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C-CROC: Continuous and Convex Resolution of

Centroidal dynamic trajectories for legged robots in

multi-contact scenarios
Pierre Fernbach, Steve Tonneau, Olivier Stasse, Justin Carpentier and Michel Taı̈x

Abstract—Synthesizing legged locomotion requires planning1

one or several steps ahead (literally): when and where, and with2

which effector should the next contact(s) be created between3

the robot and the environment? Validating a contact candidate4

implies a minima the resolution of a slow, non-linear optimization5

problem, to demonstrate that a Center Of Mass (COM) trajec-6

tory, compatible with the contact transition constraints, exists.7

We propose a conservative reformulation of this trajectory gen-8

eration problem as a convex 3D linear program, CROC (Convex9

Resolution Of Centroidal dynamic trajectories). It results from10

the observation that if the COM trajectory is a polynomial with11

only one free variable coefficient, the non-linearity of the problem12

disappears. This has two consequences. On the positive side, in13

terms of computation times CROC outperforms the state of the14

art by at least one order of magnitude, and allows to consider15

interactive applications (with a planning time roughly equal to16

the motion time). On the negative side, in our experiments our17

approach finds a majority of the feasible trajectories found by a18

non-linear solver, but not all of them. Still, we demonstrate that19

the solution space covered by CROC is large enough to achieve20

the automated planning of a large variety of locomotion tasks21

for different robots, demonstrated in simulation and on the real22

HRP-2 robot, several of which were rarely seen before.23

Another significant contribution is the introduction of a Bezier24

curve representation of the problem, which guarantees that the25

constraints of the COM trajectory are verified continuously, and26

not only at discrete points as traditionally done. This formulation27

is lossless, and results in more robust trajectories. It is not28

restricted to CROC, but could rather be integrated with any29

method from the state of the art.30

Index Terms—Multi contact locomotion, centroidal dynamics,31

Humanoid robots, legged robots, motion planning32

I. INTRODUCTION33

THIS paper is concerned with the issue of planning multi-34

contact motions for legged robots in human environ-35

ments.36

The term “multi-contact motion” has been proposed to37

distinguish the problem from the gaited locomotion one [1],38

[2]. Gaited motions result from the contact interactions created39

and broken periodically between the end effectors and a flat40

terrain. The multi-contact problem is more general as it can41

include non horizontal contacts, and is not restricted to a cyclic42

strategy. This results in a combinatorial problem in the choice43

of the contacts being created. It also requires a more complex44

formulation of the dynamics that govern the motion. This non-45

linear problem remains open to this date.46

Steve Tonneau is at the University of Edinburgh, Scotland.
The other authors are with LAAS-CNRS / Université de Toulouse,

France. e-mail: pfernbach@laas.fr

Fig. 1: An instance of the transition feasibility problem: can

we guarantee that the contact sequence shown in this picture

can be used to produce a feasible motion for the robot? To

address this issue in this example we need to account for 9

different contact phases (including phases where the effector

is flying, as displayed in the fourth image).

One key issue of multi-contact locomotion consists in 47

choosing contact locations such that the contacts can be broken 48

or created at a given time without violating dynamic or 49

geometric constraints. To tackle this issue one option is to 50

simultaneously optimize the contact locations and the motion 51

of the robot. The problem is non-linear, though promising 52

results have been obtained using approximations [3]–[6]. Such 53

approximations include ignoring collision avoidance or consid- 54

ering a point-mass model. 55

The present paper lies in the continuity of an alternate 56

approach that decomposes the problem into a sequence of 57

smaller ones [7]–[11].In such approaches, the computation 58

of a contact plan is achieved prior to the motion generation. 59

This simplifies the problem, but introduces the question of the 60

validity (feasibility) of the contact plan. 61

Those approaches thus face the same fundamental chal- 62

lenge: how to make sure that the solution computed using a 63

reformulation of the multi-contact problem provides a straight- 64

forward solution to the original problem? As an example, both 65

families of approaches propose contributions that rely on a 66

model-based approach called the centroidal model, which only 67

considers the dynamics of the Center Of Mass of the robot, 68
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rather than the whole-body dynamics. This model introduces69

approximations regarding the geometric constraints that lie on70

the robot, and also regarding the angular momentum variation71

induced by the motion of the rigid bodies that compose the72

robot. The question is then to determine whether it is possible73

to formulate additional constraints on the centroidal dynamics,74

that would take into account the whole-body constraints.75

Finding what we call the “reduction properties”: formal76

theorems or empirical properties that will prove the validity of77

the problem decomposition or approximation, is the original78

scientific issue that we propose to tackle.79

In particular, in this work, we consider what we call the80

transition feasibility problem: given two states of the robot,81

can we guarantee that there exists (or not) a dynamically82

and kinematically consistent motion that connects these two83

states (Figure 1)? Being able to address efficiently this issue84

is desirable in the context of the authors’ framework, but85

not only, as the objective is to provide additional guaran-86

tees to the centroidal model, and to improve significantly87

its computational efficiency. From an applicative point of88

view, its resolution would also allow to address the N-step89

capturability problem [12]–[14]: given the current state of the90

robot, determine whether it will be able to come to a stop91

without falling in at most N steps (N ≥ 0). This issue is92

very important to guarantee the safety of the robot and its93

surroundings.94

A. The transition feasibility in a divide and conquer context95

Over the last few years, we have proposed a methodology96

to tackle the multi-contact motion problem, which relies on97

its decomposition into three sub-problems solved sequentially98

(Figure 2). This approach follows a “divide and conquer”99

pattern, with the idea that three sub-problems should be ad-100

dressed in a sequentially independent fashion: P1, the planning101

of a trajectory for the root of the robot, P2 the generation102

of a discrete contact sequence along the root’s trajectory103

and P3 the generation of a whole-body motion from this104

contact sequence. We have proposed several contributions105

to each sub-problem [15]–[17], and built a prototype that106

demonstrated its capability to find solutions for various robots107

and environments, with interactive computation times (a few108

seconds of computation for several steps of motion).109

The decoupling between each sub-problem allows to break110

the complexity, and comes with a cost that is the introduction111

of a feasibility problem: each sub-problem must be solved in112

the feasibility domain of the next sub-problems: ie. there must113

exist a sequence of contacts (problem P2) that can follow the114

root’s trajectory found (solution of P1), and similarly there115

must exist a feasible whole-body motion (problem P3) from116

the computed contact sequence (solution of P2). The latter117

problem is an instance of the transition feasibility problem118

that we address in this paper (The former was considered in119

[15]).120

It is important to observe that in this context, establishing121

the transition feasibility as fast as possible is crucial: P2 is122

a combinatorial problem, which implies that many contact123

sequences (thousands) must possibly be tried before finding124

a feasible contact sequence.125

Recent contributions have proposed centroidal trajectory 126

generation methods that could theoretically be used to answer 127

the transition feasibility problem [18]–[20]. However, because 128

of the combinatorial aspect of contact planning, the computa- 129

tional time required by these methods is too important to use 130

a trial-and-error approach to verify the feasibility. Caron et al. 131

recently proposed a computationally efficient method [21], but 132

its application range is restricted to single-contact to single- 133

contact transitions. 134

The work that is the closest to the present paper is the 135

one of Ponton et al. [22]. By integrating the dynamic con- 136

straints inside a mixed-integer programming problem [4], they 137

addressed the transition feasibility problem at the contact 138

planning level. However the constraints are only approximated 139

through a convex relaxation (convex approximation is also 140

done in [23]), and mixed-integer approaches remain subject to 141

combinatorial explosion. The main difference between their 142

formulation and the method presented in this paper lies in 143

the fact that the presented method uses conservative dynamics 144

constraints rather than approximated ones, and is also more 145

computationally efficient. 146

147

148

B. Contributions 149

The main contribution is the formulation of a transition 150

feasibility criterion, able to test if there exists a kinematically 151

and dynamically valid motion that connects two states of the 152

robot, called CROC (which stands for Convex Resolution Of 153

Centroidal dynamic trajectories). Thanks to a conservative and 154

convex reformulation of the problem, this is achieved in a 155

fraction of the computational cost required by standard non- 156

linear solvers. This method also produces a feasible CoM tra- 157

jectory. This trajectory can be used as a valuable initial guess 158

by a non-conservative non-linear solver to converge towards 159

an optimal solution. Noticeably, this formulation is, along 160

with [24], one of the few able to continuously guarantee 161

that the computed trajectories respect the constraints of 162

the problem, when other approaches require to discretize the 163

trajectory and check punctually the constraints. 164

Thanks to this criterion, we can provide strong guarantees 165

that a computed contact sequence will lead to a feasible 166

whole body motion. This also results in a major technical 167

contribution, as we obtain and demonstrate a framework able 168

to automatically and robustly generate complex motions, both 169

in simulation and on the real HRP-2 robot. The framework is 170

an extension of our previous works: [15] [16] for P1 and P2, 171

and [17] [18] for P3. 172

This paper is organized as following. In section II, we recall 173

the formal definition of the problem. The main contribution 174

of the paper is presented in section III. We then introduce 175

our complete framework in section V. Finally, we present our 176

experimental results in section VI. 177

C. Situation of the contribution with respect to the authors 178

previous work 179

The present paper is an extension of an IROS conference 180

paper [25], where we introduce a convex optimization method 181
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Start / Goal positions Guide trajectory Feasible
contact sequence Whole body motion

