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VOLUME OF SUB-LEVEL SETS OF HOMOGENEOUS

POLYNOMIALS

JEAN B. LASSERRE

Abstract. Consider the sub level set K := {x : g(x) ≤ 1} where g is a
positive and homogeneous polynomial. We show that its Lebesgue volume

can be approximated as closely as desired by solving a sequence of generalized
eigenvalue problems with respect to a pair of Hankel matrices of increasing
size, and whose entries are obtained in closed form.

1. Introduction

Let K ⊂ R
n be the sublevel set defined by:

(1.1) K := {x ∈ R
n : g(x) ≤ 1 }.

where g ∈ R[x]t is a nonnegative homogeneous polynomial of degree t (hence t
is even). The goal of this paper is to provide en efficient numerical scheme to
approximate its Lebesgue volume vol(K) as closely as desired.

Motivation. In addition of being interesting on its own, this problem has also
a practical interest outside computational geometry. For instance it has a direct
link with computing the integral

∫

exp(−g(x))dx, called an integral discriminant
in Dolotin and Morozov [1] and Morozov and Shakirov [9]. Indeed as proved in [9]:

(1.2) vol(K) =
1

Γ(1 + n+t
2 )

∫

Rn

exp(−g(x)) dx,

and to quote [9], “averaging with exponential weights is an important operation in
statistical and quantum physics”. However, and again quoting [9], “despite simply
looking, (1.2) remains terra incognita”. However, for special cases of homogeneous
polynomials, the authors in [9] have been able to obtain a closed form expression
for (1.2) (hence equivalently for vol(K)) in terms of algebraic invariants of g.

Various consequences of formula (1.2) have been described and exploited in
Lasserre [4]. For instance, vol(K) is a convex function in the coefficients of the
polynomial g. In particular this strong property has been exploited for proving
an extension of the Löwner-John ellipsoid theorem [5] which permits to completely
characterize the sublevel set K (as in (1.1)) of minimum volume which contains a
given set Ω ⊂ R

n (when minimizing over all positive homogeneous polynomials g of
degree t). However, computing this sub-level set of minimum volume that contains
K is a computational challenge as computing (or even approximating) the integral
(1.2) is a hard problem.

We prove that vol(K) (and therefore the integral discriminant (1.2)) is the limit
of a monotone sequence of generalized eigenvalue problems with respect to a pair
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2 JEAN B. LASSERRE

of given real Hankel matrices of increasing size. All entries of both Hankel matrices
are easy to obtain in closed-form and one Hankel matrix depends only on the degree
of g. Therefore in principle the integral (1.2) can be approximated efficiently and
as closely as desired by (linear algebra) eigenvalue routines. In addition, even if
we do not provide a closed form expression, this new characterization of (1.2) as a
limit or eigenvalue problems could bring new insights.

Methodology. Computing (and even approximating) the Lebesgue volume of a
convex body is hard (let alone non-convex bodies). Often the only possibility is to
use (non deterministic) Monte Carlo type methods which provide an estimate with
statistical guarantees; that is, generate a sample of N points according to the uni-
form distribution on [−1, 1]n and then the ratio ρN := (number of points in K)/N
provides such an estimate. However ρN is a random variable and is neither an
upper bound or a lower bound on vol(K). For a discussion on volume computation
the interested reader is referred to [2] and the many references therein.

However for basic semi-algebraic sets K ⊂ [−1, 1]n, Henrion et al. [2] have
provided a general methodology to approximate vol(K). it consists in solving a
hierarchy (Qd)d∈N of semidefinite programs1 of increasing size, whose associated
sequence of optimal values (ρd)d∈N is monotone non increasing and converges to

vol(K). An optimal solution of Qd is a vector y ∈ R
s(2d) (with s(d) =

(

n+d
n

)

