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Free space optical communications are becoming a mature technology to cope with the needs of high data rate payloads for future low-earth orbiting observation satellites. However, they are strongly impacted by clouds. In this paper, we aim to find a network of optical ground stations maximizing the percentage of data acquired by a low-earth orbiting satellite that can be transferred to the Earth, taking into consideration cloud information. This problem can be separated in two parts and solved hierarchically: the selection of a network of optical ground stations and the assignment of downloads to visibility windows of the stations.

We present theoretical and practical results regarding the complexity of the latter subproblem and propose a dynamic programming algorithm to solve it. We combine this algorithm with two methods for the enumeration of the stations, and compare them with a Mixed Integer Linear Program (MILP). Results show that even if the MILP can solve scenarios over small horizons, the hierarchical approaches outperform it in term of computation time while still achieving optimality for larger instances.

Free Space Optical Communications, Cloud Uncertainties

| INTRODUCTION AND STATE OF THE ART

Free space optical communications are seen as a key technology [START_REF] Le Kernec | Space evaluation of optical modulators for microwave photonic on-board applications[END_REF][START_REF] Porte | Optimization and evaluation in space conditions of multi-GHz optical modulators[END_REF][START_REF] Roy | Optical feeder links for high throughput satellites[END_REF] to cope with the needs of high data rate payloads for future low-earth orbiting observation satellites in replacement or in addition to current radio-frequency technologies. While the latter are very mature and well proven technologies which have been used for decades, the former may be able to offer data rates beyond the reach of radio-frequency technologies.

Current radio-frequency technologies mainly use X-Band for download and thus can currently provide up to a few gigabits per second (Gbps) [START_REF] Eilertsten | Ground station networks vs. geo relay satellites for polar orbiting satellites data download[END_REF]. Their main advantage is that X-Bands are not impacted by weather or atmospheric turbulences, thus allowing the establishment of communications at very low elevation angles (typically 5 degrees above the horizon). This leads to an increase in the contact duration between low-earth orbiting satellites and ground stations. One of their main drawbacks is their limited data rates and the need of frequency licensing in order to avoid interferences. This will be a major issue in the upcoming years due to the increase in the number of operational satellites and constellations orbiting around the Earth.

Free space optical communications offer data rates orders of magnitude higher than current radio-frequency ones: targeted data rates go from some tens of gigabits per second to several terabits per second (Tbps). Moreover, thanks to their very narrow beam, they do not require frequency licensing and are hard to intercept by malicious observers. Finally, they offer better power efficiency compared to radio-frequency technologies and reduced payload sizes which may prove very useful for nano and micro satellites. Unfortunately, free space optical communications are still experimental and are strongly impacted by weather, clouds, and atmospheric turbulence, and thus require new technologies to be used to cope with these issues [START_REF] Sodnik | Adaptive optics and ESA's optical ground station[END_REF][START_REF] Sodnik | Extending EDRS to laser communication from space to ground[END_REF].

In order to evaluate the impact of free space optical communications on spatial imagery systems, our work focuses on the design of Optical Ground Station Networks (OGSN) for low-earth orbiting observation satellites. We focus on the optical downlink and we aim to find a subset of optical ground stations in order to maximize the percentage of data downloaded from satellites, taking cloud information into account using archived data from previous decades.

Several studies were conducted to analyze and evaluate the impact of such technologies for the design of optical ground station networks. The first ones [START_REF] Link | Mitigating the impact of clouds on optical communications[END_REF][START_REF] Wojcik | Deep-space to ground laser communications in a cloudy world[END_REF] considered optical ground station networks for a specific deep-space mission. Their objective was to find a network that would provide a required availability, i.e., a percentage of time where at least one station within the network is both visible from the deep-space probe and cloud free. One of the main constraints was that only a subset of the possible stations were visible at any time due to the orbit of the probe and the rotation of the earth.

The probability of having at least one cloud-free visibility window after a given amount of time has been analyzed for a hand-made worldwide network of optical ground stations and a low-earth orbiting satellite with a given orbit [START_REF] Takayama | Estimation of accessible probability in a low-earth orbit satellite to ground laser communications[END_REF]. Statistical results were provided assuming constant and equal cloud covers for all stations. The average possible download volumes of various optical ground stations were also analyzed using orbital information from multiple existing low-earth orbiting observation satellites and assuming average clear sky probabilities [START_REF] Guérin | Evaluation of new technological concepts for high data rate payload telemetry[END_REF]. Results showed that, for the considered data rates, mid-latitude stations with an average clear sky probability of 65% could handle between 7 and 26.1 terabits of data per day, while high-latitude stations with an average clear sky probability of 55% could handle between 21.9 and 81.9 terabits.

Studies regarding the optimization of a network of optical ground stations in Europe were conducted using three years of high-resolution cloud data over Europe, Africa and the Middle East [START_REF] Guérin | Optimisation of an optical ground station network[END_REF][START_REF] Lacoste | FSO ground network optimization and analysis considering the influence of clouds[END_REF]. In these studies, an iterative algorithm was proposed for determining a network of optical ground stations: a subset of locations was first selected in each one-degree iso-latitude strip depending on yearly cloud-free probabilities (without orbital information). Then, this subset was shrunk using monthly and yearly statistics. Finally, only some locations were kept depending on external requirements. The resulting networks were then analyzed using orbital information from various existing low-earth orbiting satellites (identical to [START_REF] Guérin | Evaluation of new technological concepts for high data rate payload telemetry[END_REF]). It was shown that mid-latitude stations could handle between 5 and 9 terabits of data per day, while high-latitude stations could not handle more than 16 terabits of data per day. While these results were less optimistic than the ones proposed in a previous paper [START_REF] Guérin | Evaluation of new technological concepts for high data rate payload telemetry[END_REF], comparisons showed that even small networks of optical ground stations using low data rates (10.5 gigabits per second) could outperform radio-frequency throughputs.

In 2010, the Inter-agency Operations Advisory Group (IOAG) established the Optical Link Study Group (OLSG) which led to two reports in 2012 [START_REF] Ioag | Optical link study group final report[END_REF][START_REF] Schulz | Results of the optical link study group[END_REF]. In these reports, the use of free space optical communications on various space systems was evaluated. Using a "state-of-the-art cloud database" (from [START_REF] Link | Mitigating the impact of clouds on optical communications[END_REF][START_REF] Wojcik | Deep-space to ground laser communications in a cloudy world[END_REF], not available), authors found that it was possible to transfer 95% of the data acquired by a low-earth orbiting satellite to the Earth using a network of seven optical ground stations.

