
HAL Id: hal-01898054
https://laas.hal.science/hal-01898054v1

Submitted on 17 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing ground station networks for free space
optical communications: maximizing the data transfer

Mikaël Capelle, Marie-José Huguet, Nicolas Jozefowiez, Xavier Olive

To cite this version:
Mikaël Capelle, Marie-José Huguet, Nicolas Jozefowiez, Xavier Olive. Optimizing ground station
networks for free space optical communications: maximizing the data transfer. Networks, 2019, 73
(2), pp.234-253. �10.1002/net.21859�. �hal-01898054�

https://laas.hal.science/hal-01898054v1
https://hal.archives-ouvertes.fr

OR I G I N A L A RT I C L E

Optimizing ground station networks for free spaceoptical communications: maximizing the datatransfer
Mikaël Capelle1,2 | Marie-José Huguet2 | Nicolas
Jozefowiez3 | Xavier Olive1
1Thales Alenia Space France, Toulouse,
France
2LAAS-CNRS, Université de Toulouse,
CNRS, INSA, Toulouse, France
3Université de Lorraine, LCOMS, F-57000
Metz, France
Correspondence
Marie-José Huguet, LAAS-CNRS, 7 av. du
Colonel Roche, 31400 Toulouse, France
Email: marie-jose.huguet@laas.fr
Funding information

Free space optical communications are becoming a mature
technology to cope with the needs of high data rate pay-
loads for future low-earth orbiting observation satellites.
However, they are strongly impacted by clouds. In this pa-
per, we aim to find a network of optical ground stations
maximizing the percentage of data acquired by a low-earth
orbiting satellite that can be transferred to the Earth, tak-
ing into consideration cloud information. This problem can
be separated in two parts and solved hierarchically: the se-
lection of a network of optical ground stations and the as-
signment of downloads to visibility windows of the stations.
We present theoretical and practical results regarding the
complexity of the latter subproblem and propose a dynamic
programming algorithm to solve it. We combine this algo-
rithm with two methods for the enumeration of the sta-
tions, and compare them with a Mixed Integer Linear Pro-
gram (MILP). Results show that even if the MILP can solve
scenarios over small horizons, the hierarchical approaches
outperform it in term of computation timewhile still achiev-
ing optimality for larger instances.
K E YWORD S
Combinatorial Optimization, Mixed-Integer Linear Programming,
Dynamic Programming, Network Design,

1

2 Mikaël Capelle et al.
Free Space Optical Communications, Cloud Uncertainties

1 | INTRODUCTION AND STATE OF THE ART
Free space optical communications are seen as a key technology [11, 13, 16] to cope with the needs of high data rate
payloads for future low-earth orbiting observation satellites in replacement or in addition to current radio-frequency
technologies. While the latter are very mature and well proven technologies which have been used for decades, the
former may be able to offer data rates beyond the reach of radio-frequency technologies.

Current radio-frequency technologies mainly use X-Band for download and thus can currently provide up to a
few gigabits per second (Gbps) [3]. Their main advantage is that X-Bands are not impacted by weather or atmospheric
turbulences, thus allowing the establishment of communications at very low elevation angles (typically 5 degrees
above the horizon). This leads to an increase in the contact duration between low-earth orbiting satellites and ground
stations. One of their main drawbacks is their limited data rates and the need of frequency licensing in order to avoid
interferences. This will be a major issue in the upcoming years due to the increase in the number of operational
satellites and constellations orbiting around the Earth.

Free space optical communications offer data rates orders of magnitude higher than current radio-frequency
ones: targeted data rates go from some tens of gigabits per second to several terabits per second (Tbps). Moreover,
thanks to their very narrow beam, they do not require frequency licensing and are hard to intercept by malicious
observers. Finally, they offer better power efficiency compared to radio-frequency technologies and reduced payload
sizes which may prove very useful for nano and micro satellites. Unfortunately, free space optical communications are
still experimental and are strongly impacted by weather, clouds, and atmospheric turbulence, and thus require new
technologies to be used to cope with these issues [18, 19].

In order to evaluate the impact of free space optical communications on spatial imagery systems, our work focuses
on the design of Optical Ground Station Networks (OGSN) for low-earth orbiting observation satellites. We focus on
the optical downlink and we aim to find a subset of optical ground stations in order to maximize the percentage of
data downloaded from satellites, taking cloud information into account using archived data from previous decades.

Several studies were conducted to analyze and evaluate the impact of such technologies for the design of optical
ground station networks. The first ones [12, 21] considered optical ground station networks for a specific deep-space
mission. Their objective was to find a network that would provide a required availability, i.e., a percentage of time
where at least one station within the network is both visible from the deep-space probe and cloud free. One of the
main constraints was that only a subset of the possible stations were visible at any time due to the orbit of the probe
and the rotation of the earth.

The probability of having at least one cloud-free visibility window after a given amount of time has been ana-
lyzed for a hand-made worldwide network of optical ground stations and a low-earth orbiting satellite with a given
orbit [20]. Statistical results were provided assuming constant and equal cloud covers for all stations. The average
possible download volumes of various optical ground stations were also analyzed using orbital information frommulti-
ple existing low-earth orbiting observation satellites and assuming average clear sky probabilities [7]. Results showed
that, for the considered data rates, mid-latitude stations with an average clear sky probability of 65% could handle
between 7 and 26.1 terabits of data per day, while high-latitude stations with an average clear sky probability of 55%
could handle between 21.9 and 81.9 terabits.

Studies regarding the optimization of a network of optical ground stations in Europe were conducted using three
years of high-resolution cloud data over Europe, Africa and the Middle East [6, 10]. In these studies, an iterative

Mikaël Capelle et al. 3
algorithm was proposed for determining a network of optical ground stations: a subset of locations was first selected
in each one-degree iso-latitude strip depending on yearly cloud-free probabilities (without orbital information). Then,
this subset was shrunk using monthly and yearly statistics. Finally, only some locations were kept depending on
external requirements. The resulting networks were then analyzed using orbital information from various existing
low-earth orbiting satellites (identical to [7]). It was shown that mid-latitude stations could handle between 5 and 9
terabits of data per day, while high-latitude stations could not handle more than 16 terabits of data per day. While
these results were less optimistic than the ones proposed in a previous paper [7], comparisons showed that even small
networks of optical ground stations using low data rates (10.5 gigabits per second) could outperform radio-frequency
throughputs.

In 2010, the Inter-agency Operations Advisory Group (IOAG) established the Optical Link Study Group (OLSG)
which led to two reports in 2012 [9, 17]. In these reports, the use of free space optical communications on various
space systems was evaluated. Using a “state-of-the-art cloud database” (from [12, 21], not available), authors found
that it was possible to transfer 95% of the data acquired by a low-earth orbiting satellite to the Earth using a network
of seven optical ground stations.

In this paper, we deal with low-earth orbiting satellites, nevertheless, we refer to some recent works close to
our problem but regarding geostationary satellites. In this context, studies regarding the availability of an optical
ground station network in Europe for a geostationary satellite were proposed in [14, 15]. A greedy algorithm and an
analysis of the SAF-NWC high-resolution cloud database were used to find efficient networks. The need to distribute
optical ground stations over larger areas was later put forward by looking at the availability of networks over Germany,
Europe and “extended” Europe using a probabilistic approach taking into account cloud correlations between ground
stations [4] and various optimization methods [5]. Data from the SEVIRI1 payload were used as inputs to the following
approaches [5]: select the stations with best availabilities (without taking cloud correlation into account), select the
best combinations of stations by computing the availabilities of all possible combinations, or select the best network
by reducing the number of possible combinations using political and infrastructural constraints, togetherwith statistics
about cloudiness and correlation. Experiments showed that while a simple complete enumeration quickly failed to
give results, a correctly tuned guided approach could provide good quality solutions. Results showed that networks
of stations located only in Germany were quickly limited, while European networks enhanced with stations in Africa,
Middle East and South America could reach availabilities near 100%. Finally, link availability of a 77°E geostationary
satellite for various networks was analyzed using cloud information retrieved from satellite images taken between
October 2013 and September 2014 [1]. Results showed that networks of one, two or three stations were able to
achieve respectively 74.73%, 93.7% and 97.13% availability.

While these studies deal with the optimization of optical ground station networks, none propose a formal defini-
tion of the underlying problems, or any guarantee regarding optimality, except for a complete enumeration coupled
with simulations that can be computationaly expensive to run. In this work, we first propose a formal definition of
MaxPDT, the Optical Ground Stations Network optimization problem under some assumptions, together with a math-
ematical formulation. We then present exact hierarchical approaches based on a dynamic programming algorithm to
solve it.