Fig. 2: Complete framework overview of our decoupled approach. In this work we only focus on addressing the transition

feasibility problem, from P2 to P3.

to solve the transition feasibility problem. Our previous formu-182

lation, as others in the community, is limited by the necessity183

to use of the double description method [26], an unstable184

mean to compute the linear constraints that apply to the185

problem [18], which allows for fast computations. As for186

all existing methods, it also requires a discretization of the187

solution trajectory, such that the constraints of the problem are188

only checked at specific instants. This behavior is unsafe as189

the trajectory between each discretization point is unchecked190

and may not respect the constraints, as illustrated in Figure 3.191

In [25], we proposed a continuous formulation of the problem192

in the simple case of a motion without contact changes,193

where the trajectory is linearly constrained. In this paper, we194

extend this continuous formulation to the general setting of195

a motion with any number of contact transitions. As we will196

see, this extension is not trivial as it requires handling the197

non-convex constraint of belonging to a union of polytopes. In198

addition, this formulation removes the need for discretization199

of the centroidal trajectory, guaranteeing that the constraints200

are respected along the whole trajectory. This continuous201

formulation is also fast enough to avoid using the double202

description method. The computational gain results from the203

lower number of variables required to satisfy the constraints.204

We advocate for its adoption for any centroidal generation205

method.

Fig. 3: Example of an invalid solution found by a discretized

method. The red lines represent the constraints, wile the black

curve is the solution and the green dots are the discretization

points. All the discretization points satisfy the constraints

while the curve clearly violates them.

206

Sections II and III present important similarities with respect 207

to [25]. The novelty appears from section III-D, where we 208

present a continuous formulation able to deal with contact 209

switching during the trajectory. 210

The other sections of the paper are also novel. These 211

novelties include the completion of our experimental frame- 212

work, which enables us to validate our method on several 213

experiments on the real robot. We also provide an empirical 214

analysis of the performances of our method with respect to a 215

state-of-the-art nonlinear solver, in terms of success rate and 216

computation times. 217

II. PROBLEM DEFINITION 218

We define the transition feasibility problem as follows. 219

Given two configurations of a robot; given the contact loca- 220

tions associated to these two configurations; given the position, 221

velocity and acceleration of the Center Of Mass (COM) of the 222

robot at these two configurations; can we guarantee that there 223

exists a feasible motion that connects the two configurations? 224

A feasible motion should respect the kinematic constraints 225

of the robot, as well as the dynamics expressed at its CoM. 226

Depending on the use case, some constraints may be removed 227

(for instance if the end configuration is unknown, or if the 228

problem is simply to put the robot to a stop). 229

Thus, in this work we define the transition feasibility 230

problem with respect to the centroidal dynamics of a robot, as 231

now commonly done in the legged robotics community [27], 232

[19], [18]. In this section we provide some formal definitions 233

that are used in the rest of the paper. 234

A. Contact sequence and state 235

A legged motion can be discretized into a sequence of 236

contact phases. Each contact phase defines a number of 237

active contacts, and their locations remain constant during 238

the phase. Thus, each contact phase constrains kinematically 239

and dynamically the motion of the robot. Within a contact 240

sequence, each adjacent contact phase differs by exactly one 241

contact creation or removal (for instance when walking, the 242

contact sequence is gaited and alternates simple and double 243

support phases). The considered contact surfaces are assumed 244

to be rectangular (4 extreme points on each foot) for humanoid 245

robots, and punctual for quadrupedal robots. 246
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We define a state x = (c, ċ, c̈) ∈ R
3 × R

3 × R
3 as the247

triplet describing the COM position, velocity and acceleration.248

To indicate that a state is compatible with the dynamic and249

kinematic constraints associated with a contact phase p ∈ N,250

we use the superscript notation x{p} = (c{p}, ċ{p}, c̈{p}).251

Given two states x
{p}
s and x

{q}
g with q ≥ p, the transition252

feasibility problem consists in determining whether there ex-253

ists a feasible trajectory c(t), t ∈ R
+ of duration T ∈ R

+,254

which connects exactly x
{p}
s and x

{q}
g .255

B. Centroidal dynamic constraints on c(t)256

For a contact phase {p} of duration T , for any t ∈ [0, T ] the257

centroidal dynamic constraints are given by the Newton-Euler258

equations. These constraints form a convex cone (or polytope),259

which can be expressed under two different formulations, the-260

oretically equivalent [28]–[30], but really different in practice.261

In this paper we present and discuss both formulations.262

1) Equality constraint representation (or force formula-263

tion): The Newton-Euler equations are:264

[
m(c̈− g)

mc× (c̈− g) + L̇

]

=

[
I3 ... I3
p̂1 ... p̂nc

]

f (1)

Where :265

• m is the total mass of the robot;266

• nc is the number of contact points;267

• pi ∈ R
3, 1 ≤ i ≤ nc is the location of the i-th contact268

point; 1
269

• f =
[
f1, f2, ..., fnc

]T
∈ R

3nc is the stacked vector of270

contact forces applied at each contact point;271

• g =
[
0 0 −9.81

]T
is the gravity vector;272

• L̇ ∈ R
3 is the time derivative of the angular momentum273

(expressed at c).274

• p̂i denotes the skew-symmetric matrix of pi.275

The contact forces are further constrained to lie in their so-276

called friction cone, which we conservatively linearize with277

four generating rays. Thus f has the form f = Vβ, where278

V ∈ R
3nc×4nc is the matrix containing the diagonally stacked279

generating rays of the friction cone of each contact point and280

β ∈ R
4nc+ is a variable.281

This formulation has the disadvantage of introducing a large282

number of variables associated to the contact forces (one283

vector β for each instant where the constraints are verified).284

2) Inequality constraint representation (or Double Descrip-285

tion formulation): Because the set of admissible contact forces286

is a polytope, it is possible to use an equivalent “face represen-287

tation” of the constraints that applies both to the center of mass288

and the angular momentum quantities. With this formulation,289

the force variables disappear:290

H

[
m(c̈− g)

mc× (c̈− g) + L̇

]

︸ ︷︷ ︸

w

≤ h (2)

where H and h are respectively a matrix and a vector defined291

by the position of the contact points, their normal and their292

1As commonly done, in the case of rectangular contacts (like most robot’s
feet) we define a contact point at each vertex of the rectangle.

friction coefficients. As this matrix and vector are uniquely 293

defined for a contact phase, we note them with the superscript 294

{p} for a contact phase p. 295

With this formulation, the dimension of the problem is 296

greatly reduced. However, the computation of the matrices 297

H{p} and h{p} is a non-trivial operation called the double 298

description method [26]. It is computationally expensive, and 299

subject to occasional failures. 300

In the following theoretical sections, we will use the in- 301

equality formulation because we believe our contribution is 302

more intuitive with this representation. In terms of implemen- 303

tation the equality formulation is more reliable but slower. 304

However we show that under our formulation the computation 305

times remain in the same order of magnitude with both 306

formulations. 307

3) The dynamic constraints are not convex: Because of the 308

cross product between c and c̈ in the equations (1) and (2), 309

the constraints are bi-linear, leading to a non-convex problem 310

to solve. 311

C. Centroidal kinematic constraints on c(t) 312

Each active contact also introduces a kinematic constraint 313

on c(t), depending of the placement of the end-effectors of the 314

robot. We use a linear constraint formulation to represent this 315

constraint depending on the 6D positions of each active contact 316

frames. They give us a necessary but not sufficient condition 317

for the kinematic feasibility (evaluated and discussed in section 318

IV-G). We refer the reader to [31] for the computation of these 319

constraints. For a given contact phase {p} this constraint can 320

be expressed as : 321

K{p}c ≤ k{p} (3)