In this paper, we deal with low-earth orbiting satellites, nevertheless, we refer to some recent works close to our problem but regarding geostationary satellites. In this context, studies regarding the availability of an optical ground station network in Europe for a geostationary satellite were proposed in [START_REF] Poulenard | Ground segment design for broadband geostationary satellite with optical feeder link[END_REF][START_REF] Poulenard | High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services[END_REF]. A greedy algorithm and an analysis of the SAF-NWC high-resolution cloud database were used to find efficient networks. The need to distribute optical ground stations over larger areas was later put forward by looking at the availability of networks over Germany, Europe and "extended" Europe using a probabilistic approach taking into account cloud correlations between ground stations [START_REF] Fuchs | Ground station network optimization for space-to-ground optical communication links[END_REF] and various optimization methods [START_REF] Giggenbach | A high-throughput satellite system for serving whole Europe with fast internet service, employing optical feeder links[END_REF]. Data from the SEVIRI1 payload were used as inputs to the following approaches [START_REF] Giggenbach | A high-throughput satellite system for serving whole Europe with fast internet service, employing optical feeder links[END_REF]: select the stations with best availabilities (without taking cloud correlation into account), select the best combinations of stations by computing the availabilities of all possible combinations, or select the best network by reducing the number of possible combinations using political and infrastructural constraints, together with statistics about cloudiness and correlation. Experiments showed that while a simple complete enumeration quickly failed to give results, a correctly tuned guided approach could provide good quality solutions. Results showed that networks of stations located only in Germany were quickly limited, while European networks enhanced with stations in Africa, Middle East and South America could reach availabilities near 100%. Finally, link availability of a 77°E geostationary satellite for various networks was analyzed using cloud information retrieved from satellite images taken between October 2013 and September 2014 [1]. Results showed that networks of one, two or three stations were able to achieve respectively 74.73%, 93.7% and 97.13% availability.

While these studies deal with the optimization of optical ground station networks, none propose a formal definition of the underlying problems, or any guarantee regarding optimality, except for a complete enumeration coupled with simulations that can be computationaly expensive to run. In this work, we first propose a formal definition of MaxPDT, the Optical Ground Stations Network optimization problem under some assumptions, together with a mathematical formulation. We then present exact hierarchical approaches based on a dynamic programming algorithm to solve it.

The paper is organized as follows. Section 2 defines formally the MaxPDT problem and one of its subproblems, MaxPDT L , and provides some results regarding their complexities. Then, Section 3 proposes a dynamic programming algorithm to solve MaxPDT L and two exact hierarchical approaches combining this algorithm with different enumeration methods to solve the MaxPDT problem. Computational results regarding MaxPDT and MaxPDT L are then presented in Section 4. Finally, conclusion and future research directions are discussed in Section 5.

In this section, we explain the assumptions we consider to define the Maximum Percent Data Transferred (MaxPDT) problem. The MaxPDT problem is based on download points, which are simplification of visibility windows between the satellite and the optical ground stations. We first explain how we transform visibility windows into download points, then we formally define the MaxPDT problem and one of its subproblems that we will later use to solve MaxPDT and derive its complexity.

| Industrial context and assumptions

Considering a low-earth orbiting satellite and a given a set R = {r 1 , . . . , r N } of possible locations for optical ground stations with associated costs p r (r ∈ R), we aim to find a subset R * ⊆ R having a total cost lower than K that maximizes the Percent Data Transferred (PDT) [START_REF] Ioag | Optical link study group final report[END_REF], i.e., the percentage of data acquired by the satellite that can be successfully transferred to the Earth.

We assume the satellite has a buffer of size B ≥ 0 that is empty at the beginning of the time horizon and must be empty at the end. We assume that the time horizon H = [T st ar t , T end ] is divided into a set S = {s 1 , . . . , s M } of successive acquisition slots, and that a given amount of data a s > 0 is acquired at the beginning t s of each slot s ∈ S.

There is no gap between two successive acquisition slots, thus the end time of slot s i is the beginning time t s i +1 of slot s i +1 . By definition we have t s 1 = T st ar t and for simplicity we assume t s M +1 = T end .

While orbiting around the Earth, the satellite is able to reach intermittently the various locations (of optical ground stations) during visibility windows. We define V as the set of all visibility windows. To each visibility window v ∈ V is associated a start t st a v ≥ T st ar t , an end t end v < T end , a unique location (or station) τ v ∈ R, a data rate function

d v : t st a v , t end v
→ + and a set γ v of overlapping visibility windows:

γ v = v ∈ V : t st a v ≤ t st a v < t end v or t st a v ≤ t end v < t end v
Two overlapping visibility windows cannot be both used for downloading data and are thus in mutual exclusion.

For example, let us consider the instance presented in Figure 1 which consists of four slots and a network of three stations with eight visibility windows (A to G ). Each horizontal line represents a different station with its set of visibility windows. Vertical dotted black lines represent the beginning of slots, with the acquisition volumes indicated above.

The data rate functions of the visibility windows are not shown in the figure . In this example, some visibility windows are overlapping (such as A and B or D and E ) and thus cannot be both used. Characteristics of optical links during communications between satellites and optical ground stations are not well known and multiple parameters, mainly cloud interferences, may influence the established link during a visibility window, thus creating very complicated data rate functions d v . Furthermore, considered horizons H are very large (multiple decades) while slots and visibility windows require a granularity of the order of tens of minutes. To consider the difference in time steps, we assume that each visibility window can be reduced to an instantaneous download called a download point. We then consider a mapping f v →w between each visibility window v and each download point w .

For each visibility window v ∈ V, the mapping function creates one download point w = f v →w (v ) = (σ w , τ w , ρ w , γ w ), defined as follows:

• σ w is the slot within which the visibility window starts, i.e., σ w is the only slot s i ∈ S such that:

t s i ≤ t st a v < t s i +1
• τ w is the station associated to the visibility window, i.e., τ w = τ v ;

• ρ w is the download volume associated to the visibility window, which is computed beforehand using the data rate function d v :

ρ w = ∫ t end v t st a v d v (t )d t
• γ w is the set of download points conflicting with w , i.e., the set of download points associated to visibility windows overlapping v :

γ w = f v →w (v ) | v ∈ γ v
We say that two download points are in conflict if their associated visibility windows are overlapping.

Data associated to the visibility windows of the example shown in Figure 1 are given on the left side of Table 1.

On the right side, we provide the mapping of these data to obtain the associated download points.