The paper is organized as follows. Section 2 defines formally the MaxPDT problem and one of its subproblems,
MaxPDTL , and provides some results regarding their complexities. Then, Section 3 proposes a dynamic programming
algorithm to solve MaxPDTL and two exact hierarchical approaches combining this algorithm with different enumera-
tion methods to solve the MaxPDT problem. Computational results regarding MaxPDT and MaxPDTL are then presented
in Section 4. Finally, conclusion and future research directions are discussed in Section 5.

1The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is an optical imaging radiometer on-boardMeteosat Second Generation (MSG) satellites.

4 Mikaël Capelle et al.
2 | THE MAXIMUM PERCENT DATA TRANSFERRED PROBLEM
In this section, we explain the assumptions we consider to define the Maximum Percent Data Transferred (MaxPDT)
problem. The MaxPDT problem is based on download points, which are simplification of visibility windows between
the satellite and the optical ground stations. We first explain how we transform visibility windows into download
points, then we formally define the MaxPDT problem and one of its subproblems that we will later use to solve MaxPDT
and derive its complexity.

2.1 | Industrial context and assumptions
Considering a low-earth orbiting satellite and a given a set R = {r1, . . . , rN } of possible locations for optical ground
stations with associated costs pr (r ∈ R), we aim to find a subset R∗ ⊆ R having a total cost lower than K that
maximizes the Percent Data Transferred (PDT) [9], i.e., the percentage of data acquired by the satellite that can be
successfully transferred to the Earth.

We assume the satellite has a buffer of size B ≥ 0 that is empty at the beginning of the time horizon and must
be empty at the end. We assume that the time horizon H = [Tst ar t , Tend] is divided into a set S = {s1, . . . , sM } of
successive acquisition slots, and that a given amount of data as > 0 is acquired at the beginning t s of each slot s ∈ S.
There is no gap between two successive acquisition slots, thus the end time of slot si is the beginning time t si+1 of
slot si+1. By definition we have t s1 = Tst ar t and for simplicity we assume t sM+1 = Tend .

While orbiting around the Earth, the satellite is able to reach intermittently the various locations (of optical ground
stations) during visibility windows. We define V as the set of all visibility windows. To each visibility window v ∈ V

is associated a start t st av ≥ Tst ar t , an end t endv < Tend , a unique location (or station) τv ∈ R, a data rate function
dv : [

t st av , t
end
v

]
→ Ò+ and a set γv of overlapping visibility windows:

γv =
{
v ′ ∈ V : t st av ≤ t st av ′ < t

end
v or t st av ≤ t endv ′ < t

end
v

}
Two overlapping visibility windows cannot be both used for downloading data and are thus in mutual exclusion.

For example, let us consider the instance presented in Figure 1 which consists of four slots and a network of three
stations with eight visibility windows (A toG). Each horizontal line represents a different station with its set of visibility
windows. Vertical dotted black lines represent the beginning of slots, with the acquisition volumes indicated above.
The data rate functions of the visibility windows are not shown in the figure. In this example, some visibility windows
are overlapping (such as A and B or D and E) and thus cannot be both used.

Station r1
Station r2
Station r3

+700 s1 +400 s2 +300 s3 +200 s4

A

B

C

D

E

F

G

0 5 10 15 20 25 30 35 40

F IGURE 1 Example of an instance of the considered problem.

Characteristics of optical links during communications between satellites and optical ground stations are not well

Mikaël Capelle et al. 5
known and multiple parameters, mainly cloud interferences, may influence the established link during a visibility win-
dow, thus creating very complicated data rate functions dv . Furthermore, considered horizons H are very large (mul-
tiple decades) while slots and visibility windows require a granularity of the order of tens of minutes. To consider the
difference in time steps, we assume that each visibility window can be reduced to an instantaneous download called
a download point. We then consider a mapping fv→w between each visibility window v and each download point w .
For each visibility window v ∈ V, the mapping function creates one download point w = fv→w (v) = (σw , τw , ρw , γw),
defined as follows:

• σw is the slot within which the visibility window starts, i.e., σw is the only slot si ∈ S such that:
t si ≤ t st av < t si+1

• τw is the station associated to the visibility window, i.e., τw = τv ;
• ρw is the download volume associated to the visibility window, which is computed beforehand using the data rate

function dv :

ρw =

∫ t endv

t st av

dv (t)d t

• γw is the set of download points conflictingwithw , i.e., the set of download points associated to visibility windows
overlapping v :

γw =
{
fv→w (v

′) | v ′ ∈ γv
}

We say that two download points are in conflict if their associated visibility windows are overlapping.

Data associated to the visibility windows of the example shown in Figure 1 are given on the left side of Table 1.
On the right side, we provide the mapping of these data to obtain the associated download points.

We denote by Q the set of all download points:
Q = {fv→w (v) : v ∈ V}

For each slot s ∈ S, we denote by Qs the set of download points inside s :
Qs = {w ∈ Q : σw = s }

Similarly, for each location r ∈ R, we denote by Qr the set of download points associated with r :
Qr = {w ∈ Q : τw = r }

Considering the example in Table 1, we obtain the following sets:
Q = {Aw ,Bw ,Cw ,Dw , Ew , Fw ,Gw }

6 Mikaël Capelle et al.

Visibility windows, v ∈ V Download points, w = fv→w (v)

v t st av t endv τv dv γv w σw τw ρw γw

A 3 8 r1 µ {B } Aw s1 r1 100 {Bw }

B 5 12 r2 µ {A} Bw s1 r2 140 {Aw }

C 14 16 r3 µ ∅ Cw s2 r3 40 ∅

D 18 25 r1 µ {E } Dw s2 r1 140 {Ew }

E 22 29 r2 µ {D , F } Ew s3 r2 140 {Dw , Fw }

F 27 31 r3 µ {E } Fw s3 r3 80 {Ew }

G 35 38 r1 µ ∅ Gw s4 r1 60 ∅

TABLE 1 Example of mapping from visibility windows to download points for the instance shown in Figure 1. In
this example, we consider a data rate function µ identical for all visibility windows: [t ∈ [Tst ar t ,Tend] , µ(t) = 20.

Qs1 = {Aw ,Bw } , Q
s2 = {Cw ,Dw } , Q

s3 = {Ew , Fw } , Q
s4 = {Gw }

Qr1 = {Aw ,Dw ,Gw } , Qr2 = {Bw , Ew } , Qr3 = {Cw , Fw }

It can be noticed that sets Qs define a partition of Q (⋃s∈S Q
s = Q and [si , s j ∈ S, si , s j ⇒ Qsi ∩ Qsj = ∅). Sets

Qr also define a partition of Q.
Based on the assumption that visibility windows can be reduced to instantaneous downloads (download points),

optimizing a ground station network can be re-formulated as two interleaved selection problems. The first problem
corresponds to the selection of ground station locations and the second problem corresponds to the selection of
download points. The objective is to maximize the percent data transferred from the satellite to the Earth, and can
be computed using a set of recursive equations depending on the set of chosen download points that are given later
in this paper.

2.2 | The MaxPDT problem
The MaxPDT problem consists in selecting a subset R′ ⊆ R of locations and a subset Q′ ⊆ Q of download points, in
order to maximize the Percent Data Transferred (PDT) from the satellite to the Earth.

Definition Instance of the MaxPDT problem
An instance of the MaxPDT problem is a 5-tuple (K , B , R, S, Q) where K > 0 is the maximum cost allowed for

opening stations, B > 0 is the size of the satellite buffer, R (|R | = N) is the set of available locations, S (|S | = M) is
the set of slots and Q is the set of download points.

For each location r ∈ R, pr ≥ 0 is the price of opening a station at r and Qr ⊆ Q is the set of download points
associated with r .

For each slot s ∈ S, as ∈ [0,B] is the amount of data acquired at the beginning of s and Qs ⊆ Q is the set of
download points associated with s .

Mikaël Capelle et al. 7
For each download point w ∈ Q, τw ∈ R is the location of w , σw ∈ S is the slot of w , ρw ≥ 0 is the amount of

data that can be downloaded for w and γw ⊂ Q is the set of download points in conflict with w .