III. CONVEX FORMULATION OF THE TRANSITION 322

PROBLEM 323

As previously proposed [25], in order to determine the 324

existence of a valid centroidal trajectory c(t), we formulate 325

the problem as a convex one by getting rid of the non-linear 326

constraints induced by the cross product operation c × c̈. To 327

achieve this we impose a conservative condition on c(t). 328

However, a significant contribution with respect to [25] and 329

other contributions is a continuous reformulation of the prob- 330

lem, which guarantees that the resulting trajectory is always 331

valid. Indeed, traditionally the constraints are only verified at 332

specific points of the trajectory, using a discretization step 333

that must be carefully calibrated to avoid an explosion in 334

the number of variables and constraints, while guaranteeing 335

that the constraints will not be violated in between. Figure 3 336

illustrates the violation of the constraints. 337

A. Reformulation of c(t) as a Bezier curve 338

Let us assume that c(t) is described by an arbitrary polyno- 339

mial of degree n of unknown duration T . In such case, without 340

loss of generality, c(t) is equivalently defined as a constrained 341

Bezier curve of the same degree n: 342

c(t) =
n∑

i=0

Bn
i (t/T )Pi (4)
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where the Bn
i are the Bernstein polynomials and the Pi are343

the control points.344

With this formulation we can easily constrain the initial345

or final positions, velocity or any other derivatives by setting346

the value of the control points. To exactly connect two states347

xs = (cs, ċs, c̈s) and xg = (cg, ċg, c̈g), we thus need at least348

6 control points to ensure that the following constraints are349

verified:350

• P0 = cs and Pn = cg guarantee that the trajectory starts351

and ends at the desired locations;352

• P1 = ċsT
n

+ P0 and Pn−1 = Pn −
ċgT

n
guarantee that353

the trajectory initial and final velocities are respected;354

• P2 = c̈sT
2

n(n−1) + 2P1 −P0 and355

Pn−2 =
c̈gT

2

n(n−1) + 2Pn−1 −Pn guarantee that the initial356

and final accelerations are respected.357

Depending on the considered problem, some constraints358

on the boundary positions, velocities or accelerations can be359

removed, without changing the validity of our approach. For360

instance, if the objective is simply to put the robot to a stop,361

the end velocities and accelerations can be set to zero, while362

the end position is left unconstrained. We can also extend this363

to any degree and add constraints on initial or final jerk or364

higher derivatives and automatically compute the position of365

the control points with a symbolic calculus script such as the366

one that we provide at the url 2. We only need to compute the367

equation of the control points once and for all so we do not368

need to compute them at runtime. In the following equations,369

we use a curve of degree 6 with the constraints on initial and370

final position, velocity and acceleration as described above,371

and the same reasoning applies to all cases.372

B. Conservative reformulation of the transition problem373

We now constrain c(t) to be a Bezier curve of degree n = 6.374

This is a conservative approximation of the transition problem375

as it does not cover the whole solution space.376

As we already need 6 control points to ensure that we377

connect exactly the two states, this leaves a free control point378

P3 = y:379

c(t,y) =
∑

i∈{0,1,2,4,5,6}

B6
i (t/T )Pi +B6

3(t/T )y (5)

In this case, y and T are the only variables of the problem.380

For the time being, we fix T to a constant value. We derive381

twice to obtain c̈(t), and compute the cross product to get the382

expression of w(t) :383

w(t) =

[
m(c̈− g)

mc× (c̈− g) + L̇

]

(6)

The non-convexity of the problem disappears, because the384

cross product of y by itself is 0, and all other terms are385

either constant or linear in y. w(t,y) is thus a six-dimensional386

Bezier curve of degree 2n − 3 [32] (9 in this case) linearly387

dependent of y:388

2http://stevetonneau.fr/files/publications/iros18/derivate.py

w(t,y) =
∑

i∈{0..9}

B9
i (t/T )Pwi(y) + L̇(t) (7)

where Pwi(y) ∈ R
6 are the control points of w(t,y) 389

expressed as : 390

Pwi(y) = P
y
wiy +Ps

wi (8)

The P
y
wi ∈ R

6×3 and Ps
wi ∈ R

6 are constants that only 391

depend on the control points Pi of c(t,y) and of T . 392

In what follows, for the sake of simplicity, we assume 393

L̇(t) = 0. This is not a limitation: if we express L̇(t) as 394

a polynomial in the problem the following reasoning stands. 395

One way to include L̇(t) is to represent it as a Bezier curve 396

with one or more free variables. However guaranteeing that we 397

can generate a whole-body motion that tracks a variable L̇(t) 398

requires additional information on the whole-body motion, 399

which we leave as future work [19], [33], [34]. 400

The existence of a valid trajectory c(t) can thus be 401

determined by solving a convex problem. 402

C. Application for a motion with no contact switch 403

We first consider the case where p = q = 1. 404

1) Discrete formulation: Using a discretization step ∆t, we 405

discretize c(t,y) and w(t,y) over T as follows: 406

c(j∆t,y) = c
y
jy + csj

w(j∆t,y) = w
y
jy +ws

j

(9)

Where c
y
j , csj , w

y
j and ws

j are constants given by 407

P{0,1,2,4,5,6}, the total duration T and the time step j∆t. j 408

belongs to the phase set J{p} : {j ∈ N : 0 ≤ j∆t ≤ T {p}}. 409

Given these expressions, we can replace w(t) in (2) by its 410

value at each discretization point j∆t: 411

H{p}w
y
jy ≤ h{p} −H{p}ws

j (10)

By proceeding similarly for the kinematic constraint (3), we 412

can formulate the following linear feasibility problem (FP) in 413

3 dimensions: 414

find y

s. t.

[
K{p}c

y
j

H{p}w
y
j

]

︸ ︷︷ ︸

E
{p}
j

y ≤

[
k{p} −K{p}csj
h{p} −H{p}ws

j

]

︸ ︷︷ ︸

e
{p}
j

∀j ∈ J{p}

(11)

With this discrete formulation the number of constraints in 415

the problem is proportional to the number of discretization 416

points. Moreover, the constraints are verified only at the 417

discretization points, which leaves a risk that a part of the 418

solution trajectory between two discretization points does not 419

satisfy the constraints of the problem (Figure 3). Choosing the 420

number of discretization steps is thus a compromise between 421

the computation time (which depends on the number of 422

constraints) and the risk of finding a solution partially invalid. 423

This is a well-known issue when relying on discretization 424

methods. 425
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Fig. 4: A bezier curve is comprised in the convex hull of its

control points. In this abstract view, the red polygon represents

the 6D constraints on w(t). If the control points Pwi of w(t)
satisfy the constraints, then the complete curve satisfies the

constraints.

2) Continuous formulation: Alternatively, in [25] we pro-426

posed a continuous formulation of this problem, only valid427

for the case where no contact transition occurs. We recall428

this formulation below as it is fundamental for the following429

section.430

Using the fact that a Bezier curve is comprised in the convex431

hull of its control points, the main idea of this formulation is to432

express the kinematic constraints (3) on the control points Pi433

of c(t,y) and the dynamic constraints (2) on the control points434

Pwi(y) of w(t,y) (see Figure 4). Constraining the control435

points of w(t,y) to satisfy the constraints of the trajectory436

is a priori a conservative approach that further constrains the437

solution space (we will see that this limitation can be easily438

overcome). However, this approach allows for a continuous439

solution to the problem and guarantees that the trajectory is440

entirely valid.441

Assuming that the start and goal states are feasible (oth-442

erwise the problem has no solution), for the kinematic con-443

straints we only need to find a y that satisfies the constraints.444

For the dynamic constraints all the control points Pwi(y)445

must satisfy the equation (2), given the expression (8) we can446

express the dynamic constraints as follow:447

H{p}P
y
wiy ≤ h{p} −H{p}Ps

wi, ∀i ∈ [0, 2n− 3] (12)

Finally, we can reformulate the discretized Linear Feasibil-448

ity Problem (11) in a continuous fashion:449

find y

s. t. K{p}y ≤ k{p}

H{p}P
y
wiy ≤ h{p} −H{p}Ps

wi , ∀i

(13)

In this case, the whole trajectory necessarily satisfies the450

constraints everywhere, as they form a convex set.451

D. Application to a motion with one contact switch452

We now consider the case where q = p+1. In this case we453

define T {p} and T {q} as the time spent in each phase, such454

that T = T {p} + T {q}.455

When a contact switch occurs during a motion, the con-456

straints applied to the COM trajectory change at the switching457

time t = T {p}. When t < T {p}, the constraints of phase458

{p} must be applied and conversely, the constraints of phase 459

{q} must be applied and when t > T {p}. At t = T {p}, the 460

constraints of both phases must be applied. 461

1) Discrete formulation: Adapting the discretized FP (11) 462

to this case is straightforward: the formulation remains the 463

same, with the only difference that the constraints that must 464

be verified at each discretized point change at t = T {p} and 465

t > T {p}. We thus have 3 sets of constraints in this case: 466

one for each of the two phases, plus one for the transition 467

time t = T {p} where the constraints of both phases apply. We 468

define J{q} : {j ∈ N, T {q−1} ≤ j∆t ≤ T {q}} and obtain the 469

following FP: 470

find y

s. t. E
{z}
j y ≤ e

{z}
j , ∀j ∈ J{z}, ∀z ∈ {p, q}

(14)