We denote by Q the set of all download points:

Q = {f v →w (v ) : v ∈ V }
For each slot s ∈ S, we denote by Q s the set of download points inside s:

Q s = {w ∈ Q : σ w = s }
Similarly, for each location r ∈ R, we denote by Q r the set of download points associated with r :

Q r = {w ∈ Q : τ w = r }
Considering the example in Table 1, we obtain the following sets: 

Q = {A w , B w , C w , D w , E w , F w , G w } Visibility windows, v ∈ V Download points, w = f v →w (v ) v t st
Q s 1 = {A w , B w } , Q s 2 = {C w , D w } , Q s 3 = {E w , F w } , Q s 4 = {G w } Q r 1 = {A w , D w , G w } , Q r 2 = {B w , E w } , Q r 3 = {C w , F w } It can be noticed that sets Q s define a partition of Q ( s ∈S Q s = Q and s i , s j ∈ S, s i s j ⇒ Q s i ∩ Q s j = ∅). Sets Q r also define a partition of Q.
Based on the assumption that visibility windows can be reduced to instantaneous downloads (download points), optimizing a ground station network can be re-formulated as two interleaved selection problems. The first problem corresponds to the selection of ground station locations and the second problem corresponds to the selection of download points. The objective is to maximize the percent data transferred from the satellite to the Earth, and can be computed using a set of recursive equations depending on the set of chosen download points that are given later in this paper.

| The MaxPDT problem

The MaxPDT problem consists in selecting a subset R ⊆ R of locations and a subset Q ⊆ Q of download points, in order to maximize the Percent Data Transferred (PDT) from the satellite to the Earth. For each location r ∈ R, p r ≥ 0 is the price of opening a station at r and Q r ⊆ Q is the set of download points associated with r .

Definition

For each slot s ∈ S, a s ∈ [0, B] is the amount of data acquired at the beginning of s and Q s ⊆ Q is the set of download points associated with s.

For each download point w ∈ Q, τ w ∈ R is the location of w , σ w ∈ S is the slot of w , ρ w ≥ 0 is the amount of data that can be downloaded for w and γ w ⊂ Q is the set of download points in conflict with w .

By construction, each download point w ∈ Q is associated to a single location and a single slot:

s 1 , s 2 ∈ S : Q s 1 ∩ Q s 2 = ∅ r 1 , r 2 ∈ R : Q r 1 ∩ Q r 2 = ∅ Definition Feasible solution for the MaxPDT problem Given an instance (K , B, R, S, Q) of the MaxPDT problem, a feasible solution is a pair (R , Q ) with R ⊆ R and Q ⊆ Q such that: r ∈R p r ≤ K (2a) Q ⊆ r ∈R Q r (2b) w ∈ Q , γ w ∩ Q = ∅ (2c) 
Equation (2a) indicates that the total costs of the chosen locations (opened stations) is lower than the maximum K . Equation (2b) enforces that download points can only be used if their associated locations are chosen. Equation (2c) indicates that if a download point w is chosen, none of the download points in conflict with w are selected.

Definition Data loss of a solution for the MaxPDT problem Given a solution (R , Q ) of the MaxPDT problem, the amount of data loss associated is the amount of data acquired by the satellite that has not been successfully transferred to the Earth. Data loss occurs when there is not enough space in the buffer to store the data acquired by the satellite at the beginning of a slot.

The following equations describe formally the computation of the amount of data loss. Given a set S of M slots, a set of chosen download points Q and a buffer size B:

l osses(Q , S, B) = b s M + s ∈S l s (3) 
where l s is the amount of data loss during the slot s and b s the amount of data in the buffer at the end of the slot s. By convention, b s 0 is the amount of data at the beginning of the temporal horizon. We assume that the amount of data in the buffer at the end of the temporal horizon, b s M , is lost. These can be computed using the following recursive equations:

b s 0 = 0 (4a) b s i = max(0, min(b s i -1 + a s i , B) - w ∈Q s i ∩Q ρ w ), i ∈ {1, . . . , M } (4b) l s i = max(0, b s i -1 + a s i -B), i ∈ {1, . . . , M } (4c)
At the beginning of the temporal horizon, the buffer is empty (4a). At the end of a slot s, the amount of data in the buffer is the amount of data in the buffer at the end of the previous slot, to which we add the acquisition volume of slot s and subtract the amount of data downloaded during the slot (4b). The amount of data loss during a slot s is the amount of data acquired at the beginning of the slot a s that did not fit in the buffer (4c).

Definition Percentage of Data Transferred (PDT) for a MaxPDT solution Given a solution (R , Q ) of the MaxPDT problem, the percentage of data transferred is the amount of data acquired by the satellite during the time horizon that has been successfully downloaded:

pd t (Q , S, B) = 1 - l osses(Q , S, B) s ∈S a s (5) 
The objective of the MaxPDT problem is to find a feasible solution (R , Q ) which maximizes the percent data transferred, which is the same as minimizing the losses l osses(Q , S, B).

| Mathematical model

To model the MaxPDT problem, we first consider two types of binary variables for the selection of stations and download points. For each station r ∈ R, we define a binary variable y r = 1 if and only if the station r is chosen. For each download point w ∈ Q, we define a binary variable x w = 1 if and only if the download point w is used to download data.

Moreover, we introduce two real variables for each slot s ∈ S to model the amount of data in the buffer and the amount of data loss (similar to the intermediate variables used in Definition 3): b s ∈ + represents the amount of data in the buffer at the end of slot s and l s ∈ + represents the amount of data loss during slot s.

Using this set of variables and the parameters given in Definition 2.2 (summarized in Table 2), the mathematical model for the MaxPDT problem can be formulated as follows:

min.

s ∈S l s (6a) s.t. x w ≤ y r , r ∈ R, w ∈ Q r (6b) x w + x w ≤ 1, w ∈ Q, w ∈ γ w (6c) b s i + l s i ≥ b s i -1 + a s i - w ∈Q s i x w ρ w , s i ∈ S (6d) 0 ≤ b s i ≤ B -a s i +1 , s i ∈ S, i M (6e) b s 0 = b s M = 0 (6f) r ∈R p r y r ≤ K (6g) x w ∈ {0, 1}, w ∈ Q (6h) y r ∈ {0, 1}, r ∈ R (6i) b s ≥ 0, l s ≥ 0, s ∈ S (6j)
Objective (6a) minimizes the amount of data loss. Constraints (6b) and (6c) prevent downloads on stations that are not chosen (y r = 0) and on conflicting download points. Constraints (6d) and (6e) force the amount of data at the end of a slot s i to be consistent with the amount at the beginning of s i and s i +1 , and to be less than the buffer size B minus the acquisition of slot s i +1 (i.e., at the end of slot s i , there must be at least a s i +1 free space in the buffer).

Constraint (6f) says that the initial amount of data in the buffer is 0 and forces the final amount of data in the buffer to be 0. Constraint (6g) forces the total cost of the network to be less than the maximum cost allowed K . Constraints (6h)-(6j) define the domain of the decision variables.

| The download point selection problem, MaxPDT L

The MaxPDT problem can grow very quickly in size, especially when we consider very large horizon (multiple decades).

In order to tackle it more efficiently, we chose to first focus on a subproblem: the selection of the download points.

The next section will be dedicated to the analysis of this problem, which we called MaxPDT L . We will first formally define it from MaxPDT, and then provide some complexity results that can be extended to the MaxPDT problem. 

