0
...

a
{q}
n


D =



D
{p}
0
...

D
{p}
2n−3

D
{q}
0
...

D
{q}
2n−3


d =



d
{p}
0
...

d
{p}
2n−3
d
{q}
0
...

d
{q}
2n−3


(18)

We recall that in our case n = 6. Finally, we can rewrite 460

FP (8) with a contact switch as: 461

find y

s. t. Ay ≤ a

Dy ≤ d

(19)

This boils down to check if each control point of each split 462

curves satisfies the constraints of the current contact phase. 463

2) Discrete formulation: The discrete formulation of the 464

problem is more straightforward: the formulation remains the 465

same, with the only difference that the constraints that must 466

be verified at each discretized point change at t = T {p} and 467

t > T {p}. We thus have 3 sets of constraints in this case: 468

two for each phase, plus one for the transition time t = T {p} 469

where the constraints of both phases apply. We define J{q} : 470

{j ∈ N, T {p} ≤ j∆t ≤ T {q}} and obtain the following FP: 471

find y

s. t. E
{z}
j y ≤ e

{z}
j ,∀j ∈ J{z},∀z ∈ {p, q}

(20)
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E. General case472

In the general case, the same idea will apply. In the contin-473

uous case, we use the De Casteljau algorithm to split c(t) into474

as many curves as required, thus falling back to a formulation475

with no contact switches. In the discrete case, we assign476

the appropriate constraints for each discretized time step.477

While these decompositions appear mathematically heavy,478

from a programming point of view, they can be automatically479

generated, and thus are in fact simple to implement.480

In our experiments, we only consider three consecutive481

phases (which correspond to one step), and solve a new482

problem for each subsequent set of phases. We call one such483

convex problem “CROC”, which stands for Convex Resolution484

of Centroidal dynamic trajectories.485

F. Non-conservative continuous formulation486

The presented continuous formulation is more conservative487

that the discretized one. Constraining the control points to488

lie inside the constraint set prevents the generation of curves489

such as the one shown in Figure 5. In particular, it is not490

possible for the curve to lie exactly on the constraint set, except491

for the start and end points (because the other control points492

are never reached by definition of a Bezier curve). However,493

coming back to the De Casteljau algorithm, one can make an494

interesting observation. Figure 4 illustrates the fact that while495

the control points of the sub-curves all lie in their respective496

constraint set, one control point of the original curve lies497

outside both sets.498

When a curve is split, the formulation of the constraints499

changes: they no longer apply to the control points of the500

original curve, but to the control points of the sub-curves. The501

former are no longer constrained to lie in the constraint set502

(although they depend on the control points of the sub-curves).503

In particular, it is then possible to assign the control points of504

the sub-curves exactly on a boundary of the constraint set, and505

as a result the original curve will lie partially on the boundary506

of the constraint set, without crossing it. If the curve is split507

an infinite number of times, it is straightforward to see that508

the original curve can span entirely its original definition set.509

The price to pay is that the number of constraints increases510

with the number of curve divisions: a curve of degree s split511

b times comprises (s+ 1) ∗ (b+ 1) constraints. The higher the512

number of splits, the more constraints to address. A parallel513

can be made with the discretized approach: the lower the514

discretization step is, the higher the number of constraints is.515

We believe that a deeper analysis of the pros and cons of516

using a continuous formulation, not only in the case of CROC,517

but with any other formulation of the problem, requires a518

significant amount of research, and thus will be discussed in519

a future paper. In this paper, we only divide the curve at the520

transition points, and we show that this is in practice sufficient521

to perform as well as with the discretized approach, while522

ensuring comparable time performances.523

G. Cost function and additional constraints524

As the transition feasibility problem is addressed by CROC,525

a feasible COM trajectory is computed. It is possible to526

Fig. 5: The curve w(t) belongs entirely to the convex bound-
aries (red), while a control point Pw1 lies outside of them.

optimize this trajectory to minimize a given cost function 527

l(y), either linear or quadratic. In the latter case problem (19) 528

then becomes a Quadratic Program (QP). One can for instance 529

minimize the integral of the squared acceleration norm or the 530

angular momentum. This cost function is irrelevant to solve 531

the transition feasibility problem, but it can be later used as a 532

reference COM trajectory for a whole-body motion generator, 533

or as an initial guess for a non-linear solver as discussed in 534

Section V-A4. The main interest of using a non-linear solver 535

with the input of CROC is that the trajectory can then be 536

refined globally (while the authors advise to use CROC with 537

at most 3 contact phases), at the cost of a higher computational 538

burden. Figure 6 provides a trajectory computed with CROC 539

and the same trajectory refined with a non-linear solver as an 540

illustration of the typical differences of both approaches. 541

The formulation also allows to add inequality constraints 542

on c and any of its derivatives by rewriting the expression of 543

the control points of the desired curve as done in equation 544

(14). Here again, these constraints can either be verified con- 545

tinuously on the concerned control points, or in a discretized 546

fashion. In any case, they take the form 547

Oy ≤ o (21)