) whose
each coordinate yα,α ∈ N

n
2d, approximates the α-moment of λK, the restriction to

K of the Lebesgue measure λ on R
n (and therefore y0 approximates vol(K) from

above). An optimal solution of the dual semidefinite program Q∗
d provides the

coefficients (pα)α∈Nn
2d

of a polynomial p ∈ R[x]2d which approximates on [−1, 1]
and from above, the (indicator) function x 7→ 1K(x) = 1 if x ∈ K and 0 otherwise.
In general the convergence ρd → vol(K) is slow because of a Gibbs phenomenon2

when one approximates the indicator function 1K by continuous functions. In [2] the
authors have proposed a “trick” which accelerate drastically the convergence but
at the price of loosing the monotone convergence ρd ↓ vol(K). Another acceleration
technique was provided in [6] which still preserves monotone convergence. It uses
the fact that moments of λK satisfy linear equality constraints that follows from
Stokes’ theorem.

Recently, Jasour et al. [3] have considered volume computation in the context of
risk estimation in uncertain environments. They have provided an elegant ”trick”
which reduces computing the n-dimensional volume vol(K) to computing φ([0, 1])
for a certain pushforward measure φ on the real line, whose moments are known.
(With K as in (1.1) the pushforward measure φ is with respect to the mapping
g.) This results in solving the hierarchy of semidefinite programs proposed in [2],
but now for measures on the real line as opposed to measures on R

n. Solving the
corresponding hierarchy of dual semidefinite programs amounts to approximate the
indicator of an interval on the real line by polynomials of increasing degree, and
whose coefficients minimize a linear criterion.

On the one hand, it yields drastical computational savings as passing from R
n to

R is indeed a big and impressive progress. But on the other hand the (monotone)
convergence remains slow as one cannot one cannot apply the acceleration technique
based on Stokes’ theorem proposed e.g. in [6] because the density of φ is not known

1A semidefinite program ...
2Gibbs
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explicitly. However as the problem is now one-dimensional one may then solve
many more steps of the resulting hierarchy of semidefinite programs provided that
one works with a nice basis of polynomials (e.g. Chebyshev polynomials) to avoid
numerical problems as much as possible. Interestingly, pushforward measures were
also used in Magron et al. [8] to compute the Lebesgue volume of f(K) for a
polynomial mapping f : Rn → R

m, but in this case one has to guess the measure in
R

n whose pushforward measure is the Lebesgue measure on f(K), and the resulting
computation is still very expensive and limited to modest dimensions.

Contribution. We provide a very efficient way to approximate vol(K) with K as
in (1.1) and when g is positive and homogeneous. To do so we are inspired by
the trick of using the pushforward measure in Jasour et al. [3]. The novelty here
is that by taking into account the specific nature (homogeneity) of g in (1.1) we
are able to drastically simplify computations. Indeed, the hierarchy of semidefinite
programs defined in [3] can be replaced (and improved) with computing a sequence
of scalars (τd)d∈N where τd is nothing less than the generalized maximum eigenvalue
of two known Hankel matrices of size d. Therefore there is no optimization involved
anymore. Moreover, if one uses the basis of orthonormal polynomials w.r.t. the
pushforward measure, then τd is now the maximum eigenvalue of a single real
symmetric matrix of size d.

2. Notation and definitions

Notation. Let R[x] denote the ring of polynomials in the variables x = (x1, . . . , xn)
and R[x]t ⊂ R[x] denote the vector space of polynomials of degree at most t, hence
of dimension s(d) =

(

n+t
n

)

. With α ∈ N
n and x ∈ R

n, the notation xα stands for
xα1

1 · · ·xαn
n . Also for every α ∈ N

n, let |α| :=
∑

i αi and N
n
d := {α ∈ N

n : |α| ≤ d}.
The support of a Borel measure µ on R

n is the smallest closed set Ω such that
µ(Rn \ Ω) = 0. Denote by B(X) the Borel σ-field associated with a topological
space X, and M (X) the space of finite Borel measures on X.

Given two real symmetric matrices A,C ∈ R
n×n denote by λmin(A,C) the

smallest generalized eigenvalue with respect to the pair (A,C), that is, the largest
scalar θ such that Ax = θCx for some vector x ∈ R

n. When C is the identity
matrix then λmin(A,C) is just the largest eigenvalue of A. Computing λmin(A,C)
can be done via a pure and efficient linear algebra routine.