Definition

Q ⊆ Q (7a) w ∈ Q , γ w ∩ Q = ∅ (7b)
Definition Optimal solution for the MaxPDT L problem Given an instance (B, S, Q) of the MaxPDT L problem, an optimal solution is a feasible solution with minimum losses.

An optimal solution for MaxPDT L is similar to an optimal solution for MaxPDT. An optimal solution for the MaxPDT problem can be found by solving a MaxPDT L problem for each feasible subset of locations, and then taking the best solution found.

| Mathematical model

The model for the MaxPDT L problem can be obtained by removing variables y r and constraints (6b) and (6g) from the model of the MaxPDT problem [START_REF] Guérin | Optimisation of an optical ground station network[END_REF]. 

Inputs of the problem

T

| Complexity results

In this section, we give some complexity results for the MaxPDT and MaxPDT L problems. We then provide results

for special cases of instances of the MaxPDT L problem regarding the distribution of download points and conflicts between them.

Proposition 1

The MaxPDT L problem is strongly NP-hard.

Proof Let us consider the decision variant of MaxPDT L : is it possible to find a solution Q such that l osses(Q ) ≤ φ, φ being an arbitrary positive real value?

The proof is based on the reduction from the Weighted Independent Set problem (WIS), which is known to be NP-complete in the strong sense. The weighted independent set problem consists, given a graph G = (V , E ) and weights u : V → , in finding a subset S ⊆ V of vertices such that no two vertices in S are adjacent and such that the sum of the weights of vertices in S is greater than an arbitrary positive value Φ.

Obviously, MaxPDT L is NP since, given a solution Q , l osses(Q ) can be computed in linear time using the formula given in (3).

From a WIS instance (G = (V , E ), Φ), we build up an instance of MaxPDT L in the following way: the instance contains a single slot s 1 (S = {s 1 }) with an associated acquisition volume a s 1 = v ∈V u v and a set of download A feasible solution Q for this instance of MaxPDT L is obviously a feasible solution S for the WIS instance due to the conflict constraints. Furthermore, finding a solution S Φ such that v ∈S Φ u v ≥ Φ is the same as finding a solution

points Q = Q s 1 . The set Q contains a download point w v for each vertex v ∈ V with σ wv = s 1 , ρ wv = u v and γ wv = {w v : (v , v ) ∈ E },
Q φ of the MaxPDT L instance, with φ = B -Φ such that l osses(Q φ , {s 1 }, B) ≤ φ = B -Φ since from (3): l osses(Q φ , {s 1 }, B) = l s 1 + b s 1 = max(0, b s 0 + a s 1 -B) + b s 1 = b s 1 = max(0, min(b s 0 + a s 1 , B) - w ∈Q s 1 ∩Q ρ w ) = max(0, a s 1 - w ∈Q ρ w ) = a s 1 - w ∈Q ρ w = v ∈V u v - v ∈Q u v = B -Φ Corollary 2
The MaxPDT problem is strongly NP-hard.

Proof

The MaxPDT L problem is a subproblem of the MaxPDT problem where stations have already been chosen. So it is thus trivial to reduce MaxPDT L to MaxPDT, making MaxPDT strongly NP-hard.

| Special cases

We propose here some complexity results for MaxPDT L regarding instances with special distributions of download points and conflicts between download points.

Definition

We define the class of intra instances as the class of instances within which there are no conflicts between download points that are not in the same slot, i.e., given an instance (B, S, Q) of the intra class:

w ∈ Q : γ w ⊂ Q σw
Definition We define the class of interval instances as the class of instances within which the set of conflicts represents intersection constraints between intervals, similar to interval or intersection graph.

Proposition 3 Solving instances of MaxPDT L that are in both the intra and the interval classes can be done in polynomial time.

Proof Since there are no conflicts between download points not in the same slot, an optimal solution is a solution where the amount of data downloaded within each slot is maximized. Within any slot s, selecting a subset of stations maximizing the amount of data downloaded is the same as finding a maximum-weighted independent set in an interval graph with | Q s | vertices (see the reduction above). This can be done in O( | Q s |) time [START_REF] Hsiao | An efficient algorithm for finding a maximum weight 2-independent set on interval graphs[END_REF] if the download points are correctly sorted. Thus, finding the optimal solution can be done in 

O( s ∈S | Q s |) = O( | Q |)
( | Q | . log | Q |).
It is worth noticing that instances of the MaxPDT L problem constructed from real scenarios fall within the interval class. Some of these might correspond to intra instances -this will mostly depend on the chosen stations and orbit of the satellite -but this will not be the general case.

| HIERARCHICAL APPROACH

In this section we will present hierarchical approaches to solve the MaxPDT problem based on a dynamic programming algorithm for solving the MaxPDT L problem.

In real instances, the number N of possible locations for the stations is often very small (some tens) and the temporal horizon is large (some years). We propose to separate the decision process into two cooperative algorithms:

a master algorithm that enumerates all possible subsets of stations R , and a slave algorithm that solves an instance of MaxPDT L build from each subset.

| Algorithms for the enumeration of networks of ground stations

We propose two algorithms to enumerate the feasible subsets of locations. The first one is an exhaustive enumeration and the second algorithm is a branch-and-bound. Both of these algorithms use algorithm A to compute the maximum PDT of the selected networks. Algorithm A solves a MaxPDT L instance and returns a list of selected download points (Q ) together with the corresponding PDT. Such an algorithm is presented in Section 3.2. Table 3 gives a summary of notations used in the proposed algorithms.

In order to obtain an instance of MaxPDT L from an instance of MaxPDT for a subset of locations, we define the following operation: Definition Projection of a set S of slots on a set R of stations: S ↓ R

We define the projection of a set S of slots on a set R of stations as an updated set S P = S ↓ R where download points on stations not in R have been removed. Given two related slots s ∈ S and s P ∈ S P , the following hold:

a s P = a s Q s P = Q s ∩ Q R
where Q R is the set of all download points on station in R :

Q R = r ∈R Q r
The selection of feasible subsets of stations and the projection can be respectively seen as the enforcement of constraints (6g) and (6b) of the original MILP.

| Exhaustive enumeration

The first algorithm E E pd t (A) is a simple exhaustive enumeration that tries every possible combinations of stations and uses algorithm A to compute the PDT of these combinations. Algorithm 1 gives an overview of E E pd t (A):

Algorithm 1 Exhaustive enumeration algorithm

pd t max ← 0, R * ← ∅, Q * ← ∅ for each R ⊆ R do if r ∈R p r ≤ K then S P ← S ↓ R (pd t , Q ) ← A B, S P , r ∈R Q r if pd t > pd t max then pd t max ← pd t R * ← R Q * ← Q end if end if end for

| Branch-and-bound algorithm

The second algorithm B B pd t (A) we propose is a binary branch-and-bound algorithm that uses A to compute upper bounds on nodes and objective value of solutions.