We use such constraints to impose bounds on the velocity 548

and acceleration of the center of mass or on the angular 549

momentum variation. The most generic form of our problem 550

is thus the generic QP: 551

find y

min l(y)

s. t. Ay ≤ a

Dy ≤ d

Oy ≤ o

(22)

In our experiments we set constraints on the acceleration 552

and velocity and minimize the squared acceleration norm as 553

a cost l. In the remainder of the paper “CROC” refers to the 554

problem( 22). 555

H. Time sampling 556

To remain convex, we choose not to include the duration 557

of each phase T {p}, T {p+1} and T {p+2} as variables of 558

CROC. We rather sample various combinations of times and 559

solve the corresponding QPs in sequence until a solution is 560
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Fig. 6: Example of centroidal trajectories generated with
CROC and a non linear-solver (bird eye view), in a case
of bipedal walking. The red and green circles represent the
contact positions of the (respectively) left and right feet centers
over time. The yellow and orange (respectively related to
single and double support phases) curve is the curve obtained
through the concatenation of curves computed with CROC.
The blue and green (respectively related to single and double
support phases) curve is obtained through optimization of
the latter curve with a non linear solver. The orange squares
represent the constrained COM positions resulting from the
contact planning phase, which are ignored by the non-linear
solver to produce smoother motions.

found. In theory, this would mean that we need to sample an561

infinity of combinations in order to be complete. However,562

we pragmatically reduce this number and give up on the563

completeness while maintaining a high success rate as follows.564

We sampled a time for each duration phase T {z} by choosing565

a value between 0.1 and 2 seconds for phases without end-566

effector motion and between 0.5 and 2 seconds for phases with567

end-effector motion, with increments of 50ms. For a sequence568

of three phases with one phase with end-effector motion, this569

gives a total of 43320 possible combinations. We tested CROC570

with all these combinations on various problems : with HRP-2571

or HyQ robots on flat and non-coplanar surfaces, for several572

thousands of states.573

Upon analysis of the results of the convergence of the574

QPs, we found out that we can use a small list of timings575

combinations (5 in our case, shown in table I) that covers576

100% of the success cases for all the robots and scenarios577

tested. We thus solve a maximum of 5 QPs for each validation.578

Figure 7 shows the evolution of the success rate according to579

the number of timings combinations used. We observe that 3580

Fig. 7: Evolution of the success rate of CROC according to
the number of timings combinations used. Tested on various
scenario with coplanar and non-coplanar contacts and with a
bipedal and a quadrupedal robots.

combinations are enough to reach 99% of success but that two 581

additional combinations are required to reach exactly 100%. 582

timings (s) Success rate (%)
T {p} T {p+ 1} T {p+ 2}

1 0.8 0.8 91.2
1 0.75 0.9 89.2

0.8 0.8 0.9 88.3
0.7 0.5 0.85 77.7
1.2 0.6 1.1 70.8

TABLE I: Success rate with the five used timings combina-
tions.

IV. EXPERIMENTAL FRAMEWORK 583

Figure 8 shows the complete framework used for our 584

experiments, implemented with the Humanoid Path Planner 585

[34] framework. The inputs are an initial (respectively goal) 586

position and orientation for the root of the robot, as well as 587

a set of bounds on the velocities and acceleration applying to 588

the COM and the end-effector. The output is a dynamically 589

consistent and collision free whole-body motion which can be 590

played on a real robot as shown in section V. 591

In this paper, we only modify the contact generation method 592

by adding CROC as a feasibility criterion. The other methods 593

and used as black boxes and thus only briefly introduced, with 594

a reference to their respective publications. 595

A. RB-RRT kinodynamic planner 596

The first block generates a rough guide trajectory2 for the 597

root of the robot x(t)planning. RB-RRT is a planning method 598

based on the sampling-based RRT algorithm, which plans a 599

guide trajectory for the geometric center of a simplified model 600

2This guide is followed exactly to solve P2, but ignored when solving P3.