2) Continuous formulation: In this case, since w(t) spans 471

2 distinct sets of linear inequalities, the convex hull of its 472

control points is not guaranteed to lie in the constraint set. 473

The key idea, unlike Lengagne et al. [24], is to fall back 474

to the case where no contact switch occurs, by considering 475

two curves that continuously connect at the switching time 476

T {p}. A similar approach has been proposed before, in the 477

context of UAVs [35], with the difference that in our case the 478

continuity of the trajectory is guaranteed by the De Casteljau 479

decomposition algorithm. This algorithm divides the original 480

curve into two curves c(t,y), each curve being subject to the 481

constraints of their respective contact phase (see Figure 5). 482

The result is thus the expression of the control points of two 483

Bezier curves c{p}(t,y) and c{q}(t,y) with the same degree 484

as the original curve, such that : 485

{

c{p}(t,y) = c(t,y) ∀t ∈ [0;T {p}]

c{q}(t,y) = c(t,y) ∀t ∈ [T {p};T ]
(15)

The De Casteljau decomposition guarantees that 486

c{p}(T
{p},y) = c{q}(T

{p},y), and that the composition of 487

the curves in infinitely differentiable (C∞), as it is strictly 488

equivalent to c(t,y). The control points of the new curves 489

are linearly dependent on the control points of the original 490

un-split curve, and thus have the following form: 491

c{z}(t,y) =

n∑

i=0

Bn
i (t/T

{z})P
{z}
i (y) ∀z ∈ {p, q} (16)

where the P
{z}
i (y) have the form: 492

P
{z}
i (y) = P

y{z}
i y +P

s{z}
i (17)

with P
y{z}
i and P

s{z}
i constants. 493

494

It follows that w{p}(t,y) and w{q}(t,y) are also linearly 495

dependent of y: 496

w{z}(t,y) =

2n−3∑

j=0

B2n−3
j (t/T {z})P

{z}
wj (y)

with P
{z}
wj (y) = P

y{z}
wj y +P

s{z}
wj , ∀z ∈ {p, q}

(18)
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Fig. 5: Example of curve decomposition with the De Casteljau

algorithm. The original curve comprises 3 control points

(black). It is decomposed into two curves comprising the same

number of control points each (3). We can then constrain the

control points of the first curve (red) to lie in the first set of

constraints, and similarly constrain the control points of the

second curve (green) to lie in the second set of constraints.

As a result, if the constraints can be satisfied, the connecting

control point of both curves satisfies both set of constraints,

and we obtain the guarantee that each sub-curve satisfies its

respective set of constraints. Interestingly, the control points

of the sub-curves are constrained to belong to their respective

cones, but those of the original curve can lie outside of the

constraints.

Finally the constraints of (13) can be rewritten to deal with497

the contact switches. The kinematic constraints expressed at498

each control points are written:499

K{z}P
y{z}
i

︸ ︷︷ ︸

A
{z}
i

y ≤ k{z} +K{z}P
s{z}
i

︸ ︷︷ ︸

a
{z}
i

, ∀i, ∀z ∈ {p, q} (19)

and the dynamic constraints:500

(H{z}P
y{z}
wj

︸ ︷︷ ︸

D
{z}
j

y ≤ h{z} −H{z}P
s{z}
wj

︸ ︷︷ ︸

d
{z}
j

,

∀j, ∀z ∈ {p, q}

(20)

We can then stack the constraints:501

A =














A
{p}
0
...

A
{p}
n

A
{q}
0
...

A
{q}
n














a =














a
{p}
0
...

a
{p}
n

a
{q}
0
...

a
{q}
n














D =














D
{p}
0
...

D
{p}
2n−3

D
{q}
0
...

D
{q}
2n−3














d =














d
{p}
0
...

d
{p}
2n−3

d
{q}
0
...

d
{q}
2n−3














(21)

We recall that in our case n = 6. Finally, we can rewrite502

FP (13) with a contact switch as:503

find y

s. t. Ay ≤ a

Dy ≤ d

(22)

This boils down to check if each control point of each split 504

curve satisfies the constraints of the current contact phase. 505

E. General case 506

In the general case, the same idea will apply. In the contin- 507

uous case, we use the De Casteljau algorithm to split c(t) into 508

as many curves as required, thus falling back to a formulation 509

with no contact switches. In the discrete case, we assign 510

the appropriate constraints for each discretized time step. 511

While these decompositions appear mathematically heavy, 512

from a programming point of view, they can be automatically 513

generated, and thus are in fact simple to implement. 514

In our experiments, we only consider three consecutive 515

phases (which correspond to one step), and solve a new 516

problem for each subsequent set of phases. We call one such 517

convex problem “CROC”, which stands for Convex Resolution 518

Of Centroidal dynamic trajectories. 519

F. Non-conservative continuous formulation 520

The presented continuous formulation is more conservative 521

than the discretized one. Constraining the control points to lie 522

inside the constraint set prevents from the generation of curves 523

such as the one illustrated in Figure 6. 524

However, by relying on the De Casteljau algorithm, it is 525

possible to continuously satisfy the constraints while consid- 526

ering control points outside of the constraint set. Indeed when 527

a curve is split, the constraints no longer apply to the control 528

points of the original curve, but to the control points of the 529

sub-curves. This is illustrated in Figure 5. If the curve is split 530

an infinite number of times, it is straightforward to see that 531

the original curve can span entirely its original definition set 532

as the position of the control points converge to the original 533

curve as the number of split increase. 534

The price to pay is that the number of constraints increases 535

with the number of curve splittings: a curve of degree s split 536

b times comprises (s + 1) ∗ (b + 1) constraints. The higher 537

the number of splits is, more the number of constraints to 538

address increases. A parallel can be made with the discretized 539

approach: the lower the discretization step is, the higher the 540

number of constraints is. 541

We believe that a deeper analysis of the pros and cons of 542

using a continuous formulation, not only in the case of CROC, 543

but with any other formulation of the problem, requires a 544

significant amount of research, and thus will be discussed in 545

a future work. In this paper, we only divide the curve at the 546

transition points, and we show in our experiments that this 547

is already sufficient to perform similarly to the discretized 548

approaches, while ensuring comparable time performances. 549

G. Cost function and additional constraints 550

As the transition feasibility problem is addressed by CROC, 551

a feasible COM trajectory is computed. It is possible to 552
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Fig. 6: The curve w(t) belongs entirely to the convex bound-

aries (red), while a control point Pw1 lies outside of them.

optimize this trajectory to minimize a given cost function l(y),553

either linear or quadratic. In the latter case the FP problem (22)554

then becomes a Quadratic Program (QP). One can for instance555

minimize the integral of the squared acceleration norm or the556

angular momentum. This cost function is irrelevant to solve557

the transition feasibility problem, but it can be later used as a558

reference COM trajectory for a whole-body motion generator,559

or as an initial guess for a nonlinear solver as discussed in560

Section IV-F.561

The formulation also allows to add inequality constraints562

on c and any of its derivatives by rewriting the expression of563

the control points of the desired curve as done in equation564

(17). Here again, these constraints can either be verified con-565

tinuously on the concerned control points, or in a discretized566

fashion. In any case, they take the form:567

Oy ≤ o (23)

We use such constraints to impose bounds on the velocity568

and acceleration of the center of mass or on the angular569

momentum variation. The most generic form of our continuous570

problem is thus the following QP:571

find y

min l(y)

s. t. Ay ≤ a

Dy ≤ d

Oy ≤ o

(24)