In this algorithm, branching is done by imposing or forbidding the opening of a station at a possible location for which no decision has been made yet. On any given node, we split the set of stations R into three disjoint subsets R + , R -and R ? corresponding respectively to chosen stations, not chosen ones and still undefined ones. To compute the lower bound on a given node, we use algorithm A with a projection of the slots on R + ∪ R ? -Stations still undefined are considered chosen since opening stations can only increase the objective value.

A leaf node is a node on which it is not possible to add any new stations to R + without exceeding the maximum allowed cost:

l e af (R + , R -, R ? ) ⇔ r ∈ R ? , p r + r ∈R + p r > K
While processing a node, we branch on the station providing the largest amount of download. Given a solution Q obtained using A for a projection of the slots on R + ∪ R ? , we choose the station r nex t such that:

r nex t = arg max r ∈R ? w ∈Qr ∩Q ρ w
We initialize our search tree with a single node with R + = R -= ∅ and R ? = R. Nodes on the tree are processed in increasing order of their lower bounds. MaxPDT L problem for a selected set of locations.

Exhaustive Enumeration

| Dynamic programming algorithm definition to solve MaxPDT L

In the following, we present a dynamic programming algorithm, D P pd t L that can be used to solve MaxPDT L for any class of instances. This algorithm can be used within the methods presented in Section 3.1.

The D P pd t L algorithm manages a set H of labels, where each label h is a tuple (b h , l h , Γ h , W h ) with b h the current amount of data in the buffer, l h the accumulated amount of data loss, Γ h the set of conflicting download points (i.e., the set of download points that cannot extend this label) and W h the list of used download points.

The algorithm proceeds with the following steps:

1. a label h 0 = (0, 0, ∅, ∅) is created and added to the initially empty set of labels H;

2. the slots in S are processed in increasing starting time order. For each slot s ∈ S, the following actions are performed:

a. all existing labels are updated to take into account the amount of data acquired at the beginning of s;

b. for each download point w ∈ Q s and for each existing label h ∈ H, a new label h is created if the download point is not in conflict with the label h (w Γ h );

3. labels in H are updated to take into account constraint (6f) (the data in the buffer at the end of the temporal horizon is lost) and the label with the minimum amount of data loss at the end is chosen.

Algorithm 2 shows a formal description of the algorithm.

| Dominance rule to prune labels

In order to prevent the set of labels H from growing too large, we need to remove labels that cannot lead to optimal solutions by means of a dominance rule between two labels.

Definition

We say that a label h 1 dominates a label h 2 if h 1 h 2 and:

Γ + h 1 = Γ + h 2 and b h 1 < b h 2 ∧ l h 1 ≤ l h 2 or b h 1 = b h 2 ∧ l h 1 < l h 2 or b h 1 = b h 2 ∧ l h 1 = l h 2 ∧ W h 1 ≺ W h 2 (8a) (8b) (8c) 
where Γ + h is a subset of Γ h containing only download points that have not yet been processed. This is due to the fact that labels can be compared only if they have the same sets of conflicts in the future.

Conditions (8a) and (8b) compare labels according to the amount of data loss (current objective value) and amount of data in the buffer. If there are less data loss and less data in the buffer in h 1 than in h 2 , the solution for h 1 is better than the one for h 2 . Since Γ +

h 1 = Γ + h 2
, any choice possible for extending h 2 is also possible for h 1 , thus h 1 dominates h 2 .

In fact, the only constraints for extension come from conflicting download points, so if h 1 is better than h 2 , there will be at least one solution made from extending h 1 that will be better than any solution created by extending h 2 .

Condition (8c) is only used to avoid having solutions with identical objective values: two solutions may have the same amount of data loss and amount of data in the buffer, keeping both of them would be inefficient, so we remove the one with the worst set of used download points (≺ must be a strict total order).

Pruning of labels is done within step 2.2, at the beginning of the outer for loop (between line 7 and 8). This dominance rule guarantees that no label than can lead to an optimal solution will be pruned, insuring optimality of the algorithm. Furthermore, it guarantees that if all labels h ∈ H have an empty set of conflicts (Γ h = ∅) and an empty buffer b h = 0, they can be compared using (8b)-(8c) and a single one dominates all the other. This insures that at the end of the algorithm, a single label will remain.

We call the combinations of the D P pd t L with the above defined dominance rule D P 

l h ← l h + max(0, b h + a s -B) 6:
end for 7:

for each w ∈ Q s do step 2.2 8:

H + ← ∅ 9:
for each h ∈ H do 10:

if w Γ h then 11: h ← (max(0, b h -ρ w ), l h , W h ∪ {w } , Γ h ∪ γ w )
12:

H + ← H + ∪ {h } 13:
end if 

l h ← l h + b h 20:
b h ← 0 21: end for

| Example of execution of the D P + pd t L algorithm

In this section, we will carry out an example of D P + pd t L on the instance presented in Section 2.1. We assume here that the three stations have been selected and that the buffer size is 1000. At each step of the algorithm, we display the current list of labels H in a table.

| Step 1

We start by initializing H with the initial label:

b h l h W h Γ h h 1 0 0 ∅ ∅

| Step 2

We start processing the first slot s 1 (a s 1 = 700) by updating all labels inside H according to step 2.1:

b h l h W h Γ h h 1 700 0 ∅ ∅
We process the first download point A w (ρ Aw = 100 and γ Aw = {B w }). This creates a new label h 2 by extending h 1 :

b h l h W h Γ h h 1 700 0 ∅ ∅ h 2 600 0 {A w } {B w }
We process the second download point B w (ρ Bw = 140 and γ Bw = {A w }). Since Γ h 2 contains B w , we can only extend h 1 and create a new label h 3 :

b h l h W h Γ h h 1 700 0 ∅ ∅ h 2 600 0 {A w } {B w } h 3 560 0 {B w } {A w }
We start processing the second slot s 2 (a s 2 = 400) and update all labels inside H. Since the buffer size is limited to 1000, some data are lost when updating h 1 (b h 1 + a s 2 = 700 + 400 > 1000):

b h l h W h Γ h h 1 1000 100 ∅ ∅ h 2 1000 0 {A w } {B w } h 3 960 0 {B w } {A w }
Before processing the third download point, we apply our dominance rule (at the beginning of step 2.2). Since A w and B w have already been processed, we have Γ +

h 1 = Γ + h 2 = Γ + h 3
. We can see that h 3 dominates h 1 and h 2 due respectively to equations (8b) and (8a).

b h l h W h Γ + h h 3 960 0 {B w } ∅
If we continue the process (considering download points C w , D w , E w , F w and G w ), we obtain the following set of labels before step 3:

b h l h W h Γ + h h 7 1000 200 {B w , C w , D w , F w } ∅ h 8 940 200 {B w , C w , D w , F w , G w } ∅

| Step 3

Labels are updated at the end of the algorithm to remove data in the buffer (at the end of the time horizon, the buffer must be empty, i.e., b h = 0, h):

b h l h W h Γ + h h 7 0 1200 {B w , C w , D w , F w } ∅ h 8 0 1140 {B w , C w , D w , F w , G w } ∅
And finally, h 8 dominates h 7 , thus the optimal solution is: Proof At the beginning of the algorithm, the set H contains a single label. We will show that, for instances of the intra class, if there is a single label in H at the beginning of the processing of a slot s, then a single label will remain in H at the end of the processing of s (due to the dominance rule).