JOURNAL NAME 9

RB-RRT
Kinodynamic

Contact generator
+ CROC

Inverse
kinematics

Centroidal dynamic
solver

Trajectory
validator

End effector
trajectory

Pinit

Pgoal

Vmax

env robot

q(t)
x(t)planning contactSequence

q(t)

x(t)

x(t)initGuess

[eff(t)]
q(t)

Fig. 8: Complete experimental framework.

of the robot. It thus solves a problem of lower dimension601

than planning in the configuration space of the real robot. The602

goal of this method is to find a trajectory for the root of the603

robot which will allow contact creation. This block was first604

presented in [15] and later extended to a kinodynamic version605

in [16], which is the one we use.606

B. Contact generator with CROC as a feasibility criterion607

The contact generator block computes a contact sequence,608

as a list of whole body postures along the discretized guide609

trajectory x(t)planning. It also generates an initial guess of the610

timing of each contact phase. This method was also introduced611

in [15]. CROC is integrated as a feasibility criterion within612

this contact generator. More precisely it is used as a filter to613

determine which transitions are unfeasible and discard them614

during the planning in order to produce contact sequence615

containing only feasible transitions. The integration of CROC616

to this pipeline provides strong guarantees that the computed617

contact sequence will lead to a feasible CoM trajectory and618

thus that the centroı̈dal dynamic solver will converge with this619

contact sequence as input.620

A byproduct of this test is a feasible CoM trajectory between621

each adjacent contact phases (x(t)initGuess). This trajectory,622

not optimal, is used as a warm-start for a non-linear solver623

which will use it to compute a more optimal trajectory. The624

three different trajectories found in the framework of the figure625

8 are shown in the figure 6, x(t)planning is represented in626

black, x(t)initGuess in yellow and orange and x(t) in green627

and blue.628

C. Centroidal dynamic solver629

The centroidal dynamic solver block was proposed in [18],630

it takes as input the contact sequence found by the previous631

block, along with an initial guess of the timing of each phases632

and an initial guess of the CoM trajectory. The output of this633

block is a CoM trajectory that respects the centroı̈dal dynamics634

of the robot x(t) and minimize a tailored cost function. This635

method solves an optimal control problem with a multiple- 636

shooting algorithm implemented in MUSCOD-II [35]. 637

D. Inverse kinematics 638

Finally, the whole-body motion q(t) is generated with a 639

second order Inverse Kinematics solver, similar to [36]. This 640

method takes as input a reference trajectory for the CoM, as 641

well as references for the trajectories of the end-effectors. 642

E. End-effector trajectory 643

In order to automatically generate valid end-effector tra- 644

jectories for complex and constrained scenarios, we use a 645

dedicated block. The trajectories computed are such that 646

the whole limb is collision free and respect the kinematic 647

constraint. The trajectories are represented as Bezier curves 648

constrained to have a null initial and final velocity, acceleration 649

and jerk and which respect velocity, acceleration and jerk 650

bounds along the whole trajectory. In order to guarantee that 651

the whole surface of the effector creates or breaks the contact 652

at the same instant the curves are also constrained to have a 653

velocity orthogonal to the contact surface for a small time step 654

at the beginning and the end of the trajectory. 655

The positions of the control points of this Bezier curve 656

are computed as the solution of a QP optimization method, 657

which is called iteratively to find a compromise between a 658

reference optimal trajectory and a collision free one, provided 659

by a probabilistic planner. This planner computes a geometric 660

path for the moving limb that respects all the kinematic and 661

collision constraints but which may present discontinuities in 662

velocity and higher derivatives and do not respect the dynamic 663

constraints described in the previous paragraph. This path is 664

then used in the cost function of our optimization method in 665

order to produce a trajectory as smooth as possible and without 666

any useless motion while being collision free and respecting 667

all the kinematics and dynamics constraints. 668
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V. RESULTS669