By construction, each download point w ∈ Q is associated to a single location and a single slot:
[s1, s2 ∈ S : Qs1 ∩ Qs2 = ∅

[r1, r2 ∈ R : Qr1 ∩ Qr2 = ∅

Definition Feasible solution for the MaxPDT problem
Given an instance (K , B , R, S, Q) of the MaxPDT problem, a feasible solution is a pair (R′, Q′) with R′ ⊆ R and

Q′ ⊆ Q such that:

∑
r ∈R′

pr ≤ K (2a)
Q′ ⊆

⋃
r ∈R′

Qr (2b)
[w ∈ Q′, γw ∩ Q

′ = ∅ (2c)

Equation (2a) indicates that the total costs of the chosen locations (opened stations) is lower than the maximum
K . Equation (2b) enforces that download points can only be used if their associated locations are chosen. Equation
(2c) indicates that if a download point w is chosen, none of the download points in conflict with w are selected.

Definition Data loss of a solution for the MaxPDT problem
Given a solution (R′, Q′) of the MaxPDT problem, the amount of data loss associated is the amount of data acquired

by the satellite that has not been successfully transferred to the Earth. Data loss occurs when there is not enough
space in the buffer to store the data acquired by the satellite at the beginning of a slot.

The following equations describe formally the computation of the amount of data loss. Given a set S of M slots,
a set of chosen download points Q′ and a buffer size B :

l osses(Q′, S, B) = bsM +
∑
s∈S

l s (3)

where l s is the amount of data loss during the slot s and bs the amount of data in the buffer at the end of the slot s . By
convention, bs0 is the amount of data at the beginning of the temporal horizon. We assume that the amount of data
in the buffer at the end of the temporal horizon, bsM , is lost. These can be computed using the following recursive
equations:

8 Mikaël Capelle et al.

bs0 = 0 (4a)
bsi = max(0,min(bsi−1 + asi ,B) − ∑

w∈Qsi ∩Q′

ρw), i ∈ {1, . . . , M } (4b)
l si = max(0, bsi−1 + asi − B), i ∈ {1, . . . , M } (4c)

At the beginning of the temporal horizon, the buffer is empty (4a). At the end of a slot s , the amount of data in
the buffer is the amount of data in the buffer at the end of the previous slot, to which we add the acquisition volume
of slot s and subtract the amount of data downloaded during the slot (4b). The amount of data loss during a slot s is
the amount of data acquired at the beginning of the slot as that did not fit in the buffer (4c).
Definition Percentage of Data Transferred (PDT) for a MaxPDT solution

Given a solution (R′, Q′) of the MaxPDT problem, the percentage of data transferred is the amount of data acquired
by the satellite during the time horizon that has been successfully downloaded:

pd t (Q′, S, B) = 1 −
l osses(Q′, S, B)∑

s∈S a
s

(5)

The objective of the MaxPDT problem is to find a feasible solution (R′, Q′) which maximizes the percent data
transferred, which is the same as minimizing the losses l osses(Q′, S, B).

2.2.1 | Mathematical model
To model the MaxPDT problem, we first consider two types of binary variables for the selection of stations and down-
load points. For each station r ∈ R, we define a binary variable yr = 1 if and only if the station r is chosen. For each
download point w ∈ Q, we define a binary variable xw = 1 if and only if the download point w is used to download
data.

Moreover, we introduce two real variables for each slot s ∈ S to model the amount of data in the buffer and the
amount of data loss (similar to the intermediate variables used in Definition 3): bs ∈ Ò+ represents the amount of
data in the buffer at the end of slot s and l s ∈ Ò+ represents the amount of data loss during slot s .

Using this set of variables and the parameters given in Definition 2.2 (summarized in Table 2), the mathematical
model for the MaxPDT problem can be formulated as follows:

min. ∑
s∈S

l s (6a)
s.t. xw ≤ yr , r ∈ R, w ∈ Qr (6b)

xw + xw ′ ≤ 1, w ∈ Q, w ′ ∈ γw (6c)
bsi + l si ≥ bsi−1 + asi −

∑
w∈Qsi

xw ρw , si ∈ S (6d)
0 ≤ bsi ≤ B − asi+1 , si ∈ S, i , M (6e)
bs0 = bsM = 0 (6f)

Mikaël Capelle et al. 9∑
r ∈R

pr yr ≤ K (6g)
xw ∈ {0, 1}, w ∈ Q (6h)
yr ∈ {0, 1}, r ∈ R (6i)
bs ≥ 0, l s ≥ 0, s ∈ S (6j)

Objective (6a) minimizes the amount of data loss. Constraints (6b) and (6c) prevent downloads on stations that are
not chosen (yr = 0) and on conflicting download points. Constraints (6d) and (6e) force the amount of data at the
end of a slot si to be consistent with the amount at the beginning of si and si+1, and to be less than the buffer size
B minus the acquisition of slot si+1 (i.e., at the end of slot si , there must be at least asi+1 free space in the buffer).
Constraint (6f) says that the initial amount of data in the buffer is 0 and forces the final amount of data in the buffer
to be 0. Constraint (6g) forces the total cost of the network to be less than the maximum cost allowed K . Constraints
(6h)–(6j) define the domain of the decision variables.

2.3 | The download point selection problem, MaxPDTL
The MaxPDT problem can grow very quickly in size, especially when we consider very large horizon (multiple decades).
In order to tackle it more efficiently, we chose to first focus on a subproblem: the selection of the download points.
The next section will be dedicated to the analysis of this problem, which we called MaxPDTL . We will first formally
define it from MaxPDT, and then provide some complexity results that can be extended to the MaxPDT problem.
Definition Instance of the MaxPDTL problem

An instance of the MaxPDTL problem is a triplet (B , S, Q) where B , S and Q have the same meaning as for the
MaxPDT problem (see Definition 2.2).

An instance of the MaxPDTL problem is an instance of the MaxPDT problem where the selection of locations has
been removed.
Definition Feasible solution for the MaxPDTL problem

Given an instance (B , S, Q) of the MaxPDTL problem, a feasible solution is a subset of download points Q′ ⊆ Q
(7a) such that no two download points are in conflict (7b).

Q′ ⊆ Q (7a)
[w ∈ Q′, γw ∩ Q

′ = ∅ (7b)
Definition Optimal solution for the MaxPDTL problem

Given an instance (B , S, Q) of the MaxPDTL problem, an optimal solution is a feasible solution with minimum
losses.

An optimal solution for MaxPDTL is similar to an optimal solution for MaxPDT. An optimal solution for the MaxPDT
problem can be found by solving a MaxPDTL problem for each feasible subset of locations, and then taking the best
solution found.

10 Mikaël Capelle et al.
2.3.1 | Mathematical model
The model for the MaxPDTL problem can be obtained by removing variables yr and constraints (6b) and (6g) from the
model of the MaxPDT problem (6).

Inputs of the problem
Tst ar t Start of the temporal horizon. Tend End of the temporal horizon.
R Set of possible locations. N Number of possible locations.
pr Cost of opening a station on location r . K Maximum allowed cost for the network of

stations.
B Size of the buffer.
S Set of slots. M Number of slots.
t s Start of slot s . as Amount of data acquired at the beginning of

slot s .
V Set of visibility windows. τv Location reachable during visibility window

v .
t st av Start of visibility window v . t endv End of visibility window v .
dv Data rate function (evolution) during visibil-

ity window v .
γv Set of visibility windows overlapping with

visibility window v .
fv→w Mapping function between visibility and

download points.
Q Set of download points.

Qs Set of download points associated with slot
s .

Qr Set of download points associated with loca-
tion r .

σw Slot of download point w . τw Location of download point w .
ρw Amount of data that can be downloaded us-

ing w .
γw Set of download points conflicting with w .

Decision variables
yr yr = 1 if and only if location r is chosen. xw xw = 1 if and only if download point w is

selected.
bs Amount of data in the buffer at the end of

slot s .
l s Amount of data lost during slot s .

TABLE 2 Summary of notations for the definition of the MaxPDT and MaxPDTL problems.

Mikaël Capelle et al. 11
2.4 | Complexity results
In this section, we give some complexity results for the MaxPDT and MaxPDTL problems. We then provide results
for special cases of instances of the MaxPDTL problem regarding the distribution of download points and conflicts
between them.
Proposition 1 The MaxPDTL problem is strongly NP-hard.

Proof Let us consider the decision variant of MaxPDTL : is it possible to find a solution Q′ such that l osses(Q′) ≤ φ,
φ being an arbitrary positive real value?

The proof is based on the reduction from the Weighted Independent Set problem (WIS), which is known to be
NP-complete in the strong sense. The weighted independent set problem consists, given a graph G = (V , E) and
weights u :V → Ú, in finding a subset S ⊆ V of vertices such that no two vertices in S are adjacent and such that the
sum of the weights of vertices in S is greater than an arbitrary positive value Φ.