In our experiments we set constraints on the acceleration572

and velocity and minimize the squared acceleration norm as573

a cost l. In the remainder of the paper “CROC” refers to574

this generic QP. If nothing is specified, by default CROC575

refers to the continuous formulation and with the inequalities576

representation of the dynamic constraints, as in the QP (24).577

H. Time sampling578

In the previous sections, in order to remain convex when579

computing w(t) (equation (6)) we assumed that the duration580

of each phase T {p}, T {p+1} and T {p+2} was given.581

Time can be reintroduced in the problem using a bi-level582

optimization approach [36]. However, in this work we choose a583

more pragmatic offline-sampling approach to compute relevant584

timing candidates, which turns out to be lossless among all of585

our experiment set.586

To achieve this, we consider a large variety of instances 587

of the transition problem. We first consider all the scenarios 588

demonstrated in Section VI (for HRP-2 and HyQ), from which 589

we extract instances of the transition problem. We secondly 590

generate random scenarios (Figure 9). We randomly allocate 591

initial and end velocities for the center of mass along the 592

direction of motion, between 0 and 1.5 m.s−1. 593

For a total of 10 000 instances of the transition problem, we 594

sample various combinations of times, solve the corresponding 595

QPs and check whether a solution is found. In theory, this 596

would mean that we need to sample an infinity of time com- 597

binations in order to be complete. However, we pragmatically 598

reduce this number and give up on the completeness while 599

maintaining a high success rate as follows: we sampled a time 600

for each duration phase T {z} by choosing a value between 601

0.1 and 2 seconds for phases without end-effector motion 602

and between 0.5 and 2 seconds for phases with end-effector 603

motion, with increments of 50ms. For a sequence of three 604

phases with one phase with end-effector motion, this gives a 605

total of 43320 possible combinations. We tested CROC with all 606

these combinations on various problems : with HRP-2 or HyQ 607

robots on flat and non-coplanar surfaces, for several thousands 608

of states. 609

Upon analysis of the results of the convergence of the 610

QPs, we found out that we can use a small list of timings 611

combinations (5 in our case, shown in table I) that covers 612

100% of the success cases for all the robots and scenarios 613

tested. We thus solve a maximum of 5 QPs for each validation. 614

Figure 7 shows the evolution of the success rate according to 615

the number of timings combinations used. We observe that 3 616

combinations are enough to reach 99% of success but that two 617

additional combinations are required to reach exactly 100%. 618

The number 100% may appear large. Intuitively however, it 619

seems to highlight the fact that the accuracy of the transition 620

times are not that important for the considered feasibility 621

problem. Indeed T {p} constrains the COM trajectory to lie 622

in the intersection of two contact phase constraints at this 623

precise time. However this intersection is in general of a 624

significant volume. As a result the COM trajectory will belong 625

to the intersection for a large time window, which results in a 626

significant slack in the selection of time. 627

We recall that here, we are only concerned in finding 628

feasible times. For instance, typical double support times when 629

walking on flat ground are closer to 0.2 seconds than 1 second 630

for T {p} in dynamical cases. However 0.2 seconds is not 631

feasible when starting from a null velocity. In both cases the 632

interval between 0.8 and 1.2 seconds is almost always feasible 633

in our experiments, which explains why such timings were 634

selected for T {p}. As such, table I should not be considered 635

as a table giving optimal contact time durations, but rather one 636

maximizing feasibility over our set of problems. 637

IV. PERFORMANCES OF CROC 638

A. CROC vs a nonlinear solver 639

Computing the success rate of our method is a hard task 640

because we do not have any way to determine the ”ground 641

truth” feasibility of a transition (ie. there does not exist any 642
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timings (s)
Success rate (%)

T
{p}

T
{p+1}

T
{p+2}

1 0.8 0.8 91.2
1 0.75 0.9 89.2

0.8 0.8 0.9 88.3
0.7 0.5 0.85 77.7
1.2 0.6 1.1 70.8

TABLE I: Success rate with the five used timings combina-

tions.

Fig. 7: Evolution of the success rate of CROC according to

the number of timings combinations used. Tested on various

scenarios with coplanar and non-coplanar contacts and with a

bipedal and a quadrupedal robots.

method able to determine in finite time whether there exists a643

valid centroidal trajectory between the two states). We choose644

to compare the relative success rate of CROC with respect to645

a state-of-the-art non-linear formulation of the same problem646

[18], which is reported to give similar results to the one from647

Ponton et al. [22].648

Both approaches share similar formulations in terms of649

kinematic constraints. Conversely the nonlinear solver does650

not use the conservative formulation of CROC that makes the651

problem convex, and thus is able to explore a larger part of652

the solution space, and thus to find a “more optimal” solution653

of a given locomotion problem.654

From a practical point of view, the nonlinear solver is also655

able to tackle motion synthesis problems over large sequences656

of contacts. While CROC only interpolates trajectories over657

two waypoints given by the planner, the non-linear solver658

is able to ignore the waypoints to find a better solution659

(Figure 8). This locality is, in our experience, the main source660

of difference between the trajectories computed by CROC661

and the nonlinear solver. This difference is what ultimately662

motivates the use of the nonlinear solver to refine the trajec-663

tories obtained by CROC in Section V-C, at a stage where664

the contact sequence is fixed and the combinatorial is not a665

problem anymore.666

B. Comparison benchmarks667

The scenarios used in our benchmarks consist of randomly668

generated sequences of 3 contact phases such that:669

• both initial and final contact phases are in static equilib-670

rium671

• both initial and final contact phases have the same effec-672

tors in contact, between two and four673

Fig. 8: Example of centroidal trajectories generated with

CROC and a nonlinear solver (bird eye view), in a case

of bipedal walking. The red and green circles represent the

contact positions of the (respectively) left and right feet centers

over time. The red and yellow (respectively related to single

and double support phases) curve is the curve obtained through

the concatenation of curves computed with CROC. The blue

and green (respectively related to single and double support

phases) curve is obtained through optimization of the latter

curve with a nonlinear solver. The orange circles represent the

constrained COM positions resulting from the contact planning

phase, which are ignored by the nonlinear solver to produce

smoother motions.

• there is exactly one contact repositioning between both 674

initial and final contact phases and no other contact 675

variation 676

• the intermediate contact phase is not required to be in 677

static equilibrium. 678

These benchmarks thus only consider the case of a ”repo- 679

sitioning” of an end-effector but as explained in section III-E 680

this is our main use case for CROC as it encompasses the 681

only two other possible cases (creating a contact or breaking 682

a contact) and because this is the kind of contact sequences 683

produced by our contact-planner. 684

For this benchmark we considered two kind of scenarios. 685

In the first case, we only sample contact phases with coplanar 686

contacts. In the second case, we sample truly random contacts, 687

which lead to contact phases with non-coplanar contacts 688

and contact sequences that require complex motions. Some 689

examples of randomly generated scenarios are shown in Figure 690

9. 691

All the benchmarks were run on a single core of an Intel 692

Xeon CPU E5-1630 v3 at 3.7Ghz. The QP problems are solved 693

with QuadProg, and the FP problems with GLPK [37]. 694

The first benchmark compares four different methods: both 695

discrete3 and continuous formulation of CROC presented in 696

this paper (using the inequality representation of the con- 697

straints), the nonlinear resolution proposed in [18] and the 698

same nonlinear method but initialized with the solution found 699

by CROC when available. As we compare the relative success 700

rate between the methods, we only consider the scenarios 701

where at least one of the method finds a solution when 702

computing the percentage of success. The results are shown 703

in table II. 704

3with 7 discretization points per contact phases, which corresponds to a
time step of approximately 100ms.
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(a) Unfeasible (b) Feasible (c) Feasible (d) Feasible

Fig. 9: Examples of random contact transitions used for

benchmarking. Top row : initial configuration, bottom row :

final configuration. (a) and (b) only have both feet in contact,

(c) and (d) have both feet and the left hand in contact. All

the displayed configurations are in static equilibrium, but the

intermediate configuration with one less contact (not shown)

is not constrained to be in static equilibrium. None of the

methods found a solution for the transition (a), the other

transitions were successfully solved.

Method
Coplanar

success (%)
Non-coplanar

success (%)
Total
time (ms)

CROC (discrete) 89.7 60.6 3.89
CROC (continuous) 88.4 57.2 3.93

Non-linear 100 94.1 ≃ 150
N-L with init guess 100 100 ≃ 130

TABLE II: Comparison between CROC and a non linear solver

for randomly generated contact sequences of three contact

phases. The two first methods are the ones presented in this

paper, with either the discrete3 or continuous formulation and

using the inequality representation of the dynamic constraints.

These methods are compared with the non linear solver

presented in [18], either with their naive initial guess (Non-

linear) or with the solution found by CROC as an initial guess

when available (N-L with init guess). The percentages on the

”success” columns only consider the scenario where at least

one method found a solution.

C. How conservative is CROC?705

Because of its conservative reformulation, CROC does not706

cover the whole solution space. As expected, our method707

finds less solutions than the nonlinear solver. In the coplanar708

case, CROC almost finds 90% of the solutions. In the non-709

coplanar case, the centroidal trajectory may be required to710

present several inflexion points and/or to be really close of711

the constraints, which cannot be represented using a single712

variable control point for the trajectory. This explains the713

difference of success rates between the two cases. However,714

even in such complex cases CROC still finds around 60% of715

the solutions.716

D. Computation time717

As claimed in the introduction, CROC is about two order of718

magnitude faster than the nonlinear solver that we are using719

for the centroidal motion generation. Thanks to this efficiency, 720

it is realistic to use our method during the contact planning to 721

evaluate hundreds of candidate transitions. 722

For the inequality representation with the double description 723

method, the computation time allocated to solve the QP 724

of equation (24) is extremely fast with 50µs on average. 725

The computation time of CROC, which comprises the time 726

required to solve the QP and the time required to compute 727

all the constraints matrices of equation (21) is around 400µs. 728

The total time in table II also includes the time required 729

by the double description method. However, in some cases 730

the same contact phases may be used several times and the 731

double description method only needs to be computed once per 732

contact phase, thus the time required for the double description 733

may be factorized. 734

1) Comparison with the equality representation: Table III 735

shows the difference in computation time between the in- 736

equality and equality formulation, with a varying number of 737

contacts. 738

Formulation Metric Number of contacts
2 3 4

Double-
Description

DD time (ms)
Total time (ms)

3.52 14.88 28.16
3.93 16.18 37.41

Force Total time (ms) 13.01 25.28 49.65

TABLE III: Comparison between the computation times re-

quired to generate and solve the FP4 defined by CROC using

either the Double Description (DD) or the Force formulation.