A. Performances of CROC670

Computing the success rate of our method is a hard task671

because we do not have any way to determine the ”ground672

truth” feasibility of a transition (ie. there does not exist any673

method able to determine in finite time whether there exists674

a valid centroidal trajectory between the two states). Still, as675

the goal is to solve the contact planning problem (P2) in the676

feasibility domain of the centroidal motion generation problem677

(P3), we do not need to compare our method against the678

ground truth but only against the non linear solver used by679

P3, presented in section IV-C.680

In the table II we show the success rate and the computation681

time of our method. We compare the method presented in this682

paper (with the continuous formulation) against the non linear683

solver with a naive warm start, and the non linear solver with684

the solution of our method as a warm start when it is available.685

This last method is considered as our ground truth.686

The methods were tested with randomly generated se-687

quences of 3 contact phases such that:688

• both initial and final contact phases are in static equilib-689

rium690

• both initial and final contact phases have the same number691

of effectors in contact, between two and four692

• there is exactly one contact repositioning between both693

initial and final contact phases and no other contact694

variation695

• the intermediate contact phase is not required to be in696

static equilibrium.697

We considered two kind of scenarios. In the first case698

we only sample contact phases with coplanar contacts. In699

the second case we sampled truly random contacts, which700

lead to contact phases with non-coplanar contacts and contact701

sequences that require complex motions. The results are shown702

in the table II.703

All the benchmarks were run on a single core of an Intel704

Xeon CPU E5-1630 v3 at 3.7Ghz. The QP problems are solved705

with QuadProg, and the FP problems with GLPK [37].706

Method Coplanar
success (%)

Non-coplanar
success (%)

Total
time (ms)

CROC (DD) 88.4 57.2 3.93
CROC (force) 88.4 57.2 13.01

OCP 100 94.1 ' 150
OCP (warm start) 100 100 ' 130

TABLE II: Comparison between CROC and a non linear
solver for randomly generated contact sequences of three
contact phases. The two first methods are the ones presented
in this paper, with the continuous formulation and using
either the inequality representation of the dynamic constraints
(DD) or the equality representation (force). These methods are
compared with the non linear solver presented in [18], either
with their naive warm start (OCP) or with the solution found
by CROC as a warm start when available (OCP warm start).
This last method is used as a ”ground truth” for computing
the success rate.

Formulation Metric Number of contacts
2 3 4

DD DD time (ms)
Total time (ms)

3.56 14.88 28.16
4.19 16.18 37.41

Force Total time (ms) 13.01 25.28 49.65

TABLE III: Comparison between the computation times re-
quired to generate and solve the FP3 defined by CROC using
either the Double Description (DD) or the Force formulation.

1) How conservative is our CROC?: Because of its conser- 707

vative reformulation, CROC does not cover the whole solution 708

space. As expected, our method find less solutions than the non 709

linear solver used. In the coplanar case, CROC almost finds 710

90% of the solutions. In the non-coplanar case the centroidal 711

trajectory may be required to present several changes of 712

direction and/or to be really close of the constraints, which 713

explains the difference of success rate between the two cases. 714

However, even in such cases CROC still finds the majority of 715

the solutions. 716

2) Computation time: As claimed in the introduction, 717

CROC is about two order of magnitude faster than the non- 718

linear solver that we are using for the centroidal motion 719

generation. Thanks to this efficiency, it is realistic to use our 720

method during the contact planning to evaluate hundreds of 721

candidate transitions. 722

For the inequality representation with the double description 723

method, the computation time allocated to solve the QP 724

of equation (22) is extremely fast with 50µs on average. 725

The computation time of CROC, which comprises the time 726

required to solve the QP and the time required to compute 727

all the constraints matrices of equation (18) is around 400µs. 728

The total time also includes the time required by the double 729

description method. In some use cases, the same contact 730

phases may be used several times and the double description 731

method only needs to be computed once per contact phase, 732

thus the time required for the double description may be 733

factorized. 734

The major difference between the two representations lies 735

in the dimension of the variables and the constraints of the 736

problem, which is greater in the case of the force formulation. 737

As shown in Table III the computation times between the 738

double description and the force formulations remain in the 739

same order of magnitude for 2 to 4 contacts, with an advantage 740

for the double description. However this advantage reduces as 741

the number of contacts increase. Indeed, while the computation 742

time for the force formulation doubles at each additional 743

contact, the time grows cubicly with the Double Description 744

(DD) formulation. 745

3) Comparison between continuous and discretized formu- 746

lation: Table IV compares four variants of CROC: the dis- 747

cretized version presented in [25] with three different values of 748

number of discretization points per phases and the continuous 749

version presented in this paper. The experimental protocol is 750

the same as in the previous sub-section. 751

3QP and FP give similar times for the DD formulation, while the FP is
much more efficient in the Force formulation. This is only an implementation
problem, since GLPK exploits the sparsity of the problem while QuadProg
does not.
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Method
Coplanar Non-coplanar Total

time
(ms)

Success
(%)

Invalid
solutions (%)

Success
(%)

Invalid
solutions (%)

D (3 pts) 89.7 10.6 61.4 19.7 0.20
D (7 pts) 89.7 6.7 60.6 9.3 0.37
D (15 pts) 89.1 4.2 60.6 6.9 0.75

C 88.4 0 57.2 0 0.41

TABLE IV: Comparison between the method CROC with the
discrete formulation (D), with varying number of discretization
points, and the continuous formulation (C) presented in this
paper. The ”ground truth” used to compute the success rate is
the non linear solver of [18].