Obviously, MaxPDTL is NP since, given a solution Q′, l osses(Q′) can be computed in linear time using the formula
given in (3).

From a WIS instance (G = (V , E),Φ), we build up an instance of MaxPDTL in the following way: the instance
contains a single slot s1 (S = {s1 }) with an associated acquisition volume as1 =

∑
v∈V uv and a set of download

points Q = Qs1 . The set Q contains a download point wv for each vertex v ∈ V with σwv = s1, ρwv = uv and γwv =
{wv ′ : (v ,v ′) ∈ E }, meaning that two download points are in conflict if their corresponding vertices are connected
in the graph G. The buffer size is B = as1 .

A feasible solution Q′ for this instance of MaxPDTL is obviously a feasible solution S for the WIS instance due to
the conflict constraints. Furthermore, finding a solution SΦ such that ∑

v∈SΦ
uv ≥ Φ is the same as finding a solution

Q′
φ
of the MaxPDTL instance, with φ = B − Φ such that l osses(Q′

φ
, {s1 }, B) ≤ φ = B − Φ since from (3):

l osses(Q′φ , {s1 }, B) = l
s1 + bs1

= max(0, bs0 + as1 − B) + bs1
= bs1

= max(0,min(bs0 + as1 ,B) − ∑
w∈Qs1∩Q′

ρw)

= max(0, as1 − ∑
w∈Q′

ρw)

= as1 −
∑
w∈Q′

ρw

=
∑
v∈V

uv −
∑
v∈Q′

uv = B − Φ

Corollary 2 The MaxPDT problem is strongly NP-hard.

Proof The MaxPDTL problem is a subproblem of the MaxPDT problem where stations have already been chosen. So it
is thus trivial to reduce MaxPDTL to MaxPDT, making MaxPDT strongly NP-hard.

12 Mikaël Capelle et al.
2.4.1 | Special cases
We propose here some complexity results for MaxPDTL regarding instances with special distributions of download
points and conflicts between download points.
Definition Wedefine the class of intra instances as the class of instances within which there are no conflicts between
download points that are not in the same slot, i.e., given an instance (B , S, Q) of the intra class:

[w ∈ Q : γw ⊂ Qσw

Definition We define the class of interval instances as the class of instances within which the set of conflicts repre-
sents intersection constraints between intervals, similar to interval or intersection graph.
Proposition 3 Solving instances of MaxPDTL that are in both the intra and the interval classes can be done in polynomial
time.

Proof Since there are no conflicts between download points not in the same slot, an optimal solution is a solution
where the amount of data downloaded within each slot is maximized. Within any slot s , selecting a subset of stations
maximizing the amount of data downloaded is the same as finding amaximum-weighted independent set in an interval
graph with |Qs | vertices (see the reduction above). This can be done in O(|Qs |) time [8] if the download points are
correctly sorted. Thus, finding the optimal solution can be done in O(∑s∈S |Q

s |) = O(|Q |) time if the download points
are correctly sorted. Since sorting all the download points can be done in O(|Q | . log |Q |) time, the final complexity
of the algorithm for instances in both the intra and the interval classes is O(|Q | . log |Q |).

It is worth noticing that instances of the MaxPDTL problem constructed from real scenarios fall within the interval
class. Some of these might correspond to intra instances — this will mostly depend on the chosen stations and orbit
of the satellite — but this will not be the general case.

3 | HIERARCHICAL APPROACH
In this section we will present hierarchical approaches to solve the MaxPDT problem based on a dynamic programming
algorithm for solving the MaxPDTL problem.

In real instances, the number N of possible locations for the stations is often very small (some tens) and the
temporal horizon is large (some years). We propose to separate the decision process into two cooperative algorithms:
a master algorithm that enumerates all possible subsets of stations R′, and a slave algorithm that solves an instance
of MaxPDTL build from each subset.

3.1 | Algorithms for the enumeration of networks of ground stations
Wepropose two algorithms to enumerate the feasible subsets of locations. The first one is an exhaustive enumeration
and the second algorithm is a branch-and-bound. Both of these algorithms use algorithm A to compute the maximum
PDT of the selected networks. Algorithm A solves a MaxPDTL instance and returns a list of selected download points
(Q′) together with the corresponding PDT. Such an algorithm is presented in Section 3.2. Table 3 gives a summary of
notations used in the proposed algorithms.

Mikaël Capelle et al. 13
In order to obtain an instance of MaxPDTL from an instance of MaxPDT for a subset of locations, we define the

following operation:

Definition Projection of a set S of slots on a set R′ of stations: S ↓ R′
We define the projection of a set S of slots on a set R′ of stations as an updated set SP = S ↓ R′ where

download points on stations not in R′ have been removed. Given two related slots s ∈ S and sP ∈ SP , the following
hold:

as
P
= as

Qs
P
= Qs ∩ QR′

where QR′ is the set of all download points on station in R′:

QR′ =
⋃
r ∈R′

Qr

The selection of feasible subsets of stations and the projection can be respectively seen as the enforcement of
constraints (6g) and (6b) of the original MILP.

3.1.1 | Exhaustive enumeration
The first algorithm EEpd t (A) is a simple exhaustive enumeration that tries every possible combinations of stations
and uses algorithm A to compute the PDT of these combinations. Algorithm 1 gives an overview of EEpd t (A):
Algorithm 1 Exhaustive enumeration algorithm
pd tmax ← 0, R∗ ← ∅, Q∗ ← ∅

for each R′ ⊆ R do
if ∑

r ∈R′ pr ≤ K then
SP ← S ↓ R

′

(pd t , Q′) ← A
(
B , SP ,

⋃
r ∈R′ Qr

)
if pd t > pd tmax then

pd tmax ← pd t

R∗ ← R′

Q∗ ← Q′

end if
end if

end for

14 Mikaël Capelle et al.
3.1.2 | Branch-and-bound algorithm
The second algorithm BBpd t (A) we propose is a binary branch-and-bound algorithm that uses A to compute upper
bounds on nodes and objective value of solutions.

In this algorithm, branching is done by imposing or forbidding the opening of a station at a possible location for
which no decision has been made yet. On any given node, we split the set of stations R into three disjoint subsets R+,
R− and R? corresponding respectively to chosen stations, not chosen ones and still undefined ones. To compute the
lower bound on a given node, we use algorithm A with a projection of the slots on R+ ∪ R? — Stations still undefined
are considered chosen since opening stations can only increase the objective value.

A leaf node is a node on which it is not possible to add any new stations to R+ without exceeding the maximum
allowed cost:

l eaf (R+, R−, R?) ⇔
(
[r ∈ R?, pr +

∑
r ′∈R+

pr ′ > K

)

While processing a node, we branch on the station providing the largest amount of download. Given a solution
Q′ obtained using A for a projection of the slots on R+ ∪ R?, we choose the station r next such that:

r next = argmax
r ∈R?

∑
w∈Qr ∩Q′

ρw

We initialize our search tree with a single node with R+ = R− = ∅ and R? = R. Nodes on the tree are processed
in increasing order of their lower bounds.

Exhaustive Enumeration EEpd t (A)
S ↓ R′ Projection of S on a set R′ of stations. pd tmax Current maximum PDT up to now.

R∗ Current best selection of stations. Q∗ Current best selection of download points.
Branch & Bound algorithm BBpd t (A)

R+ Set of already chosen stations. R− Set of already discarded stations.
R? Set of yet undecided stations.

TABLE 3 Summary of notations used in EEpd t (A) and BBpd t (A). Here A is the algorithm used to solve the
MaxPDTL problem for a selected set of locations.

3.2 | Dynamic programming algorithm definition to solve MaxPDTL
In the following, we present a dynamic programming algorithm, DP

pd tL
that can be used to solve MaxPDTL for any

class of instances. This algorithm can be used within the methods presented in Section 3.1.
TheDP

pd tL
algorithmmanages a setH of labels, where each label h is a tuple (bh , lh , Γh , Wh)with bh the current

amount of data in the buffer, lh the accumulated amount of data loss, Γh the set of conflicting download points (i.e.,
the set of download points that cannot extend this label) andWh the list of used download points.

The algorithm proceeds with the following steps:

Mikaël Capelle et al. 15
1. a label h0 = (0, 0, ∅, ∅) is created and added to the initially empty set of labels H;
2. the slots in S are processed in increasing starting time order. For each slot s ∈ S, the following actions are

performed:
a. all existing labels are updated to take into account the amount of data acquired at the beginning of s ;
b. for each download point w ∈ Qs and for each existing label h ∈ H, a new label h′ is created if the download

point is not in conflict with the label h (w < Γh);
3. labels in H are updated to take into account constraint (6f) (the data in the buffer at the end of the temporal

horizon is lost) and the label with the minimum amount of data loss at the end is chosen.