Q * = {B w , C w , D w , F w , G w } 3.4 |
Assume there is a single label h = (b h , l h , Γ h , W h ) in H at the beginning of the processing of a slot s: first, b h and l h are updated (no new labels are created), then the download points inside s are processed and new labels are created. All these labels have the same updated value of l h (see algorithm 2).

At the end of the processing of the last download point inside s, the pruning happens. Since there cannot be conflict between download points not in the same slot, all labels will have the same reduced set of conflicts Γ + = ∅.

Since all labels have the same amount of losses l h , a single label in H dominates all the others, thus this label will be the single one remaining in H at the end of the processing of s. For any slot s, the processing of the download points where:

inside Q s is done in O(2 |Q s | ) time,
α max = max s ∈S Q s 4 | COMPUTATIONAL RESULTS
In this section, we present some computational results obtained by solving randomly generated instances for the MaxPDT L problem and realistic instances for the MaxPDT problem. We generated random instances for the MaxPDT L problem, grouped into 3 categories depending on their conflicts:

• Int: Conflicts can only occur within a slot.

• Adj: Conflicts can only occur between successive download points.

• All: Conflicts are not constrained.

For each category, instances were generated using a given number of slots, a random number (within a given range) of download points per slot, a fixed buffer size, a probability of conflict between download points, and randomly generated acquisition and download volumes. Instances of type All are much harder to solve than instances of type Int or Adj (see Table 4), which is why the parameters used to generate these instances are different from the parameters used for the Int and Adj types:

• for instances of types Int and Adj, the following parameters were used:

-number of slots per instance: 100, 500, 1000, 2000, 3000, 4000, 5000

-number of download points per slot (minimum / maximum): 0/5, 5/10, 10/20, 20/40

• for instances of type All, the following parameters were used:

-number of slots per instance: 10, 50, 100, 200, 300, . . . , 900, 1000

-number of download points per slot (minimum / maximum): 0/5, 5/10, 10/20

For each combination of parameters, four probabilities of conflict were used: 0.2, 0.4, 0.6, 0.8, and four different buffer sizes (see below).

Download volumes of download points were uniformly distributed between 100 and 200 gigabits for all instances.

The acquisition volumes were uniformly distributed between 150 * M and 250 * M where M is the maximum possible number of download points per slot. The buffer sizes used were multiples of the average acquisition volumes â = 200 * M : B = â, 2 â, 4 â, 8 â.

These parameters have been chosen to test the performance of D P + pd t L compared to the M I LP model and are unlikely to appear in real instances of the MaxPDT problem. Although the number of slots is somehow realistic (slots are typically one hour long, so 5000 slots represent a bit more than 6 months), it is unlikely to encounter that many download points per slot or that much conflicts in real applications.

For each combination of these parameters (category, number of slots, number of download points per slot, probability of conflict and buffer size), 4 instances were generated, for a total of 5888 instances.

| Computational context

The D P + pd t L and the mathematical model for the MaxPDT L problem were both implemented in C++. The M I LP model was solved using CPLEX 12.7. All experiments were run using a single thread on a cluster with 2.3 GHz processor and 6 gigabytes of RAM per thread. A time limit of one hour was used.

| Results

Table 4 shows, for both methods, the number of instances where the method found the optimal solution, or a feasible solution, or failed to provide a solution. Both methods have no problem with instances of the Adj category. The D P + pd t L algorithm manages to solve all instances of the Int category, even those with up to 40 download points per slot, while the M I LP fails to solve some of these. For instances of the All category, while the M I LP provide solutions (even if non-optimal) for about 80% of the instances, D P + pd t L only manages to provide solutions for about 18% of the instances, and even if the number of instances solved optimally is slightly larger for D P + pd t L , some instances solved to optimality by the M I LP are not solved up to optimality by D P + pd t L . Since it is trivial to find a feasible solution for any kind of instances (select no stations), instances for which the methods did not manage to provide solutions are instances for which the system ran out of memory and killed the program.

In the following, we look in detail at the performance of both methods when solving instances of the Adj and Int categories, and give some information regarding the performance of the methods for the All category.

Solver Category # Instances # Optimal # Non optimal # Not found and the M I LP , for each category of instances. The third column indicates the number of instances tested per category, and the three right-most columns indicate respectively the number of instances for which no solutions were found (time or memory limit reached), a feasible solution was found, or an optimal solution was found. shows data averaged over the four instances of each group (same set of parameters) and over the various buffer sizes used, since we noticed that the buffer size had little influence on the computational time of the algorithms. Instances of the Int class for which the M I LP did not find a solution (or did not find the optimal one) are included in these graphs with a computation time of 3600 seconds (the time limit used) so that each pair of plots correspond to the same set of instances. We can see that for these two classes of instances, D P + pd t L is orders of magnitude faster than the M I LP solver.

For instances of the Adj category, Figures 2(a seems to stabilize as the number of slots becomes larger. This behavior is explained by the FPT behavior of D P + pd t L on instances of the Int category -the fixed parameter is the maximum number of download points per slot, which is constant for each curve in these figures. These plots also show that D P + pd t L is more efficient at solving instances with a large number of overlaps. It can easily be explained by the fact that if a label is in conflict with a download point, the label is not duplicated. Thus, the more conflicts there are, the less label duplications occur. show a still visible but weaker behavior regarding the number of conflicts for the M I LP solver.