The third and fifth columns of Table IV show the percentage752

of solutions found that were not dynamically valid. These753

tests were made by evaluating the dynamic constraints with754

a really small discretization step on the centroidal trajectory755

found. Only the discretized version of CROC ( [25]) can756

find such invalid solutions, and depending of the number757

of discretization points used it can reach a non negligible758

value. This issue is common to all methods that relies on759

discretization and this results emphasizes the fact that we need760

a continuous method, able to check exactly whether the whole761

trajectory is valid.762

The drawback of using the continuous formulation proposed763

in the section III is that it is more conservative than the764

discretized formulation. However, according to our results,765

the discretized version found a solution while the continuous766

version did not converge only 5.7 % of the times. This number767

is similar to the percentage of invalid solutions computed768

with the discretized approach, and thus appears favorable.769

Moreover, in the section III-D1 we proposed to only split the770

trajectory in one curve for each contact phases but it’s possible771

to split the trajectory in an arbitrary number of curves, as long772

as each curve is entirely contained in one contact phases, as773

detailled in section III-F. By increasing the number of split774

curves, we can further reduce the loss of solutions.775

4) Using CROC to warm start a non linear solver: Choos-776

ing an initial guess for the non linear solver of a trajectory777

generation method is essential but may be challenging for778

multi-contact motions. The quality of this initial guess has779

a significant influence on the convergence of the non linear780

solver. For the trajectory generation method used in our781

framework, [18] proposed a naive initial guess of the centroidal782

trajectory based solely on the position of the contact points and783

a predefined height.784

Interestingly, Table II suggests that the solution set spanned785

by CROC is not strictly included in the one spanned by786

this non linear solver with this naive initial guess. Using the787

solution of CROC to warm start the non linear solver can thus788

help it to converge and increase it’s success rate. As shown in789

Table II, this increase only appears for the non-coplanar case790

because the naive initial guess used is always close to a valid791

solution in the coplanar case. We expect that the importance792

of the initial guess will grow if the contact sequences do not793

allow static equilibrium configurations at the contact phases,794

and will check this hypothesis in the future.795

Moreover, by using the solution of CROC to warm start the796

non linear solver we measured a reduction of the number of 797

iterations required to converge of 20% on average, reducing 798

the total computation time (ie it is faster to use CROC then 799

the non-linear solver, even if CROC fails, than using the non- 800

linear solver directly). 801

5) Validity of our kinematic constraints: As explained in the 802

section II-C, our representation of the kinematics constraints 803

is a necessary but not sufficient approximation. In order to 804

evaluate the accuracy of this approximation, for each feasible 805

transition found by CROC between random configurations, we 806

tested explicitly the kinematic feasibility of the centroidal tra- 807

jectory with an inverse kinematic. This tests showed that 17.5 808

% of the trajectories found by CROC were not kinematically 809

valid. This shows that our approximation of the kinematic 810

constraints is not sufficient. However, this is not a limitation 811

of our formulation. Indeed, any other linear representation of 812

the kinematic constraints could be incorporated in our method. 813

Moreover, by doing the same tests without any kinematic 814

constraints we found a total of 72.3 % of kinematically 815

unfeasible trajectories, this results show the interest of our 816

kinematic constraints approximation to greatly improve the 817

feasibility of the trajectories found by CROC. 818

B. Experimental results 819

Fig. 9: Unfeasible stepping strategies invalidated by CROC.

Fig. 10: 3D solution space for CROC (green polytope). The
red point is a solution that generates the displayed trajectory.

The complete experimental framework presented in the 820

previous section was tested on several scenarios in semi struc- 821

tured environments, each scenario showing specific features or 822

difficulties. We insist that the only manual inputs given to our 823

framework were an initial and a goal position for the root of 824

the robot. Most of the obtained motions are demonstrated in 825

the companion video. They were validated either in a dynamics 826

simulator or on the real robot. 827
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Fig. 11: Snapshots of the motion for the 10cm stairs, the complete motion is shown in the companion video.