The notation A � 0 (resp. A ≻ 0) stands for A is positive semidefinite (resp.
positive definite).

Moment matrix. Given a real sequence φ = (φα)α∈Nn , let Md(φ) denote the
multivariate (Hankel-type) moment matrix defined by Md(φ)(α, β) = φα+β for all
α, β ∈ N

n
d . For instance, in the univariate case n = 1, with d = 2, M2 is the Hankel

matrix

M2(φ) =





φ0 φ1 φ2

φ1 φ2 φ3

φ2 φ3 φ4



 .

If φ = (φj)j∈N is the moment sequence of a Borel measure φ on R then Md(φ) � 0
for all d = 0, 1, . . .. Conversely, if Md(φ) � 0 for all d ∈ N, then φ is the moment
sequence of some finite Borel measure φ on R. The converse result is not true
anymore in the multivariate case.
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Let φ, ν be two finite Borel measures on R. The notation φ ≤ ν stands for
φ(B) ≤ ν(B) for all B ∈ B(R).

Lemma 2.1. Let φ, ν be two finite Borel measures on R with all moments φ =
(φj)j∈N and ν = (νj)j∈N finite. Then φ ≤ ν if and only if

Md(φ) � Md(ν), ∀d = 0, 1, . . .

Proof. Only if part: φ ≤ ν implies that ν − φ with associated sequence ν − φ =
(νj − φj)j∈N is a finite Borel measure on R, and therefore:

Md(ν)−Md(φ) = Md(ν − φ) � 0, d ∈ N,

i.e., Md(ν) � Md(φ) for all d ∈ N.
If part: If Md(φ) � Md(ν) for all d ∈ N then the sequence ν−φ = (νj −φj)j∈N

satisfies Md(φ − ν) � 0 for all d ∈ N. Therefore, the moment sequence ν − φ =
(νj − φj)j∈N of the possibly signed measure ν − φ is in fact the moment sequence
of a finite Borel (positive) measure on R, and therefore ν ≥ φ. �

Localizing matrix. Given a real sequence φ = (φα)α∈Nn and a polynomial x 7→
p(x) :=

∑

γ pγx
γ , let Md(pφ) denote the real symmetric matrix defined by:

Md(pφ)(α, β) =
∑

γ

pγ φα+β+γ , α, β ∈ N
n
d .

For instance, with n = 1, d = 2 and x 7→ p(x) = x(1 − x):

M2(pφ) =





φ1 − φ0 φ2 − φ1 φ3 − φ2

φ2 − φ1 φ3 − φ2 φ4 − φ3

φ3 − φ2 φ4 − φ3 φ5 − φ4



 ,

also a Hankel matrix.

Lemma 2.2. Let x 7→ p(x) = x(1− x).
(i) If a real (finite) sequence φ = (φj)j≤2d satisfies Md(φ) � 0 and Md−1(pφ) �

0 then there is a measure µ on [0, 1] whose moments µ = (µj)j≤2d match φ.
(ii) If a real (infinite) sequence φ = (φj)j∈N satisfies Md(φ) � 0 and Md(pφ) �

0 for all d, then there is a measure µ on [0, 1] whose moments µ = (µj)j∈N match
φ.

See for instance Lasserre [7] and the many references therein.

Pushforward measure. Let K ⊂ R
n be a Borel set and λ a probability measure

on K. Given a measurable mapping f : K → R
p, the pushforward measure of λ on

R
p w.r.t. f is denoted by #λ and satisfies:

#λ(B) := λ(f−1(B)), ∀B ∈ B(Rp).