Algorithm 2 shows a formal description of the algorithm.

3.2.1 | Dominance rule to prune labels
In order to prevent the set of labels H from growing too large, we need to remove labels that cannot lead to optimal
solutions by means of a dominance rule between two labels.

Definition We say that a label h1 dominates a label h2 if h1 , h2 and:

Γ+
h1
= Γ+

h2
and

©«
bh1 < bh2 ∧ lh1 ≤ lh2

or bh1 = bh2 ∧ lh1 < lh2

or bh1 = bh2 ∧ lh1 = lh2 ∧ Wh1 ≺Wh2

ª®®®®¬
(8a)
(8b)
(8c)

where Γ+
h
is a subset of Γh containing only download points that have not yet been processed. This is due to the fact

that labels can be compared only if they have the same sets of conflicts in the future.
Conditions (8a) and (8b) compare labels according to the amount of data loss (current objective value) and amount

of data in the buffer. If there are less data loss and less data in the buffer in h1 than in h2, the solution for h1 is better
than the one for h2. Since Γ+h1 = Γ+h2 , any choice possible for extending h2 is also possible for h1, thus h1 dominates h2.
In fact, the only constraints for extension come from conflicting download points, so if h1 is better than h2, there will
be at least one solution made from extending h1 that will be better than any solution created by extending h2.

Condition (8c) is only used to avoid having solutions with identical objective values: two solutions may have the
same amount of data loss and amount of data in the buffer, keeping both of them would be inefficient, so we remove
the one with the worst set of used download points (≺ must be a strict total order).

Pruning of labels is done within step 2.2, at the beginning of the outer for loop (between line 7 and 8). This
dominance rule guarantees that no label than can lead to an optimal solution will be pruned, insuring optimality of
the algorithm. Furthermore, it guarantees that if all labels h ∈ H have an empty set of conflicts (Γh = ∅) and an empty
buffer bh = 0, they can be compared using (8b)–(8c) and a single one dominates all the other. This insures that at the
end of the algorithm, a single label will remain.

We call the combinations of the DP
pd tL

with the above defined dominance rule DP +
pd tL

.

16 Mikaël Capelle et al.
Algorithm 2 Dynamic programming algorithm DP

pd tL

1: H ← {(0, 0, ∅, ∅)} . step 1
2: for each s ∈ S do . step 2
3: for each h ∈ H do . step 2.1
4: bh ← min(bh + as , B)
5: lh ← lh +max(0, bh + as − B)
6: end for
7: for each w ∈ Qs do . step 2.2
8: H+ ← ∅

9: for each h ∈ H do
10: if w < Γh then
11: h′ ← (max(0, bh − ρw), lh , Wh ∪ {w } , Γh ∪ γw)

12: H+ ← H+ ∪ {h′ }

13: end if
14: end for
15: H ← H ∪ H+

16: end for
17: end for
18: for each h ∈ H do . step 3
19: lh ← lh + bh

20: bh ← 0

21: end for

3.3 | Example of execution of the DP +pd tL algorithm
In this section, we will carry out an example of DP +

pd tL
on the instance presented in Section 2.1. We assume here

that the three stations have been selected and that the buffer size is 1000. At each step of the algorithm, we display
the current list of labels H in a table.

3.3.1 | Step 1
We start by initializing H with the initial label:

bh lh Wh Γh

h1 0 0 ∅ ∅

3.3.2 | Step 2
We start processing the first slot s1 (as1 = 700) by updating all labels inside H according to step 2.1:

bh lh Wh Γh

h1 700 0 ∅ ∅

Mikaël Capelle et al. 17
We process the first download point Aw (ρAw = 100 and γAw = {Bw }). This creates a new label h2 by extending h1:

bh lh Wh Γh

h1 700 0 ∅ ∅

h2 600 0 {Aw } {Bw }

We process the second download point Bw (ρBw = 140 and γBw = {Aw }). Since Γh2 contains Bw , we can only extend
h1 and create a new label h3:

bh lh Wh Γh

h1 700 0 ∅ ∅

h2 600 0 {Aw } {Bw }

h3 560 0 {Bw } {Aw }

We start processing the second slot s2 (as2 = 400) and update all labels inside H. Since the buffer size is limited to
1000, some data are lost when updating h1 (bh1 + as2 = 700 + 400 > 1000):

bh lh Wh Γh

h1 1000 100 ∅ ∅

h2 1000 0 {Aw } {Bw }

h3 960 0 {Bw } {Aw }

Before processing the third download point, we apply our dominance rule (at the beginning of step 2.2). Since Aw and
Bw have already been processed, we have Γ+

h1
= Γ+

h2
= Γ+

h3
. We can see that h3 dominates h1 and h2 due respectively

to equations (8b) and (8a).
bh lh Wh Γ+

h

h3 960 0 {Bw } ∅

If we continue the process (considering download points Cw , Dw , Ew , Fw and Gw), we obtain the following set of
labels before step 3:

bh lh Wh Γ+
h

h7 1000 200 {Bw ,Cw ,Dw , Fw } ∅

h8 940 200 {Bw ,Cw ,Dw , Fw ,Gw } ∅

3.3.3 | Step 3
Labels are updated at the end of the algorithm to remove data in the buffer (at the end of the time horizon, the buffer
must be empty, i.e., bh = 0, [h):

18 Mikaël Capelle et al.

bh lh Wh Γ+
h

h7 0 1200 {Bw ,Cw ,Dw , Fw } ∅

h8 0 1140 {Bw ,Cw ,Dw , Fw ,Gw } ∅

And finally, h8 dominates h7, thus the optimal solution is:
Q∗ = {Bw ,Cw ,Dw , Fw ,Gw }

3.4 | Complexity of the DP +pd tL algorithm for special classes of instances
Proposition 4 The DP +

pd tL
algorithm is a fixed-parameter tractable (FPT) algorithm, for instances of the intra class, consid-

ering the maximum number of download points inside a slot as a parameter of the problem.

Proof At the beginning of the algorithm, the set H contains a single label. We will show that, for instances of the
intra class, if there is a single label in H at the beginning of the processing of a slot s , then a single label will remain in
H at the end of the processing of s (due to the dominance rule).

Assume there is a single label h = (bh , lh , Γh , Wh) in H at the beginning of the processing of a slot s : first, bh
and lh are updated (no new labels are created), then the download points inside s are processed and new labels are
created. All these labels have the same updated value of lh (see algorithm 2).

At the end of the processing of the last download point inside s , the pruning happens. Since there cannot be
conflict between download points not in the same slot, all labels will have the same reduced set of conflicts Γ+ = ∅.
Since all labels have the same amount of losses lh , a single label in H dominates all the others, thus this label will be
the single one remaining in H at the end of the processing of s . For any slot s , the processing of the download points
inside Qs is done in O(2 |Qs |) time, thus the complexity of the DP +

pd tL
algorithm for instances of the intra class is:

O(|S | .2αmax)

where:
αmax = max

s∈S

��Qs ��

4 | COMPUTATIONAL RESULTS
In this section, we present some computational results obtained by solving randomly generated instances for the
MaxPDTL problem and realistic instances for the MaxPDT problem.

Mikaël Capelle et al. 19
4.1 | Computation results for the MaxPDTL problem
4.1.1 | Instances
We generated random instances for the MaxPDTL problem, grouped into 3 categories depending on their conflicts:

• Int: Conflicts can only occur within a slot.
• Adj: Conflicts can only occur between successive download points.
• All: Conflicts are not constrained.

For each category, instances were generated using a given number of slots, a random number (within a given
range) of download points per slot, a fixed buffer size, a probability of conflict between download points, and randomly
generated acquisition and download volumes. Instances of type All are much harder to solve than instances of type Int
or Adj (see Table 4), which is why the parameters used to generate these instances are different from the parameters
used for the Int and Adj types:

• for instances of types Int and Adj, the following parameters were used:
– number of slots per instance: 100, 500, 1000, 2000, 3000, 4000, 5000
– number of download points per slot (minimum / maximum): 0/5, 5/10, 10/20, 20/40

• for instances of type All, the following parameters were used:
– number of slots per instance: 10, 50, 100, 200, 300, . . . , 900, 1000
– number of download points per slot (minimum / maximum): 0/5, 5/10, 10/20

For each combination of parameters, four probabilities of conflict were used: 0.2, 0.4, 0.6, 0.8, and four different
buffer sizes (see below).