1) Inclined platform crossing: This scenario requires the828

robot to go from one flat platform to the other by taking a step829

in an inclined platform (Figure 1). The scenario is designed830

such that no quasi-static solution exists to the problem, and831

is truly multi-contact in the sense that part of the motion832

occurs entirely on non-flat ground. CROC allows to invalidate833

unfeasible contact sequences that would involve directly taking834

a step on the final platform, or take a step with the right foot835

first (Figure 9). It rather allows to find a solution where the836

left foot is used to step on the inclined platform Figure 1),837

which leads to a feasible whole-body motion demonstrated in838

the companion video.839

Additionally, CROC also allows to ensure that the left foot840

is positioned in such a way that the problem becomes feasible,841

which is not trivial considering the size of the solution space842

for the chosen step position (Figure 10).843

2) 10 cm high steps: This experimental setup is an indus-844

trial set of stairs shown in Figure 11 and 12(a). It consists of845

six 10 cm high and 30 cm long steps. This experiment was846

done with the HRP-2 robot. All the valid contact sequences847

produced contains at least 13 contact phases as the robot is848

kinematically constrained to put both feet on each step.849

The complete motion is shown in the companion video. The850

crouching walk seen is required to avoid singularities in the851

knee of the extending leg, which are not tolerated by the low-852

level controller.853

An exemple of unfeasible contact sequence filtered out by854

our feasibility criterion is depicted on Figure 13. All three855

configurations in this sequence are valid (ie. respect kinematics856

and dynamics constraints) but there isn’t any valid centroidal857

trajectory between the last two configurations. Our feasibility858

criterion will filter out this kind of contact transitions during859

contact planning.860

3) 15 cm high steps with handrail: This other set of stairs861

is composed of four 15 cm high steps and equipped with862

a handrail. The contact sequence is shown in Figure 12(b)863

and snapshots of the motion are shown in Figure 14. This864

is a typical multi-contact problem, showing a acyclic contact865

sequence with non co-planar contact surfaces. The problem866

was already solved in a previous work [17], but the input867

contact sequence and effector trajectories had to be manually868

selected from a large number of trials. In this paper, the only869

input is a root goal position at the top of the stairs.870

4) Flat surface with ground level obstacles: This exper-871

imental setup consists of a flat floor with obstacles, shown872

in Figure 12(c) and (d). In (c) there is only one obstacle873

in front of the robot’s initial position, in (d) we add smaller874

obstacles on the floor. This scenario shows that our planner is875

able to compute a valid guide root trajectory that avoid bigger876

a b

c d

e

Fig. 12: Examples of contact sequences found with our frame-
work. The color patches represent the planned contact location:
green for right foot, red for left foot, blue for right hand.

obstacles and that our contact planner is able to avoid collision 877

with smaller obstacles on the ground. 878

The difficulty of this scenario lies on the generation of 879

collision free feet trajectories. Indeed, some obstacles are small 880

enough to permit the feet to pass over the obstacles, but others 881

are too high and require a lateral motion of the feet to avoid 882

them. As shown in Figure 15 our method presented briefly in 883

section IV-E is able to find such trajectories automatically. 884

5) Uneven platforms: This setup consists of 30 cm long 885

and 20 cm wide platforms, oriented of 15◦around either the x 886
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Fig. 13: Exemple of unfeasible contact transition detected by
CROC and rejected during contact planning

Fig. 14: A feasible multi-contact sequence for a stair climb-
ing with handrail support on the HRP-2 robot automatically
computed with our contact planner and CROC.

Fig. 15: Feet trajectories computed for scenario with ground
level obstacles. Green for right foot and red for left foot.

or y axis. This scenario is particularly difficult for the contact887

planner because of all the possible collisions generated by the888

feet. We recall that the feet of HRP-2 are 24 cm long for 14889

cm wide, which means that the platforms of this setup are only890

a few centimeters bigger than the feet of the robot. Because of891

Fig. 16: A feasible contact sequence computed with our
contact planner and CROC on uneven platforms.

this, there is really few collision free candidates positions for 892

the feet. The probability of finding a contact position which 893

leads to a collision-free configuration while maintaining the 894

equilibrium is extremely small for this setup. 895

The contact sequence found is shown in Figure 12(e), snap- 896

shots of the motion are shown in figure 16 and a motion for 897

this scenario is shown in the companion video. These motions 898

have been validated in the dynamic simulator OpenHRP. 899

The Figure 17 shows two examples of unfeasible contact 900

sequence filtered out by CROC in this scenario. 901

Fig. 17: Examples of unfeasible contact sequences filtered out
by CROC. There doesn’t exist any valid centroidal trajectory
for the contact transitions encircled in black.
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Contact planning Centroidal trajectory generation
Scenario Method success (%) 4 time (s) n. of candidates (avg.) n. of configurations (avg.) success (%)