In particular, its moments are given by

(2.1) #λα :=

∫

Rp

zα #λ(dz) =

∫

K

f(x)α λ(dx), α ∈ N
p.
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A version of Stokes’ theorem. Let Ω ⊂ R
n be an open subset with boundary

∂Ω and let x 7→ X(x) be a given vector field. Then under suitable smoothness
assumptions,

(2.2)

∫

Ω

Div(X)f(x) dx+

∫

Ω

〈X,∇f(x)〉 dx =

∫

∂Ω

〈~nx,X〉f(x) dσ,

where ~nx is the outward pointing normal to Ω at x ∈ ∂Ω, and σ is the (n − 1)-
dimensional Hausdorff measure on the boundary ∂Ω.

3. Main result

Let B := [−1, 1]n and K ⊂ B be as in (1.1) with ∂K ⊂ {x : g(x) = 1}.
Let λ be the Lebesgue measure on B normalized to a probability measure so that
vol(K) = 2nλ(K). Let g in (1.1) be a nonnegative and homogeneous polynomial of
degree t. Denote by:

(3.1) bg := max{ g(x) : x ∈ B }; ag := min{ g(x) : x ∈ B }.

Notice that ag = 0 because 0 ∈ B and g is nonnegative with g(0) = 0, and therefore

g(B) = [0, bg]. We next follow an elegant idea of Jasour et al. [3], adapted to the
present context. It reduces the computation of vol(K) (in R

n) to a certain volume
computation in R, by using a particular pushforward measure of the Lebesgue
measure λ on B.

Let #λ be the pushforward on the positive half line of λ, by the polynomial
mapping g : B → [0, bg]. From (3.1), the support of #λ is the interval I := [0, bg] ⊂
R. Then in view of (2.1):

(3.2) #λk :=

∫

I

zk #λ(dz) =

∫

B

g(x)k λ(dx), k = 0, 1, . . .

All scalars (#λk)k∈N can be obtained in closed form as g is a polynomial and λ is
the (normalized) Lebesgue measure on B. Namely, writing the expansion

x 7→ g(x)k =
∑

α∈Nn
kd

gkα xα,

for some coefficients (gkα), one obtains:

(3.3) #λk = 2−n
∑

α∈Nn
kd

gkα

(

n
∏

i=1

(1 − (−1)αi+1)

αi + 1

)

, k = 0, 1, . . .

Next observe that 2−nvol(K) = #λ(g(K)) and note that g(K) = [0, 1]. Therefore
following the recipe introduced in Henrion et al. [2], and with S := [0, 1] ⊂ [0, bg]:

(3.4) #λ(S) = max
φ∈M (S)

{φ(S) : φ ≤ #λ }.

Denote by φ∗ the mesure on the real line which is the restriction to S ⊂ I of the
pushforward measure #λ. That is,

(3.5) φ∗(B) := #λ(B ∩ S), ∀B ∈ B(R).

Then φ∗ is the unique optimal solution of (3.4); see e.g. Henrion et al. [2]. Then to
approximate φ∗

0 from above one possibility is to solve the hierarchy of semidefinite
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relaxations:

(3.6) ρd = max
φ

{φ0 : 0 � Md(φ) � Md(#λ); Md−1(x(1 − x)φ) � 0 }

where φ = (φj)j≤2d, Md(#λ) is the (Hankel) moment matrix (with moments
up to order 2d) associated with the pushforward measure #λ, and Md(φ) (resp.
Md−1(z(1−z)φ)) is the Hankel moment (resp. localizing) matrix (with moments up
to order 2d) associated with the sequence φ and the polynomial x 7→ p(x) = x(1−x);
see §2. Indeed (3.6) is a relaxation of (3.4) and the sequence (ρd)d∈N is monotone
non increasing and converges to #λ(S) from above; see e.g. [2].

The dual of (3.6) is the semidefinite program

(3.7) ρ∗d = max
p∈R[x]2d

{

∫

p d#λ : p ≥ 1 on [0, 1]; p ≥ 0 on [0, bg] },

and if K has nonempty interior then ρ∗d = ρd.
This is the approach advocated by Jasour et al. [3] and indeed this reduction of

the initial (Lebesgue) volume computation in R
n

(3.8) vol(K) = max
φ∈M (K)

{φ(K) : φ ≤ λ }

to instead compute #λ([0, 1]) (in R) by solving (3.4) is quite interesting as it yields
drastic computational savings; in fact solving the multivariate analogues for (3.8)
of the univariate semidefinite relaxations (3.6) for (3.4), becomes rapidly impossible
even for moderate d, except for problems of modest dimension (say e.g. n ≤ 4).