Download volumes of download points were uniformly distributed between 100 and 200 gigabits for all instances.
The acquisition volumes were uniformly distributed between 150 ∗M and 250 ∗M where M is the maximum possible
number of download points per slot. The buffer sizes used were multiples of the average acquisition volumes â =
200 ∗M : B = â, 2â, 4â, 8â .

These parameters have been chosen to test the performance of DP +
pd tL

compared to the MILP model and are
unlikely to appear in real instances of the MaxPDT problem. Although the number of slots is somehow realistic (slots
are typically one hour long, so 5000 slots represent a bit more than 6 months), it is unlikely to encounter that many
download points per slot or that much conflicts in real applications.

For each combination of these parameters (category, number of slots, number of download points per slot, prob-
ability of conflict and buffer size), 4 instances were generated, for a total of 5888 instances.

4.1.2 | Computational context
The DP +

pd tL
and the mathematical model for the MaxPDTL problem were both implemented in C++. TheMILP model

was solved using CPLEX 12.7. All experiments were run using a single thread on a cluster with 2.3 GHz processor and
6 gigabytes of RAM per thread. A time limit of one hour was used.

20 Mikaël Capelle et al.
4.1.3 | Results
Table 4 shows, for both methods, the number of instances where the method found the optimal solution, or a feasi-
ble solution, or failed to provide a solution. Both methods have no problem with instances of the Adj category. The
DP +

pd tL
algorithm manages to solve all instances of the Int category, even those with up to 40 download points per

slot, while theMILP fails to solve some of these. For instances of the All category, while theMILP provide solutions
(even if non-optimal) for about 80% of the instances, DP +

pd tL
only manages to provide solutions for about 18% of the

instances, and even if the number of instances solved optimally is slightly larger for DP +
pd tL

, some instances solved
to optimality by the MILP are not solved up to optimality by DP +

pd tL
. Since it is trivial to find a feasible solution for

any kind of instances (select no stations), instances for which the methods did not manage to provide solutions are
instances for which the system ran out of memory and killed the program.

In the following, we look in detail at the performance of both methods when solving instances of the Adj and Int
categories, and give some information regarding the performance of the methods for the All category.

Solver Category # Instances # Optimal # Non optimal # Not found
DP +

pd tL
Adj 1792 1792 0 0

DP +
pd tL

All 2304 369 48 1887
DP +

pd tL
Int 1792 1792 0 0

MILP Adj 1792 1792 0 0
MILP All 2304 336 1496 472
MILP Int 1792 1587 165 40

TABLE 4 Comparison of the number of instances solved by DP +
pd tL

and the MILP , for each category of
instances. The third column indicates the number of instances tested per category, and the three right-most
columns indicate respectively the number of instances for which no solutions were found (time or memory limit
reached), a feasible solution was found, or an optimal solution was found.

Figures 2 and 3 show computation times of CPLEX andDP +
pd tL

for instances of the Adj and Int classes. Each curve
shows data averaged over the four instances of each group (same set of parameters) and over the various buffer sizes
used, since we noticed that the buffer size had little influence on the computational time of the algorithms. Instances
of the Int class for which the MILP did not find a solution (or did not find the optimal one) are included in these
graphs with a computation time of 3600 seconds (the time limit used) so that each pair of plots correspond to the
same set of instances. We can see that for these two classes of instances, DP +

pd tL
is orders of magnitude faster than

the MILP solver.
For instances of the Adj category, Figures 2(a)–2(d) show a near-linear behavior for DP +

pd tL
regarding the number

of slots and the number of download points per slot, but a slightly exponential behavior for the MILP . Furthermore,
DP +

pd tL
seems to be less impacted by minor changes in the input instances than theMILP model. For both methods,

the number of conflicts (percentage of overlaps) has little impact on the computation times, which is why results are
only provided for 40% and 80% probability of conflicts.

For instances of the Int category, we can see on Figures 3(a), 3(c) and 3(e), that the computation time of DP +
pd tL

Mikaël Capelle et al. 21

0 1,000 2,000 3,000 4,000 5,000

0

0.1

0.2

0.3

Number of slots

C
om

p
u
ta
ti
o
n
ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(a) DP +
pd tL

, 40% overlaps

0 1,000 2,000 3,000 4,000 5,000

0

10

20

Number of slots

C
om

p
u
ta
ti
o
n
ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(b) MILP , 40% overlaps

0 1,000 2,000 3,000 4,000 5,000

0

0.1

0.2

0.3

0.4

Number of slots

C
om

p
u
ta
ti
on

ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(c) DP +
pd tL

, 80% overlaps

0 1,000 2,000 3,000 4,000 5,000

0

10

20

30

Number of slots

C
om

p
u
ta
ti
on

ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(d) MILP , 80% overlaps
F IGURE 2 Computation time for instances of the Adj category using DP +

pd tL
or the MILP .

seems to stabilize as the number of slots becomes larger. This behavior is explained by the FPT behavior of DP +
pd tLon instances of the Int category — the fixed parameter is the maximum number of download points per slot, which is

constant for each curve in these figures. These plots also show that DP +
pd tL

is more efficient at solving instances with
a large number of overlaps. It can easily be explained by the fact that if a label is in conflict with a download point, the
label is not duplicated. Thus, the more conflicts there are, the less label duplications occur. Figures 3(b), 3(d) and 3(f)
show a still visible but weaker behavior regarding the number of conflicts for the MILP solver.

Table 5 shows the number of instances from the All category solved (to optimality or not). Similar to instances of
the Adj and Int categories, this shows that DP +

pd tL
is able to solve more instances when the percentage of conflicts

is high. The MILP seems to have issue solving instances with a large number of conflicts — while the number of
instances solved to optimality is slightly higher for instances with a large number of conflicts, the number of instances
without a solution is also higher.

22 Mikaël Capelle et al.

0 1,000 2,000 3,000 4,000 5,000

10−3

10−2

10−1

100

101

102

Number of slots

C
om

p
u
ta
ti
o
n
ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(a) DP +
pd tL

, 20% overlaps

0 1,000 2,000 3,000 4,000 5,000

10−3

10−2

10−1

100

101

102

103

104

Number of slots

C
om

p
u
ta
ti
o
n
ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(b) MILP , 20% overlaps

0 1,000 2,000 3,000 4,000 5,000

10−3

10−2

10−1

100

101

Number of slots

C
om

p
u
ta
ti
on

ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(c) DP +
pd tL

, 40% overlaps

0 1,000 2,000 3,000 4,000 5,000
10−3

10−2

10−1

100

101

102

103

104

Number of slots

C
om

p
u
ta
ti
on

ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(d) MILP , 40% overlaps

0 1,000 2,000 3,000 4,000 5,000

10−3

10−2

10−1

100

101

Number of slots

C
om

p
u
ta
ti
on

ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(e) DP +
pd tL

, 80% overlaps

0 1,000 2,000 3,000 4,000 5,000

10−2

10−1

100

101

102

103

104

Number of slots

C
om

p
u
ta
ti
on

ti
m
e
[s
]

0-5 down. points
5-10 down. points
10-20 down. points
20-40 down. points

(f) MILP , 80% overlaps
F IGURE 3 Computation time for instances of the Int category using DP +

pd tL
or the MILP .

Mikaël Capelle et al. 23
DP +

pd tL
MILP

Conflict Optimal Non optimal Not found Optimal Non optimal Not found
20% 32 0 544 64 459 53
40% 65 0 511 80 395 101
60% 96 1 479 86 346 144
80% 176 47 353 106 296 174

TABLE 5 Comparison of the number of instances of the All category solved by DP +
pd tL

and the MILP for
different probabilities of conflicts. For each probability, 576 instances were tested, and the columns respectively
represent the number of instances for which no solutions were found (time or memory limit reached), a feasible
solution was found, or an optimal solution was found.

These experiments show that DP +
pd tL

is much faster at solving instances of MaxPDTL than theMILP model, even
if both methods fail to solve complex instances of MaxPDTL where there are a large number of conflicts and slots, and
where conflicts are not confined.