Walk (flat) Without CROC 100 0.58 8.2 6.3 98
With CROC 100 0.63 21.9 7.0 100

Stairs (3 steps) Without CROC 100 0.61 24.4 6.1 52
With CROC 94 0.82 87.3 7.3 100

Stairs (handrail) Without CROC 98 1.24 144.3 11.6 31
With CROC 84 1.57 322.6 13.2 100

platforms Without CROC 47 1.84 319.2 9.3 15
With CROC 32 2.43 969.6 9.8 100

TABLE V: Evaluation of the feasibility of the contact plans found with or without CROC as a feasibility criterion. The Contact
Planning column shows the success rate of the contact planner (ie when it successfully reaches the goal root’s position with
a contact sequence), the computation time required, the average number of contact candidates evaluated per runs, and the
average number of configurations in contact in the solution. The last column shows the success rate of the centroidal trajectory
generation method with the contact sequence found by the planner.

C. Benchmarks902

1) Using CROC as a feasibility criterion: In order to903

quantify the improvement of our contact planner from the use904

of CROC as the feasibility criterion, we used the following test905

procedure: for some of the scenarios presented in the previous906

section, we tried to solve the problem using our framework907

with and without using CROC as a feasibility criterion during908

the contact planning. We then measured the success rate of909

the contact planner in both cases, and when it succeeded we910

tried the centroidal trajectory generation with the contact plan911

found and measured the success rate of this step. The results912

are shown in Table V.913

In the walking on flat floor scenario, CROC brings only914

a marginal improvement to our contact planner because our915

previously used heuristics were sufficient in this case to916

provide a feasible contact plan most of the time. However, in917

all the other cases the results empirically prove the main claim918

of this paper: using CROC as a feasibility criterion during919

the contact generation greatly increases the success rate of920

the centroidal trajectory generation because it produce contact921

plans with only feasible transitions. Another expected result is922

that there isn’t any ’false positive’ found by our method: when923

CROC converges, the non linear solver always converges for924

the same transition.925

The trade-off is a small increase of the computation time926

required by the contact generator. This is explained partly927

by the addition of the time required to run CROC for each928

candidates, but mostly by the fact than we need to evaluate a929

lot more candidates before we find a valid one (ie. which lead930

to a feasible transition). This is shown in the column 5 of Table931

V, which provides the average number of contact candidates932

evaluated during a run of the contact planner. Another draw-933

back is a decrease of the success rate of the contact generator,934

explained by the fact that it can get stuck with only unfeasible935

candidates. But this decrease is only virtual because without936

CROC the planner could find unfeasible contacts sequences937

which count as success for the contact planning, while with938

4The contact planner uses some approximations that may result in failures
during the planning. When this occurs in general one can simply restart
the planner until a solution is actually found. Thus the success rate is only
indicative here. The relevant information is rather the success rate of the
trajectory generation.

CROC all success of the contact planning are feasible contact 939

sequences. 940

2) Benchmarks of the complete framework: Table VI shows 941

a benchmark of the performances of the complete motion 942

planning framework presented in section IV. We recall that 943

this framework take as input only an initial and goal position 944

for the center of the robot and produce as output a whole 945

body motion. We observe that the success rate is close to 946

100% except for complex scenarios where it is still above 80% 947

in the worst case. The main cause of failure in our current 948

implementation of the framework is the inverse kinematics 949

that may produce whole-body motions that do not respect the 950

kinematic constraints or that are in self-collision. Concerning 951

the computation time, in most of the cases we achieve interac- 952

tive performances (ie. the computation time is smaller than the 953

motion duration). In the worst case the computation time is 954

greater than the motion duration, but only by a small margin. 955

As shown in Figure 18, the inverse kinematics method is 956

currently the bottleneck of our framework and takes more 957

than 60% of the total computation time, as it requires several 958

iterations to generate collision-free trajectories. 959

Scenario Motion
duration (s)

Total
time (s)

Success
(%)

Walk (3 steps) 7.7 4.43 100
Walk with obstacles 55.02 51.5 99.3
Uneven platforms 14.94 17.83 83.5

Stairs 16.23 12.56 90.5
Stairs with handrail 23.13 18.09 88.05

TABLE VI: Performance analysis of the complete motion
planning framework presented in section IV, without the
time required to compute collision free end-effector trajectory.
Motion duration is the average duration of the solution, total
time is the average computation time required to compute the
motion. Success is the success rate of the complete framework.