The major difference between the two representations lies 739

in the dimension of the variables and the constraints of the 740

problem, which is greater in the case of the force formulation. 741

As shown in Table III the computation times between the 742

double description and the force formulations remain in the 743

same order of magnitude for 2 to 4 contacts, with an advantage 744

for the double description. However this advantage reduces as 745

the number of contacts increase. Indeed, while the computation 746

time for the force formulation doubles at each additional 747

contact, the time grows cubicly with the Double Description 748

(DD) formulation. 749

E. Comparing the continuous and discretized formulations 750

The results of Table II confirm that the continuous formu- 751

lation presented in section III-C2 is conservative with respect 752

to the discrete formulation. However, these results show only 753

a marginal difference of success rate between the discrete and 754

continuous formulation of CROC (1− 4%). This can first be 755

explained by the fact that the De Casteljau decomposition 756

allows for the control point y to lie outside of the constraints 757

(Figure 5), thus making the method less restrictive. We propose 758

a second explanation, which is only intuitive (thus not a claim): 759

the remaining missing solutions are necessarily those that will 760

result in the curve lying close to the constraint boundaries. 761

The discretized approach will theoretically find them, but 762

4QP and FP give similar times for the DD formulation, while the FP is
much more efficient in the Force formulation. This is only an implementation
problem, since GLPK exploits the sparsity of the problem while QuadProg
does not.
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the chances of finding a trajectory partially outside of the763

constraint sets are much higher in this case (Figure 3).764

Moreover, in section III-D2 we proposed to only split the765

trajectory in one curve for each contact phases but it is possible766

to split the trajectory in an arbitrary number of curves, as long767

as each curve is entirely contained in one contact phases, as768

detailed in section III-F. By increasing the number of split769

curves, we can further reduce the loss of solutions.770

1) Invalid solutions of the discretized methods: Again, the771

major drawback of a discretized approach is that the portions772

of the curve in-between two discretization points are never773

checked and could violate the constraints (Figure 3).774

In order to measure this risk four variants of CROC were775

compared with the same randomly generated contact sequence776

as before: the discretized version with three different values of777

number of discretization points per phases and the continuous778

version presented in this paper. The four variants use the779

inequality representation of the dynamic constraints. Then, for780

each centroidal trajectory found as a solution, the dynamic781

constraints were verified with a really small discretization step.782

If the constraints were not satisfied for at least one point of783

the trajectory, we count this solution as ”invalid”.784

Method
Invalid solutions (%) Computation

time (ms)Coplanar Non-coplanar

Discrete (3 pts) 10.6 19.7 0.20
Discrete (7 pts) 6.7 9.3 0.37

Discrete (15 pts) 4.2 6.9 0.75
Continuous 0 0 0.41

TABLE IV: Comparison between the method CROC with the

discrete formulation (D), with varying number of discretization

points, and the continuous formulation (C) presented in this

paper.

Table IV shows that the percentage of invalid solutions785

found by the discrete methods is non negligible. Obviously,786

as the number of discretization points increase this percentage787

decreases. As shown in equation (11) the number of constraints788

in the discretized LP problem is proportional to the number of789

discretization points. Thus the number of discretization points790

used is a complex parameter to tune, as it is a compromise791

between the computation time and the risk of finding invalid792

solutions. This issue is common to all methods that rely on793

discretization. It emphasizes the fact that we need a continuous794

method, able to check exactly whether the whole trajectory is795

valid with a fixed number of constraints in the problem.796

2) Computational advantage of the continuous formulation:797

Depending on the discretization, the continuous formulation798

can be slower or faster to compute. However, to reach less799

than 5 % of false positive trajectories with the discretized800

approach, table IV shows that the continuous formulation is801

actually faster.802

F. Using CROC to initialize a non linear solver803

Choosing an initial guess for the nonlinear solver of a tra-804

jectory generation method is essential but may be challenging805

for multi-contact motions. The quality of this initial guess has806

a significant influence on the convergence of the nonlinear807

solver. For the nonlinear method considered in this section 808

[18] proposed a naive initial guess of the centroidal trajectory 809

based solely on the position of the contact points. 810

Interestingly, Table II suggests that the solution set spanned 811

by CROC is not strictly included in the one spanned by 812

this nonlinear solver with this naive initial guess. Using the 813

solution of CROC to initialize the nonlinear solver can thus 814

help it to converge and increase its success rate. As shown 815

in Table II, this improvement only appears for the non- 816

coplanar case because the naive initial guess used is always 817

close to a valid solution in the coplanar case. We expect that 818

the importance of the initial guess will grow if the contact 819

sequences do not allow static equilibrium configurations at the 820

contact phases, and will check this hypothesis in the future. 821

Moreover, by using the solution of CROC to initialize the 822

nonlinear solver we measured a reduction of the number of 823

iterations required to converge of 20% on average, reducing 824

the total computation time (ie. it is faster to use CROC and 825

then the non-linear solver than using the non-linear solver 826

directly). 827

G. Validity of our kinematic constraints 828

As explained in the section II-C, our representation of 829

the kinematics constraints is a necessary but not sufficient 830

approximation. In order to evaluate the accuracy of this 831

approximation, for each feasible transition found by CROC 832

between random configurations, we tested explicitly the kine- 833

matic feasibility of the centroidal trajectory with an inverse 834

kinematic. This tests showed that 17.5 % of the trajectories 835

found by CROC were not kinematically valid. This shows 836

that our approximation of the kinematic constraints is not 837

sufficient. However, this is not a limitation of CROC, but rather 838

of the formulation of the kinematic constraints, which we hope 839

to improve in the future. 840

Moreover, by doing the same tests without any kinematic 841

constraints we found a total of 72.3 % of kinematically 842

unfeasible trajectories. This results show the interest of our 843

kinematic constraints approximation to improve the feasibility 844

of the trajectories found by CROC. 845

V. EXPERIMENTAL FRAMEWORK 846

Figure 10 shows the complete framework used for our 847

experiments, implemented with the Humanoid Path Planner 848

[38] framework. The inputs are an initial (respectively goal) 849

position and orientation for the root of the robot, as well as 850

a set of bounds on the velocities and acceleration applying to 851

the COM and the end-effector, and a complete representation 852

of the 3D environment. The output is a dynamically consistent 853

and collision free whole-body motion which can be played on 854

a real robot as shown in section VI. 855

In this paper, we modify the contact generation method 856

by adding CROC as a feasibility criterion, and connect all 857

the pieces of the framework together. These other pieces are 858

used as black boxes and thus only briefly introduced, with a 859

reference to their respective publications. 860
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Fig. 10: Complete experimental framework.

A. RB-RRT kinodynamic planner861

The first block generates a rough guide trajectory5 for the862

root of the robot x(t)planning . It thus solves the sub-problem863

P1 defined in Figure 2. RB-RRT is a planning method based864

on the sampling-based RRT algorithm, which plans a guide865

trajectory for the geometric center of a simplified model of866

the robot. It thus solves a problem of lower dimension than867

planning in the configuration space of the real robot. The868

goal of this method is to find a trajectory for the root of the869

robot which will allow contact creation. This block was first870

presented in [15] and later extended to a kinodynamic version871

in [16], which is the one we use.872

B. Contact generator with CROC as a feasibility criterion873

The contact generator block computes a contact sequence,874

as a list of whole body postures along the discretized guide875

trajectory x(t)planning . This block solves the sub-problem P2876

defined in Figure 2. It also generates an initial guess of the877

timing of each contact phase. This method was also introduced878

in [15].879

CROC is used as a feasibility criterion by this contact880

generator. More precisely it is used as a filter to determine881

which transitions are unfeasible and discard them during the882

planning in order to produce contact sequence containing only883

feasible transitions. CROC will thus be called for each contact884

transitions considered by the contact generator (x
{p}
i and x

{q}
i+1885

in Figure 10) and output the feasibility of the given contact886

transition. The integration of CROC to this pipeline provides887

strong guarantees that the computed contact sequence will888

lead to a feasible CoM trajectory and thus that the centroı̈dal889

dynamics solver will converge with this contact sequence as890

input.891

A byproduct of the feasibility test made with CROC is a892

feasible CoM trajectory between each adjacent contact phases893

(x(t)initGuess). This trajectory, not optimal, is used as an894

5This guide is followed exactly to solve P2, but ignored at P3.