Table 5 shows the number of instances from the All category solved (to optimality or not). Similar to instances of the Adj and Int categories, this shows that D P + pd t L is able to solve more instances when the percentage of conflicts is high. The M I LP seems to have issue solving instances with a large number of conflicts -while the number of instances solved to optimality is slightly higher for instances with a large number of conflicts, the number of instances without a solution is also higher. 

| Computational context

The M I LP model and both the E E pd t (A) and the B B pd t (A) algorithms were implemented in C++. The M I LP solver used was CPLEX 12.7. All experiments were run using 1 and 8 threads on a cluster with 2.3 GHz processor and 3.5 gigabytes of RAM per thread. For both networks, we looked for networks of K = 1, . . . , N stations (with N = 11 or 16 depending on the network), for a total of 1134 instances that were run using the 3 algorithms with both 1 and 8 threads (6804 runs). ) combination for the generated instances, and that both combinations outperform the M I LP solver. Moreover, the standard deviations of the computation time for our hierarchical approaches are lower than the standard deviations for the M I LP solver, meaning that our methods are not really impacted by slight differences in the input instances. for N 11 . This behavior can be explained by the low solution times -such small solution times can depict strange behavior with a multi-threaded algorithm. Figure 6 shows that the exponential behavior of the B B pd t (D P + pd t L ) algorithm using one thread is similar to the behavior of the M I LP solver using 8 threads, enforcing this hypothesis. Table 6 shows the computation time difference when using either 1 or 8 threads for the M I LP solver and both algorithms, averaged for instances with a temporal length of 5 years.

| Results

For complex instances (when K is close to half the number of available stations), the E E This behavior is easily explained by the complexity of multi-threading a branch-and-bound compared to an exhaustive enumeration -in both enumerations, each run of D P + pd t L is done on a separate thread, so 8 instances of MaxPDT L can be solved simultaneously, but the synchronization process is more complex for B B pd t (D P + pd t L ) than for E E pd t (D P + pd t L

). While the M I LP solver is also faster when using 8 threads, the ratio is not close to the expected value of 8, meaning the relative gap between the M I LP solver and our enumerations is greater when using 8 threads.

These results show that solving realistic instances of MaxPDT by combining an enumeration method and D P + pd t L is much faster than using the M I model. Experiments also show that the branch-and-bound enumeration is often faster than the complete enumeration, even if it takes less advantage of multi-threading. ) and the MILP for instances with a temporal horizon of 5 years, on N 11 and N 16 , for various number of selected stations K . For each method, the first two columns represent the averaged solving time (in seconds) when using respectively 1 or 8 threads, while the third one shows the improvement ratio when using 8 threads compared to 1 thread.
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  I G U R E 1 Example of an instance of the considered problem.

  Instance of the MaxPDT problem An instance of the MaxPDT problem is a 5-tuple (K , B, R, S, Q) where K > 0 is the maximum cost allowed for opening stations, B > 0 is the size of the satellite buffer, R (| R | = N ) is the set of available locations, S (| S | = M ) is the set of slots and Q is the set of download points.

  Instance of the MaxPDT L problem An instance of the MaxPDT L problem is a triplet (B, S, Q) where B, S and Q have the same meaning as for the MaxPDT problem (see Definition 2.2). An instance of the MaxPDT L problem is an instance of the MaxPDT problem where the selection of locations has been removed. Definition Feasible solution for the MaxPDT L problem Given an instance (B, S, Q) of the MaxPDT L problem, a feasible solution is a subset of download points Q ⊆ Q (7a) such that no two download points are in conflict (7b).

  meaning that two download points are in conflict if their corresponding vertices are connected in the graph G. The buffer size is B = a s 1 .

  time if the download points are correctly sorted. Since sorting all the download points can be done in O( | Q | . log | Q |) time, the final complexity of the algorithm for instances in both the intra and the interval classes is O

  thus the complexity of the D P + pd t L algorithm for instances of the intra class is: O( |S | .2 αmax )

4. 1 |

 1 Computation results for the MaxPDT L problem 4.1.1 | Instances

Figures 2

 2 Figures 2 and 3 show computation times of CPLEX and D P + pd t L for instances of the Adj and Int classes. Each curve

  )-2(d) show a near-linear behavior for D P + pd t L regarding the number of slots and the number of download points per slot, but a slightly exponential behavior for the M I LP . Furthermore, D P + pd t L seems to be less impacted by minor changes in the input instances than the M I LP model. For both methods, the number of conflicts (percentage of overlaps) has little impact on the computation times, which is why results are only provided for 40% and 80% probability of conflicts.For instances of the Int category, we can see on Figures3(a), 3(c) and 3(e), that the computation time of D P + down. points 10-20 down. points 20-40 down. points (d) M I LP , 80% overlaps F I G U R E Computation time for instances of the Adj category using D P + pd t L or the M I LP .

  Figures 3(b), 3(d) and 3(f)

  down. points (f) M I LP , 80% overlaps F I G U R E 3 Computation time for instances of the Int category using D P + pd t L or the M I LP .

Figure 4

 4 Figure4shows the computation times (means and standard deviations) for the M I LP solver and both E E pd t (D P + pd t L )

Figure 5

 5 Figure 5 shows the computation times (averages and standard deviations) for the M I LP solver and both algorithms regarding the number of stations chosen for various temporal lengths of the instances (1 and 2 years were very similar, like 4 and 5 years). These plots present similar information as Figure 4 but in a different way. Figures 5(c)-5(d) show an exponential behavior for the exhaustive enumeration E E pd t (D P + pd t L ). As expected, instances where the number of chosen stations is close to half the number of available stations are the hardest to solve. While Figure 5(f) depicts the same exponential behavior for the B B pd t (D P + pd t L ) algorithm, Figure 5(e) shows a more chaotic behavior

Figures 5 (

 5 Figures 5(a)-5(b) also show an exponential behavior for the M I LP solver but slightly shifted to the left -the hardest instances seem to be those where the number of chosen stations is slightly less than half the number of available locations.

), N 16 F I G U R E 5

 165 B B pd t (D P + pd t L Computation times for each methods using 8 threads, depending on the number of chosen stations.

6

 6 Computation time for the B B pd t (D P + pd t L ) algorithm using 1 thread for N 11 .

  Example of mapping from visibility windows to download points for the instance shown in Figure1. In this example, we consider a data rate function µ identical for all visibility windows: t ∈ [T st ar t , T end ] , µ(t ) = 20.

		v	a	t end v	τ v	d v	γ v	w	σ w	τ w	ρ w	γ w
	A		3	8	r 1	µ	{B }	A w	s 1	r 1	100	{B w }
	B		5	12	r 2	µ	{A }	B w	s 1	r 2	140	{A w }
	C	14	16	r 3	µ	∅	C w	s 2	r 3	40	∅
	D	18	25	r 1	µ	{E }	D w	s 2	r 1	140	{E w }
	E	22	29	r 2	µ	{D, F }	E w	s 3	r 2	140	{D w , F w }
	F	27	31	r 3	µ	{E }	F w	s 3	r 3	80	{E w }
	G	35	38	r 1	µ	∅ G w	s 4	r 1	60	∅
	TA B L E 1										

  st ar t Start of the temporal horizon. T end End of the temporal horizon. Summary of notations for the definition of the MaxPDT and MaxPDT L problems.