4.2 | Computation results for the MaxPDT problem
4.2.1 | Instances
We generated custom instances for a low-earth orbiting satellite using concepts of operations from [9, 7, 10]: data
rate (before cloud impact) DR = 10.5 Gbps, buffer size B = 2300 gigabits, an acquisition (slot) every hour and a
constant acquisition volume of as = 500 gigabits. Visibility windows were computed using the Systems Tool Kit (AGI,
STK) software, for a sun-synchronous low-earth orbiting satellite with an altitude of 700 kilometers and a local time of
10:30 A.M, between 1990 and 2010. We used the ERA Interim cloud database [2] (freely available) to approximate the
cloud cover cv ∈ [0, 1] during any visibility window v , using cloud data from the previous decades (between 1990 and
2010). Based on these approximated cloud covers, we assumed that the data rate function dv of a visibility window v
was constant during the visibility window but proportional to the cloud cover cv over the station τv at the beginning
of the visibility window:

dv (t) = DR ∗ (1 − cv), [t ∈
[
t st av , t

end
v

]
The download volume ρw of a download point w associated to a visibility window v can thus be computed as:

ρw =

∫ t endv

t st av

DR (1 − cv)d t = DR (1 − cv)(t
end
v − t st av)

We discarded download points that were too small (ρw < 1 gigabits). We used two different networks composed of
11 (N11) and 16 (N16) possible locations and since we could not find realistic information for the costs of the different
locations, we choose to simply select fixed numbers K of stations (between 1 and 16). We generated instances of
various durations of 1, 2, 4, 5, 10 and 20 years. All instances were generated using the same 20 year horizon, meaning
that there are respectively 20, 10, 5, 4, 2, 1 instances of each duration.

24 Mikaël Capelle et al.
4.2.2 | Computational context
TheMILP model and both the EEpd t (A) and the BBpd t (A) algorithms were implemented in C++. TheMILP solver
used was CPLEX 12.7. All experiments were run using 1 and 8 threads on a cluster with 2.3 GHz processor and 3.5
gigabytes of RAM per thread. For both networks, we looked for networks of K = 1, . . . ,N stations (with N = 11 or
16 depending on the network), for a total of 1134 instances that were run using the 3 algorithms with both 1 and 8
threads (6804 runs).

4.2.3 | Results
Figure 4 shows the computation times (means and standard deviations) for theMILP solver and both EEpd t (DP +pd tL)and BBpd t (DP +pd tL) regarding the temporal length of the instances for various choices of K (number of chosen sta-
tions). Figures 4(a)–4(b) show that theMILP solver either does not succeed to provide a solution, or does not manage
to prove optimality (the time limit of 7200 seconds is reached) for some instances with a large horizon (20 years for
N11 and 10 or 20 years for N16). These figures also show an exponential behavior regarding both the length and the
number of stations chosen in the instances for the MILP model. Figures 4(c)–4(f) show that both our enumeration
methods have a near-linear behavior regarding the length of the instances. This can be explained by the FPT behavior
of the DP +

pd tL
on instances with no conflict between slots — in real instances, there are few conflicts between slots

and the number of download points per slot does not depend on the length of the instance. Figure 4 shows that
our BBpd t (DP +pd tL) combination is faster than our EEpd t (DP +pd tL) combination for the generated instances, and that
both combinations outperform the MILP solver. Moreover, the standard deviations of the computation time for our
hierarchical approaches are lower than the standard deviations for the MILP solver, meaning that our methods are
not really impacted by slight differences in the input instances.

Figure 5 shows the computation times (averages and standard deviations) for the MILP solver and both algo-
rithms regarding the number of stations chosen for various temporal lengths of the instances (1 and 2 years were very
similar, like 4 and 5 years). These plots present similar information as Figure 4 but in a different way. Figures 5(c)–5(d)
show an exponential behavior for the exhaustive enumeration EEpd t (DP +pd tL). As expected, instances where the
number of chosen stations is close to half the number of available stations are the hardest to solve. While Figure 5(f)
depicts the same exponential behavior for the BBpd t (DP +pd tL) algorithm, Figure 5(e) shows a more chaotic behavior
for N11. This behavior can be explained by the low solution times — such small solution times can depict strange be-
havior with amulti-threaded algorithm. Figure 6 shows that the exponential behavior of the BBpd t (DP +pd tL) algorithmusing one thread is similar to the behavior of the MILP solver using 8 threads, enforcing this hypothesis.

Figures 5(a)–5(b) also show an exponential behavior for the MILP solver but slightly shifted to the left — the
hardest instances seem to be those where the number of chosen stations is slightly less than half the number of avail-
able locations.

Table 6 shows the computation time difference when using either 1 or 8 threads for the MILP solver and both
algorithms, averaged for instances with a temporal length of 5 years.

For complex instances (when K is close to half the number of available stations), the EEpd t (DP +pd tL) clearlytakes advantage of the 8 threads, while the BBpd t (DP +pd tL) only has a ratio close to 8 for the hardest instances.
When the instances are simpler to solve, the BBpd t (DP +pd tL) fails to take advantage of the threads compared to the
EEpd t (DP

+
pd tL
).

Mikaël Capelle et al. 25

0 5 10 15 20

0

2,000

4,000

6,000

Number of years

C
om

p
u
ta
ti
o
n
ti
m
e
[s
]

2 stations
4 stations
5 stations
6 stations
8 stations
10 stations

(a) MILP , N11

0 5 10 15 20

0

2,000

4,000

6,000

8,000

Number of years

C
om

p
u
ta
ti
o
n
ti
m
e
[s
]

4 stations
6 stations
7 stations
8 stations
9 stations
12 stations

(b) MILP , N16

0 5 10 15 20

0

5

10

15

Number of years

C
om

p
u
ta
ti
on

ti
m
e
[s
]

2 stations
4 stations
5 stations
6 stations
8 stations
10 stations

(c) EEpd t (DP +pd tL), N11

0 5 10 15 20

0

100

200

300

400

Number of years

C
om

p
u
ta
ti
on

ti
m
e
[s
]

4 stations
6 stations
7 stations
8 stations
9 stations
12 stations

(d) EEpd t (DP +pd tL), N16

0 5 10 15 20

0

2

4

6

Number of years

C
om

p
u
ta
ti
on

ti
m
e
[s
]

2 stations
4 stations
5 stations
6 stations
8 stations
10 stations

(e) BBpd t (DP +pd tL), N11

0 5 10 15 20

0

50

100

150

Number of years

C
om

p
u
ta
ti
on

ti
m
e
[s
]

4 stations
6 stations
7 stations
8 stations
9 stations
12 stations

(f) BBpd t (DP +pd tL), N16
F IGURE 4 Computation times for each methods using 8 threads, depending on the temporal horizon length.

26 Mikaël Capelle et al.

0 2 4 6 8 10 12

0

2,000

4,000

6,000

Number of chosen stations

C
o
m
p
u
ta
ti
on

ti
m
e
[s
]

1 year
4 years
10 years
20 years

(a) MILP , N11

0 5 10 15

0

2,000

4,000

6,000

8,000

Number of chosen stations

C
om

p
u
ta
ti
on

ti
m
e
[s
]

1 year
4 years
10 years
20 years

(b) MILP , N16

0 2 4 6 8 10 12

0

5

10

15

Number of chosen stations

C
om

p
u
ta
ti
on

ti
m
e
[s
]

1 year
4 years
10 years
20 years

(c) EEpd t (DP +pd tL), N11

0 5 10 15

0

100

200

300

400

Number of chosen stations

C
om

p
u
ta
ti
on

ti
m
e
[s
]

1 year
4 years
10 years
20 years

(d) EEpd t (DP +pd tL), N16

0 2 4 6 8 10 12

0

2

4

6

Number of chosen stations

C
om

p
u
ta
ti
on

ti
m
e
[s
]

1 year
4 years
10 years
20 years

(e) BBpd t (DP +pd tL), N11

0 5 10 15

0

50

100

150

Number of chosen stations

C
om

p
u
ta
ti
on

ti
m
e
[s
]

1 year
4 years
10 years
20 years

(f) BBpd t (DP +pd tL), N16
F IGURE 5 Computation times for each methods using 8 threads, depending on the number of chosen stations.

Mikaël Capelle et al. 27

0 2 4 6 8 10 12

0

10

20

30

Number of chosen stations

C
om

p
u
ta
ti
o
n
ti
m
e
[s
]

1 year
4 years
10 years
20 years

F IGURE 6 Computation time for the BBpd t (DP +pd tL) algorithm using 1 thread for N11.

This behavior is easily explained by the complexity of multi-threading a branch-and-bound compared to an ex-
haustive enumeration — in both enumerations, each run of DP +

pd tL
is done on a separate thread, so 8 instances of

MaxPDTL can be solved simultaneously, but the synchronization process is more complex for BBpd t (DP +pd tL) than for
EEpd t (DP

+
pd tL
). While the MILP solver is also faster when using 8 threads, the ratio is not close to the expected

value of 8, meaning the relative gap between theMILP solver and our enumerations is greater when using 8 threads.
These results show that solving realistic instances of MaxPDT by combining an enumeration method and DP +

pd tLis much faster than using the MILP model. Experiments also show that the branch-and-bound enumeration is often
faster than the complete enumeration, even if it takes less advantage of multi-threading.