initial guess for a non-linear solver which will use it to 895

compute an optimal trajectory. 896

C. Centroidal dynamics solver 897

The centroidal dynamics solver block was proposed in [18], 898

it takes as input the contact sequence found by the previous 899

block, along with an initial guess of the timing of each phases 900

and an initial guess of the CoM trajectory. The output of this 901

block is a CoM trajectory that respects the centroı̈dal dynamics 902

of the robot x(t) and minimizes a tailored cost function. This 903

method solves an optimal control problem with a multiple- 904

shooting algorithm implemented in MUSCOD-II [39]. 905

The main interest of using a non-linear solver with the input 906

of CROC is that the trajectory can then be refined globally 907

(while the authors advise to use CROC with at most 3 contact 908

phases), at the cost of a higher computational burden. CROC 909

and the non linear solver are thus complementary: CROC 910

does not provide an optimum, but is computationally efficient, 911

which allows it to be used with a trial-and-error approach (ie. 912

trying to solve problems that we dont know if a solution exist, 913

until we find a solvable problem). Conversely, the non-linear 914

solver is too computationally expensive to be used with a trial- 915

and-error approach, but will in general propose a trajectory 916

with a better optimum with respect to the optimized cost 917

function. The proposed framework is designed to call this non- 918

linear solver only once, with a problem that is known to have 919

a solution. 920

The three different trajectories found in the framework of 921

Figure 10 are shown in Figure 8, x(t)planning is represented 922

in black, x(t)initGuess in yellow and orange and x(t) in green 923

and blue. This figure shows a trajectory computed with CROC 924

and the same trajectory refined with a non-linear solver as an 925

illustration of the typical differences of both approaches. 926

D. Inverse kinematics 927

The whole-body motion q(t) is generated with a second 928

order Inverse Kinematics solver, similar to [40]. This method 929
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takes as input a reference trajectory for the CoM, as well as930

references for the trajectories of the end-effectors.931

E. End-effector trajectory932

In order to automatically generate valid end-effector tra-933

jectories for complex and constrained scenarios, we use a934

dedicated block. The trajectories computed are such that935

the whole limb is collision free and respect the kinematic936

constraints. The trajectories are represented as Bezier curves937

constrained to have a null initial and final velocity, acceleration938

and jerk and which respect velocity, acceleration and jerk939

bounds along the whole trajectory. In order to guarantee that940

the whole surface of the effector creates or breaks the contact941

at the same instant the curves are also constrained to have a942

velocity orthogonal to the contact surface for a small time step943

at the beginning and the end of the trajectory.944

The positions of the control points of this Bezier curve945

are computed as the solution of a QP optimization method,946

using a cost function that defines a compromise between a947

reference optimal trajectory and a collision free one, provided948

by a probabilistic planner. This planner computes a geometric949

path for the moving limb that respects all the kinematic and950

collision constraints. However it may present discontinuities951

in velocity and higher derivatives and does not respect the952

dynamic constraints described in the previous paragraph.953

Moreover, as with any sampling-based method this path will954

not be optimal. Because of this, this geometric path will not955

be used directly as the end-effector trajectory but will be used956

inside the cost function of our optimization method.957

Then several iterations are made between this optimization958

method and the inverse kinematics method, producing trajecto-959

ries for the end-effectors and checking if the resulting whole-960

body motion is valid. If not, the weight of the cost associated961

to the solution of the geometric planner is increased at each962

iteration, until a valid motion is found.963

VI. EXPERIMENTAL RESULTS964

A. Experimental scenario965

The complete experimental framework presented in the966

previous section was tested on several locomotion scenarios in967

semi structured environments, each scenario showing specific968

features or difficulties. We insist that the only manual inputs969

given to our framework were an initial and a goal position970

for the root of the robot. Most of the obtained motions are971

demonstrated in the companion video. They were validated972

either in a dynamics simulator or on the real robot.973

1) Inclined platform crossing: This scenario requires the974

robot to go from one flat platform to the other by taking a step975

on an inclined platform (Figure 12). The scenario is designed976

such that no quasi-static solution exists to the problem, and is977

truly multi-contact for two reasons: firstly part of the motion978

occurs entirely on non-flat ground; secondly the problem is979

unfeasible if the right foot is the one selected to go first on the980

platform. CROC then allows to invalidate unfeasible contact981

sequences that would involve directly taking a step on the final982

platform, or take a step with the right foot first (Figure 13). It983

rather allows to find a solution where the left foot is used to984

Fig. 12: Platform crossing scenario: no quasi-static solution

exists for the flying phase where the left foot is on the inclined

platform.

step on the inclined platform (Figure 12). A feasible whole- 985

body motion is demonstrated in the companion video. 986

Additionally, CROC also ensures that the left foot is posi- 987

tioned in such a way that the problem becomes feasible, which 988

is not trivial considering the size of the solution space for the 989

chosen step position (Figure 19(a)). 990

Fig. 13: Unfeasible stepping strategies invalidated by CROC.

2) 10 cm high steps: This experimental setup is an indus- 991

trial set of stairs shown in Figure 11 and 18(a). It consists of 992

six 10 cm high and 30 cm long steps. This experiment was 993

done with the HRP-2 robot. All the valid contact sequences 994

produced contain at least 13 contact phases as the robot is 995

kinematically constrained to put both feet on each step. 996

The complete motion is shown in the companion video. The 997

crouching walk seen is required to avoid singularities in the 998

knee of the extending leg, which are not tolerated by the low- 999

level controller. 1000

An example of unfeasible contact sequence filtered out by 1001

our feasibility criterion is depicted on Figure 14. All three 1002

configurations in this sequence are valid (ie. respect kinematics 1003

and dynamics constraints) but there isn’t any valid centroidal 1004

trajectory between the last two configurations. Our feasibility 1005

criterion will filter out this kind of contact transitions during 1006

contact planning. 1007

3) 15 cm high steps with handrail: This other set of stairs 1008

is composed of four 15 cm high steps and equipped with 1009

a handrail. The contact sequence is shown in Figure 18(b) 1010

and snapshots of the motion are shown in Figure 15. This is 1011

a typical multi-contact problem, showing an acyclic contact 1012

sequence with non co-planar contact surfaces. The problem 1013

was already solved in a previous work [17], but the input 1014

contact sequence and effector trajectories had to be manually 1015

selected from a large number of trials. In this paper, the only 1016

input is a root goal position at the top of the stairs. 1017
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Fig. 11: Snapshots of the motion for the 10cm stairs, the complete motion is shown in the companion video.

Fig. 14: Exemple of unfeasible contact transition detected by

CROC and rejected during contact planning

Fig. 15: A feasible multi-contact sequence for a stair climb-

ing with handrail support on the HRP-2 robot automatically

computed with our contact planner and CROC.

A example of centroidal trajectory found by CROC for one1018

contact transition in this scenario is shown in Figure 19(b).1019

4) Flat surface with ground level obstacles: This exper-1020

imental setup consists of a flat floor with obstacles, shown1021

in Figure 18(c) and (d). In (c) there is only one obstacle1022

in front of the robot’s initial position, in (d) we add smaller1023

obstacles on the floor. This scenario shows that our planner1024

is able to compute a valid guide root trajectory that avoids1025

bigger obstacles and that our contact planner is able to avoid1026

collision with smaller obstacles on the ground.1027

The difficulty of this scenario lies on the generation of1028

collision free feet trajectories. Indeed, some obstacles are small1029

enough to permit the feet to pass over the obstacles, but others1030

are too high and require a lateral motion of the feet to avoid1031

them. As shown in Figure 16 our method presented briefly in1032

section V-E is able to find such trajectories automatically.1033

5) Uneven platforms: This setup consists of 30 cm long1034

and 20 cm wide platforms, oriented of 15◦around either the x1035

or y axis. This scenario is particularly difficult for the contact1036

planner because of all the possible collisions generated by the1037

feet. We recall that the feet of HRP-2 are 24 cm long for 141038

cm wide, which means that the platforms of this setup are only1039

a few centimeters bigger than the feet of the robot. Because of1040

this, there is really few collision free candidates positions for1041

Fig. 16: Feet trajectories computed for scenario with ground

level obstacles. Green for right foot and red for left foot.

Fig. 17: Examples of unfeasible contact sequences filtered out

by CROC. There doesn’t exist any valid centroidal trajectory

for the contact transitions encircled in black.

the feet. The probability of finding a contact position which 1042

leads to a collision-free configuration while maintaining the 1043

equilibrium is extremely small for this setup. 1044

The contact sequence found is shown in Figure 18(e), 1045

snapshots of the motion are shown in Figure 1 and a motion for 1046

this scenario is shown in the companion video. These motions 1047

have been validated on the real robot. 1048

The Figure 17 shows two examples of unfeasible contact 1049

sequence filtered out by CROC in this scenario. 1050

6) Quadrupedal between inclined planes: The quadrupedal 1051

robot HyQ navigates between two planes inclined at 45◦. 1052

Figure 19(c) shows the the centroidal trajectory found by 1053

CROC in this scenario for one contact transition. This scenario 1054

shows that our method may be adapted to any type of legged 1055

robot. 1056
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(a) (b)

(c) (d)

(e)

Fig. 18: Examples of contact sequences found with our frame-

work. The color patches represent the planned contact location:

green for right foot, red for left foot, blue for right hand.