However it is important to notice that in general the convergence ρd ↓ #λ(S) is
very slow and numerical problems are expected for large values of d. To partially
remedy this problem the authors of [3] suggest to express moment and localizing
matrices in (3.6) in the Chebyshev basis (as opposed to the standard monomial
basis). This allows to solve a larger number of relaxations but it does not change
the typical slow convergence. The trick based on Stokes’ theorem used in [6] cannot
be used here because the dominating (or reference) measure #λ in (3.4) is not the
Lebesgue measure λ anymore (as in (3.8)). On the other hand the trick to accel-
erate convergence used in [2] can still be used, that is, in (3.6) one now maximizes

Lφ(x(1 − x)) = φ1 − φ2 instead of φ0. If φd = (φd
j )j≤2d is an optimal solution of

(3.6) then φd
0 → #λ(S) as d increases but one looses the monotone convergence

from above.
In the sequel we show that in the particular case where g is positive and homoge-

neous then one can avoid solving the hierarchy (3.6) and instead solve a hierarchy
of simple generalized eigenvalue problems with no optimization involved and with
a much faster convergence.

3.1. Exploiting homogeneity.

A crucial observation. Recall that 2−nvol(K) = #λ(S). So let φ∗ be as in (3.5),
and let φ∗ = (φ∗

j )j∈N be its associated sequence of moments. Consider the vector
field x 7→ X(x) := x. Then Div(X) = n. In addition, as g is homogeneous of
degree t then by Euler’s identity, 〈x,∇g(x)〉 = t g(x) for all x ∈ R

n. Recall that
K ⊂ int(B) and therefore g(x) = 1 for every x ∈ ∂K. Next, for every j ∈ N, as
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g(x)j = 1 on ∂K for all j ∈ N, Stokes’ Theorem (2.2) yields:

0 =

∫

∂K

〈~nx,x〉 (1− g(x)j) dσ [as g(x) = 1 on ∂K]

= n

∫

K

(1 − g(x)j)λ(dx) +

∫

K

〈x,∇(1 − g(x)j)〉λ(dx) [by Stokes]

= nλ(K)− (n+ jt)

∫

K

g(x)j λ(dx)

= n#λ(S)− (n+ jt)

∫

g(K)

zj #λ(dz) = nφ∗
0 − (n+ jt)φ∗

j ,

so that we have proved:

Lemma 3.1. Let φ∗ be the Borel measure on R which is the restriction to S = [0, 1]
of the pushforward measure #λ on I. Then its moments φ∗ = (φ∗

j )j∈N satisfy :

(3.9) φ∗
0 = 2−n vol(K); φ∗

j :=
n

n+ jt
φ∗
0, j = 1, 2, . . .

Remarkably, Lemma 3.1 relates all moments of φ∗ to the mass φ∗
0 = 2−nvol(K)

in very simple manner! However it now remains to compute φ∗
0.

Computing φ∗
0. Define M∗

d to be the Hankel (moment) matrix with entries:

(3.10) M∗
d(k, ℓ) :=

n

n+ (k + ℓ− 2) t
, k, ℓ = 1, 2, . . . ,

so that φ∗
0 M

∗
d = Md(φ

∗) for all d ∈ N, whereMd(φ
∗) is the Hankel moment matrix

associated with the sequence φ
∗.