BBpd t (DP
+
pd tL
) EEpd t (DP

+
pd tL
) MILP

K 1 th. 8 th. ratio 1 th. 8 th. ratio 1 th. 8 th. ratio
N11 2 3.16 1.06 2.98 1.49 0.39 3.85 2135.00 200.56 10.65
N11 4 6.11 1.47 4.16 14.64 2.15 6.81 1871.52 453.79 4.12
N11 5 4.19 1.17 3.58 24.78 3.16 7.84 932.53 206.17 4.52
N11 6 2.03 0.77 2.65 28.71 3.30 8.70 291.33 118.65 2.46
N11 8 1.23 0.59 2.08 10.26 1.72 5.96 64.77 62.29 1.04
N11 10 1.16 0.70 1.65 0.89 0.31 2.84 28.12 23.66 1.19
N16 4 64.51 9.48 6.81 62.17 10.04 6.19 5593.90 1421.25 3.94
N16 6 187.33 28.92 6.48 373.87 55.66 6.72 4802.77 1392.55 3.45
N16 7 274.81 34.46 7.98 709.01 80.08 8.85 3521.69 1271.03 2.77
N16 8 226.76 33.60 6.75 636.93 98.31 6.48 2157.92 568.72 3.79
N16 9 144.35 23.92 6.03 843.58 85.47 9.87 1491.61 486.14 3.07
N16 12 7.72 1.73 4.47 108.35 16.25 6.67 328.47 108.56 3.03

TABLE 6 Comparison of solution time between BBpd t (DP +pd tL), EEpd t (DP +pd tL) and the MILP for instances
with a temporal horizon of 5 years, on N11 and N16, for various number of selected stations K . For each method, the
first two columns represent the averaged solving time (in seconds) when using respectively 1 or 8 threads, while the
third one shows the improvement ratio when using 8 threads compared to 1 thread.

28 Mikaël Capelle et al.
5 | CONCLUSIONS
In this paper, we consider the problem MaxPDT of finding a network of ground stations maximizing the amount of data
transferred from a low-earth satellite satellite to the Earth using optical communications. Wemodel this problem using
an aggregation of visibilitywindows into download pointwhich allows anymodel to be used for the computation of the
data rate during communications. We analyze the MaxPDTL problem within the MaxPDT problem and give complexity
results regarding its general form. We propose mixed-integer linear programs for both MaxPDT and MaxPDTL . To solve
MaxPDTL , we propose a dynamic programming algorithm DP +

pd tL
that exhibits an FPT behavior for realistic instances.

We combine this algorithm with two enumeration methods, EEpd t (DP +pd tL) and BBpd t (DP +pd tL), in order to solve
the MaxPDT. We showed that for realistic instances, both enumerations methods outperform the MILP solver.

Additional research efforts are needed for investigating the complexity of the MaxPDTL and MaxPDT problems for
real instances where conflicts within visibility windows can be represented as an intersection graphwith possible over-
laps between slots. A more sophisticated way of taking overlaps between visibility windows into account could also
be considered. While we consider that two overlapping visibility windows are in total conflict, it could be interesting
to split these into sub-windows to allow partial usage of both conflicting visibility windows. Finally, a version of the
MaxPDT problem on a rolling horizon could be considered, such as the minimization of the maximum amount of data
loss over each month.

references
[1] E. Chen, H. Mei, C. Zhang, and C. Chang, The link availability analysis of GEO satellite-to-ground laser communication,

Proceedings SPIE 9619, 2015 International Conference onOptical Instruments and Technology: Optoelectronic Devices
and Optical Signal Processing, August 2015.

[2] D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer,
P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haim-
berger, S.B. Healy, H. Hersbach, E.V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A.P. McNally, B.M. Monge-
Sanz, J.J. Morcrette, B.K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.N. Thépaut, and F. Vitart, The ERA-Interim reanalysis:
Configuration and performance of the data assimilation system, Q. J. Royal Meteorological Soc. 137 (2011), 553–597.

[3] B. Eilertsten and P. Hyvönen, Ground station networks vs. geo relay satellites for polar orbiting satellites data download,
Proceedings of the 12th International Conference on Space Operations (SpaceOps), 2012.

[4] C. Fuchs and F. Moll, Ground station network optimization for space-to-ground optical communication links, IEEE/OSA J.
Optical Commun. Networking 7 (December 2015), 1148–1159.

[5] D. Giggenbach, E. Lutz, J. Poliak, R. Maa-Calvo, and C. Fuchs, A high-throughput satellite system for serving whole Eu-
rope with fast internet service, employing optical feeder links, Proceedings of Broadband Coverage in Germany, 9th ITG
Symposium, April 2015.

[6] A. Guérin, F. Lacoste, A. Laurens, J. Berthon, C. Periard, and D. Grimal, Optimisation of an optical ground station network,
Proceedings of the 5th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applica-
tions (TTC, ESA-ESTEC), 2010.

[7] A. Guérin, G. Lesthievent, and J.L. Issler, Evaluation of new technological concepts for high data rate payload telemetry, Pro-
ceedings of the 5th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications
(TTC, ESA-ESTEC), 2010.

[8] J.Y. Hsiao, C.Y. Tang, and R.S. Chang, An efficient algorithm for finding a maximum weight 2-independent set on interval
graphs, Informat. Process. Lett. 43 (Oct. 1992), 229–235.

Mikaël Capelle et al. 29
[9] IOAG, Optical link study group final report, Tech. report IOAG.T.OLSG.2012.V1, Interagency Operations Advisory Group

(IOAG), Optical Link Study Group (OLSG), June 2012.
[10] F. Lacoste, A. Guérin, A. Laurens, G. Azema, C. Periard, and D. Grimal, FSO ground network optimization and analysis

considering the influence of clouds, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP),
2011.

[11] A. Le Kernec, M. Sotom, B. Bénazet, J.B. Gonzalez, L.P. Quesada, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas,
Space evaluation of optical modulators for microwave photonic on-board applications, Proceedings of the 8th International
Conference on Space Optics (ICSO), October 2010.

[12] R. Link, M.E. Craddock, and R.J. Alliss,Mitigating the impact of clouds on optical communications, Proceedings of the 2005
IEEE Aerospace Conference, March 2005.

[13] H. Porte, A. Le Kernec, L.P. Quesada, I. Esquivias, H. Brahimi, J.B. Gonzalez, A. Mottet, and M. Sotom, Optimization and
evaluation in space conditions of multi-GHz optical modulators, Proceedings of the 10th International Conference on Space
Optics (ICSO), October 2014.

[14] S. Poulenard, M. Crosnier, and A. Rissons, Ground segment design for broadband geostationary satellite with optical feeder
link, IEEE/OSA J. Optical Commun. Networking 7 (April 2015), 325–336.

[15] S. Poulenard, M. Ruellan, B. Roy, J. Riedi, F. Parol, and A. Rissons, High altitude clouds impacts on the design of optical
feeder link and optical ground station network for future broadband satellite services, Procceedings SPIE 8971, Free-Space
Laser Communications and Atmospheric Propagation XXVI, March 2014.

[16] B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A.L. Kernec, and M. Sotom, Optical feeder links for high
throughput satellites, Proceedings of the IEEE International Conference on Space Optical Systems and Applications (IC-
SOS), October 2015, pp. 1–6.

[17] K.J. Schulz and J. Rush, Results of the optical link study group, Proceedings of the 12th International Conference on Space
Operations (SpaceOps), 2012.

[18] Z. Sodnik, J.P. Armengola, R.H. Czichyb, and R. Meyerc, Adaptive optics and ESA’s optical ground station, Proceedings SPIE
7464, Free-Space Laser Communications IX, August 2009.

[19] Z. Sodnik and M. Sans, Extending EDRS to laser communication from space to ground, Proceedings of the International
Conference on Space Optical Systems and Applications (ICSOS), October 2012.

[20] Y. Takayama, M. Toyoshima, and N. Kura, Estimation of accessible probability in a low-earth orbit satellite to ground laser
communications, Radioengineering 19 (June 2010), 249–253.

[21] G.S. Wojcik, H.L. Szymczak, R.J. Alliss, and R.P. Link, Deep-space to ground laser communications in a cloudy world, Pro-
ceedings SPIE 5892, Free-Space Laser Communications V, August 2005.