B. Benchmarks1057

1) Using CROC as a feasibility criterion: In order to1058

quantify the improvement of our contact planner from the use1059

of CROC as a feasibility criterion, we used the following test1060

procedure: for some of the scenarios presented in the previous1061

section, we tried to solve the problem using our framework1062

with and without using CROC as a feasibility criterion during1063

the contact planning. We then measured the success rate of1064

the centroidal dynamic solver with the contact plan found.1065

The results are shown in Table V.1066

In the walking on flat floor scenario, CROC brings only1067

a marginal improvement to our contact planner because our1068

previously used heuristics were sufficient in this case to1069

provide a feasible contact plan most of the time. However, in1070

all the other cases the results empirically prove the main claim1071

of this paper: using CROC as a feasibility criterion during the1072

contact generation greatly increases the success rate of the1073

centroidal trajectory generation because it produces contact1074

plans with only feasible transitions. Another expected result1075

is that there isn’t any “false positive” found by our method:1076

when CROC converges, the non linear solver always converges1077

a)

b)

c)

Fig. 19: Examples of centroidal trajectories found by our

method. Green polytopes : valid position of y that verifies the

constraints of the problem (24), red sphere : solution found

for y for a given cost function (minimum of the squared

acceleration norm). The red part of the trajectory is for the

phase with nc − 1 active contacts. The next contact is shown

in transparency.

for the same transition. 1078

The trade-off is an increase of the computation time required 1079

by the contact generator, from a few percents to nearly the 1080

double. This is explained partly by the addition of the time 1081

required to run CROC for each candidates, but mostly by the 1082

fact than we need to evaluate a lot more candidates before 1083

we find a valid one (ie. which lead to a feasible transition). 1084

This is shown in the column 4 of Table V, which provides 1085

the average number of contact candidates evaluated during the 1086

contact planning phase. Actually, depending on the scenario 1087

considered, only 7 to 16% of the total “contact planning” 1088

computation time is spent solving CROC problems. The rest of 1089

the time is mostly spent by projection methods and collision 1090

tests. This shows that our formulation is fast enough to be 1091

used inside a contact planner, without too much impact on its 1092

computation time. 1093

2) Benchmarks of the complete framework: Table VI shows 1094

a benchmark of the performances of the complete motion 1095

planning framework presented in section V. We recall that 1096

this framework take as input only an initial and goal position 1097
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Contact planning Centroidal
dynamic

solver
success (%)

Scenario Method
time
(s)

Evaluated
candidates

(avg.)

Walk
(flat)

Without CROC 0.58 8.2 98
With CROC 0.63 21.9 100

Stairs
(3 steps)

Without CROC 0.61 24.4 52
With CROC 0.87 92.9 100

Stairs
(handrail)

Without CROC 1.26 147.2 31
With CROC 1.87 384.0 100

Uneven
platforms

Without CROC 3.91 679.1 15
With CROC 7.59 3030 100

TABLE V: Evaluation of the feasibility of the contact plans

found with or without CROC as a feasibility criterion. The

Contact Planning column shows the computation time re-

quired by the contact planning phase and the average number

of contact candidates evaluated during this phase. The last

column shows the success rate of the centroidal trajectory

generation method with the contact sequence found by the

planner. Each scenario have been run 100 times.

for the center of the robot and produce as output a whole body1098

motion.1099

Scenario
Motion

duration (s)
Total

time (s)
Success

(%)

Walk (3 steps) 7.7 4.43 100
Walk with obstacles 55.02 51.5 99.3

Stairs 16.23 12.56 90.5
Stairs with handrail 23.13 18.09 88.05
Uneven platforms 14.94 17.83 83.5

TABLE VI: Performance analysis of the complete motion

planning framework presented in section V, without the time

required to compute collision free end-effector trajectory.

Motion duration is the average duration of the solution, total

time is the average computation time required to compute the

motion. Success is the success rate of the complete framework.

We observe that the success rate is close to 100% except1100

for complex scenarios where it is still above 80% in the worst1101

case. The main cause of failure in our current implemen-1102

tation of the framework is the inverse kinematics that may1103

produce whole-body motions that do not respect the kine-1104

matic constraints or that are in self-collision. Concerning the1105

computation time, in most of the cases we achieve interactive1106

performances (ie. the computation time is smaller than the1107

motion duration). In the worst case the computation time is1108

greater than the motion duration, but only by a small margin.1109

As shown in Figure 20, the inverse kinematics method is1110

currently the bottleneck of our framework and takes more than1111

60% of the total computation time.1112

VII. CONCLUSION1113

In this paper we introduce a continuous, accurate and effi-1114

cient formulation of the centroidal dynamics of a legged robot,1115

named CROC. Our method guarantees that it can compute1116

valid centroidal trajectories that do not require discretization,1117

nor use approximation or relaxation of the dynamic con-1118

straints. This formulation is convex yet conservative, but not1119

limited to quasi-static motions. To our knowledge, this is the1120

first method to combine all these properties.1121

Fig. 20: Division of the computation time among the different

methods of the motion planning framework.

Thanks to the computational efficiency of our method, 1122

requiring only a few milliseconds to solve the centroidal 1123

dynamic problem with three contact phases, we can use this 1124

method as a feasibility criterion during contact planning. The 1125

interest of this feasibility criterion has been demonstrated both 1126

qualitatively and empirically. Our results show that all the 1127

contact plans produced with CROC as a feasibility criterion 1128

lead to feasible centroidal dynamics problems. We also show 1129

that without using this feasibility criterion, the contact planner 1130

finds unfeasible contact sequences with a high probability on 1131

complex scenarios. 1132

Moreover, the centroidal trajectory produced by CROC can 1133

be used to provide a relevant initial guess to a non linear 1134

solver, resulting in the improvement on the convergence rate 1135

and computation time of the non linear solver by comparison 1136

to the naive initial guess previously used. 1137

Thanks to the continuous formulation proposed in this pa- 1138

per, we have the guarantee that the whole centroidal trajectory 1139

is valid, by opposition to the discretized methods of the state 1140

of the art that only guarantee that the discretized points of the 1141

trajectory are valid. We showed that the discretization may 1142

lead to a non negligible amount of invalid solutions where the 1143

trajectory is invalid between two valid discretization points, 1144

which emphasizes the interest of a continuous formulation. 1145

We believe that this continuous formulation of the constraints 1146

on the centroidal trajectory may be useful for all state-of-the- 1147

art methods, convex or non-linear. We leave the study of the 1148

feasibility and the interest of this application to a future work. 1149

Finally, the feasibility criterion proposed in this paper 1150

permits us to complete our locomotion planning framework 1151

[41]. In this paper we showed that our framework is able 1152

to produce indifferently simple walking motions and multi- 1153

contact motions (ie. with non coplanar contacts and acyclic 1154

behaviors). These motions were validated in simulation or 1155

on the robot HRP-2. We also showed empirically that our 1156

framework presents a success rate close to 100% and present 1157

interactive computation times (the time required to compute 1158

a motion is smaller than the duration of this motion) in the 1159

studied scenarios, except for the most complex scenario where 1160

the computation time is approximately 20% greater than the 1161

duration of the motion, but still remain in the same order 1162

of magnitude. We believe that with an optimization of the 1163
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implementation, interactive performances could be achieved1164

even in the worst cases.1165

For future work we would like to try more complex motions1166

on the real robotic platform, but we are currently limited by1167

the capabilities of our low level controller.1168

A. Handling whole-body approximations and uncertainties1169

The remaining source of approximation is shared with all1170

centroidal-based methods, and comes from the whole-body1171

constraints (joint limits, angular momentum and torques),1172

which are only approximated or ignored in the current for-1173

mulation. One solution could be to alternate centroidal opti-1174

mization with whole-body optimization as other approaches1175

do [19], however for the transition feasibility problem, this1176

approach would result in an increased computational burden1177

that is not compatible with the combinatorial aspect of the1178

search. One way to improve the quality of this approximation1179

is to integrate torque constraints [42], [43]. Expressing such1180

constraints at the CoM level is considered for future work.1181

B. Application to 0 and 1 step capturability1182

The N-Step capturability problem consists in determining1183

the ability of a robot (in a given state) to come to a stop1184

(ie. null velocity and acceleration) without falling by taking at1185

most N steps. It is used to detect and prevent fall.1186

We can easily change the constraints on c(t) defined in1187

subsection III-A to remove the constraint on cg and constrain1188

(ċg = 0, c̈g = 0). With this set of constraints, the feasibility1189

of FP (13) determines the 0-Step capturability. Similarly, FP1190

(22) determines the 1-Step capturability.1191

For future work we would like to empirically determine the1192

accuracy of our method with respect to this problem, using a1193

framework similar to [14].1194

SOURCE CODE1195

Code available (C++/python) under a BSD-2 license:1196

https://github.com/humanoid-path-planner/hpp-bezier-com-traj1197
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