	R Set of possible locations.	N Number of possible locations.
	p r Cost of opening a station on location r .	K Maximum allowed cost for the network of
		stations.
	B Size of the buffer.	
	S Set of slots.	M Number of slots.
	t s Start of slot s.	a s Amount of data acquired at the beginning of
		slot s.
	V Set of visibility windows.	τ v Location reachable during visibility window
		v .
	t st a	
	Decision variables	
	y r y r = 1 if and only if location r is chosen.	x w x w = 1 if and only if download point w is
		selected.
	b s Amount of data in the buffer at the end of	l s Amount of data lost during slot s.
	slot s.	
	TA B L E 2	

v Start of visibility window v . t end v End of visibility window v . d v Data rate function (evolution) during visibility window v . γ v Set of visibility windows overlapping with visibility window v . f v →w Mapping function between visibility and download points. Q Set of download points. Q s Set of download points associated with slot s. Q r Set of download points associated with location r . σ w Slot of download point w . τ w Location of download point w .

ρ w Amount of data that can be downloaded using w .

γ w Set of download points conflicting with w .

  Complexity of the D P + pd t L algorithm for special classes of instances

	Proposition 4 The D P + pd t L	algorithm is a fixed-parameter tractable (FPT) algorithm, for instances of the intra class, consid-

ering the maximum number of download points inside a slot as a parameter of the problem.

  pd t (D P +
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) clearly takes advantage of the 8 threads, while the B B pd t (D P + pd t L ) only has a ratio close to 8 for the hardest instances.

When the instances are simpler to solve, the B B pd t (D P + pd t L ) fails to take advantage of the threads compared to the

E E pd t (D P + (f) B B pd t P + pd t L ), N 16

F I G U R E 4 Computation times for each methods using 8 threads, depending on the horizon length.

  Comparison of solution time between B B pd t (D P +

			BBpdt (D P + pd t L )	EEpdt (D P + pd t L )			M I LP
		K	1 th. 8 th. ratio	1 th. 8 th. ratio	1 th.	8 th. ratio
	N11	2	3.16 1.06 2.98	1.49 0.39 3.85 2135.00 200.56 10.65
	N11	4	6.11 1.47 4.16	14.64 2.15 6.81 1871.52 453.79 4.12
	N11	5	4.19 1.17 3.58	24.78 3.16 7.84	932.53 206.17 4.52
	N11	6	2.03 0.77 2.65	28.71 3.30 8.70	291.33 118.65 2.46
	N11	8	1.23 0.59 2.08	10.26 1.72 5.96	64.77	62.29 1.04
	N11 10	1.16 0.70 1.65	0.89 0.31 2.84	28.12	23.66 1.19
	N16	4	64.51 9.48 6.81	62.17 10.04 6.19 5593.90 1421.25 3.94
	N16	6 187.33 28.92 6.48 373.87 55.66 6.72 4802.77 1392.55 3.45
	N16	7 274.81 34.46 7.98 709.01 80.08 8.85 3521.69 1271.03 2.77
	N16	8 226.76 33.60 6.75 636.93 98.31 6.48 2157.92 568.72 3.79
	N16	9 144.35 23.92 6.03 843.58 85.47 9.87 1491.61 486.14 3.07
	N16 12	7.72 1.73 4.47 108.35 16.25 6.67	328.47 108.56 3.03
	TA B L E 6 pd t L	), E E pd t (D P + pd t L

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is an optical imaging radiometer on-board Meteosat Second Generation (MSG) satellites.
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and the M I LP for different probabilities of conflicts. For each probability, 576 instances were tested, and the columns respectively represent the number of instances for which no solutions were found (time or memory limit reached), a feasible solution was found, or an optimal solution was found.

These experiments show that D P + pd t L is much faster at solving instances of MaxPDT L than the M I LP model, even if both methods fail to solve complex instances of MaxPDT L where there are a large number of conflicts and slots, and where conflicts are not confined.

| Computation results for the MaxPDT problem

| Instances

We generated custom instances for a low-earth orbiting satellite using concepts of operations from [START_REF] Ioag | Optical link study group final report[END_REF][START_REF] Guérin | Evaluation of new technological concepts for high data rate payload telemetry[END_REF][START_REF] Lacoste | FSO ground network optimization and analysis considering the influence of clouds[END_REF]: data rate (before cloud impact) D R = 10.5 Gbps, buffer size B = 2300 gigabits, an acquisition (slot) every hour and a constant acquisition volume of a s = 500 gigabits. Visibility windows were computed using the Systems Tool Kit (AGI, STK) software, for a sun-synchronous low-earth orbiting satellite with an altitude of 700 kilometers and a local time of 10:30 A.M, between 1990 and 2010. We used the ERA Interim cloud database [START_REF] Dee | The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[END_REF] (freely available) to approximate the cloud cover c v ∈ [0, 1] during any visibility window v , using cloud data from the previous decades (between 1990 and 2010). Based on these approximated cloud covers, we assumed that the data rate function d v of a visibility window v was constant during the visibility window but proportional to the cloud cover c v over the station τ v at the beginning of the visibility window:

The download volume ρ w of a download point w associated to a visibility window v can thus be computed as:

We discarded download points that were too small (ρ w < 1 gigabits). We used two different networks composed of 11 (N 11 ) and 16 (N 16 ) possible locations and since we could not find realistic information for the costs of the different locations, we choose to simply select fixed numbers K of stations (between 1 and 16). We generated instances of various durations of 1, 2, 4, 5, 10 and 20 years. All instances were generated using the same 20 year horizon, meaning that there are respectively 20, 10, 5, 4, 2, 1 instances of each duration.

| CONCLUSIONS

In this paper, we consider the problem MaxPDT of finding a network of ground stations maximizing the amount of data transferred from a low-earth satellite satellite to the Earth using optical communications. We model this problem using an aggregation of visibility windows into download point which allows any model to be used for the computation of the data rate during communications. We analyze the MaxPDT L problem within the MaxPDT problem and give complexity results regarding its general form. We propose mixed-integer linear programs for both MaxPDT and MaxPDT L . To solve MaxPDT L , we propose a dynamic programming algorithm D P + pd t L that exhibits an FPT behavior for realistic instances.

We combine this algorithm with two enumeration methods, E E pd t (D P + pd t L

) and B B pd t (D P + pd t L ), in order to solve the MaxPDT. We showed that for realistic instances, both enumerations methods outperform the M I LP solver.

Additional research efforts are needed for investigating the complexity of the MaxPDT L and MaxPDT problems for real instances where conflicts within visibility windows can be represented as an intersection graph with possible overlaps between slots. A more sophisticated way of taking overlaps between visibility into account could also be considered. While we consider that two overlapping visibility windows are in total conflict, it could be interesting to split these into sub-windows to allow partial usage of both conflicting visibility windows. Finally, a version of the MaxPDT problem on a rolling horizon could be considered, such as the minimization of the maximum amount of data loss over each month.