VI. CONCLUSION 960

In this paper we introduce a continuous, accurate and effi- 961

cient formulation of the centroidal dynamics of a legged robot, 962

named CROC. Our method guarantees that it can compute 963

valid centroidal trajectories that do not require discretization, 964

nor use approximation or relaxation of the dynamic con- 965

straints. This formulation is convex yet conservative, but not 966
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Fig. 18: Division of the computation time among the different
methods of the motion planning framework.

limited to quasi-static motions. To our knowledge, this is the967

first method to combine all these properties.968

Thanks to the computational efficiency of our method,969

requiring only a few milliseconds to solve the centroidal970

dynamic problem with three contact phases, we can use this971

method as a feasibility criterion during contact planning. The972

interest of this feasibility criterion have been shown both973

qualitatively and empirically, our results show that all the974

contact plans produced with CROC as a feasibility criterion975

lead to feasible centroidal dynamic problems. We also show976

that without using this feasibility criterion, the contact planner977

find unfeasible contact sequences with a high probability on978

complex scenarios.979

Moreover, the centroidal trajectory produced by CROC can980

be used to warm-start a non linear solver, resulting in the981

improvement on the convergence rate and computation time982

of the non linear solver by comparison to the naive initial983

guess previously used.984

Thanks to the continuous formulation proposed in this pa-985

per, we have the guarantee that the whole centroidal trajectory986

is valid, by opposition to the discretized methods of the state987

of the art that only guarantee that the discretized points of the988

trajectory are valid. We showed that the discretization may989

lead to a non negligible amount of invalid solutions where the990

trajectory is invalid between two valid discretization points,991

which emphasizes the interest of a continuous formulation.992

We believe that this continuous formulation of the constraints993

on the centroidal trajectory may be useful for all state-of-the-994

art methods, convex or non-linear. We leave the study of the995

feasibility and the interest of this application to a future work.996

Finally, the feasibility criterion proposed in this paper997

permits us to complete our locomotion planning framework998

[11]. In this paper we showed that our framework is able999

to produce indifferently simple walking motions and multi-1000

contact motions (ie. with non coplanar contacts and acyclic1001

behaviors). These motions were validated in simulation or1002

on the robot HRP-2. We also showed empirically that our1003

framework presents a success rate close to 100% and present1004

interactive computation times (the time required to compute1005

a motion is smaller than the duration of this motion) in the1006

studied scenarios, expect for the most complex scenario where1007

the computation time is approximately 20% greater than the1008

duration of the motion, but still remain in the same order 1009

of magnitude. We believe that with an optimization of the 1010

implementation, interactive performances could be achieved 1011

even in the worst cases. 1012

For future work we would like to try more complex motions 1013

on the real robotic platform, but we are currently limited by 1014

the capabilities of our low level controller. 1015

A. Handling whole-body approximations and uncertainties 1016

The remaining source of approximation is shared with all 1017

centroidal-based methods, and comes from the whole-body 1018

constraints (joint limits, angular momentum and torques), 1019

which are only approximated or ignored in the current for- 1020

mulation. One solution could be to alternate centroidal opti- 1021

mization with whole-body optimization as other approaches 1022

do [19], however for the transition feasibility problem, this 1023

approach would result in an increased computational burden 1024

that is not compatible with the combinatorial aspect of the 1025

search. One way to improve the quality of this approximation 1026

is to integrate torque constraints [38], [39]. Expressing such 1027

constraints at the CoM level is considered for future work. 1028

B. Application to 0 and 1 step capturability 1029

The N-Step capturability problem consists in determining 1030

the ability of a robot (in a given state) to come to a stop 1031

(ie. null velocity and acceleration) without falling by taking at 1032

most N steps. It is used to detect and prevent fall. 1033

We can easily change the constraints on c(t) defined in 1034

subsection III-A to remove the constraint on cg and constrain 1035

(ċg = 0, c̈g = 0). With this set of constraints, the feasibility 1036

of FP (8) determines the 0-Step capturability. Similarly, FP 1037

(19) determines the 1-Step capturability. 1038

For future work we would like to empirically determine the 1039

accuracy of our method with respect to this problem, using a 1040

framework similar to [14]. 1041

SOURCE CODE 1042

Code available (C++/python) under a BSD-2 license: https: 1043

//gitlab.com/stonneau/bezier COM traj 1044
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