Similarly, define M∗
d,x(1−x) to be the Hankel matrix with entries:

(3.11) M∗
d,x(1−x)(k, ℓ) :=

n

n+ (k + ℓ− 1) t
−

n

n+ (k + ℓ− 2) t
, k, ℓ = 1, 2, . . . ,

so that φ∗
0 M

∗
d,x(1−x) = Md(x(1−x)φ∗) is the localizing matrix associated with φ

∗

and the polynomial x 7→ x(1 − x), for all d ∈ N. As φ∗ is supported on [0, 1] then
φ∗
0 M

∗
d,x(1−x) � 0 for all d, which in turn implies

(3.12) M∗
d,x(1−x) � 0, ∀d ∈ N,

because φ∗
0 > 0.

Theorem 3.2. For each d ∈ N, let M∗
d be as in (3.10) and let Md(#λ) be the

Hankel moment matrix associated with #λ (hence with sequence of moments as in
(3.3)). Then :

(3.13) φ∗
0 = lim

d→∞
λmin(Md(#λ),M∗

d),

i.e., φ∗
0 is the limit of a sequence of maximum generalized eigenvalues associated

with the pair (Md(#λ),M∗
d)), d ∈ N.

Proof. For every d ∈ N, let

(3.14) τd := λmin(Md(#λ),M∗
d) = max { τ : τ M∗

d � Md(#λ) },

which implies τdM
∗
d � Md(#λ). In addition, τd M

∗
d,x(1−x) � 0 follows from (3.12).

On the other hand, as φ∗ ≤ #λ, we also have φ∗
0M

∗
d = Md(φ

∗) � Md(#λ) for all
d ∈ N. Hence, φ∗

0 ≤ τd for all d ∈ N, and the sequence (τd)d∈N is monotone non
increasing.
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We next show that τd ↓ φ∗
0 as d → ∞. As τd ≥ φ∗

0 for all d, limd→∞ τd = τ∗ ≥ φ∗
0.

Consider the sequence µ = (µj)j∈N defined by:

µj = τ∗
n

n+ jt
, j ∈ N.

Then from τdM
∗
d � 0 for all d, and the convergence τd → τ∗, we obtain

τ∗ M∗
d = Md(µ) � 0, ∀d ∈ N.

For similar reasons

τ∗ M∗
d,x(1−x) = Md(x(1 − x)µ) � 0, ∀d ∈ N.

By Lemma 2.2, µ is the moment sequence of a measure µ supported on [0, 1] with
mass µ0 = µ([0, 1]) = τ∗, and by construction we also have µ ≤ #λ. Therefore
µ ∈ M (S) is a feasible solution of (3.4) which implies µ([0, 1]) ≤ φ∗

0. But on the
other hand,

φ∗
0 ≤ τ∗ = µ([0, 1]) ≤ φ∗

0,

which yields the desired result τ∗ = φ∗
0. �

Therefore to approximate vol(K) from above, one proceeds as follows. Start
with d = 1 and then

• Compute all moments of #λ up to order 2d by (3.3).
• Compute τd := λmin(Md(#λ),M∗

d)
• set d = d+ 1 and repeat.

This produces the required monotone sequence of upper bounds (τd)d∈N on φ∗
0,

which converges to φ∗
0 = 2−nvol(K) as d increases. Finally, the following result

shows that τd ≤ ρd.

Proposition 3.3. For each d ∈ N, let ρd (resp. τd) be as in (3.6) (resp. (3.14)).
Then ρd ≥ τd.

Proof. Consider the sequence µ = (µj)j≤2d defined by:

µj = τd
n

n+ jt
, j ≤ 2d.

Then from (3.14), τdM
∗
d = Md(µ) and therefore, 0 � Md(µ) � Md(#λ). Similarly

τdMd−1,x(1−x) = Md−1(x(1−x)µ) � 0. In other words, the sequence µ is a feasible
solution of (3.6), which implies µ0 (= τd) ≤ ρd. �

Hence the above eigenvalue procedure (with no optimization involved) provides
a monotone sequence of upper bounds on φ∗

0 that are better than the sequence of
upper bounds (ρd)d∈N obtained by solving the hierarchy of semidefinite relaxations
(3.6). Notice also that the matrix M∗

d depends only on the degree of g and not on
g itself.

In fact there is a simple interpretation of this improvement. In Problem (3.4)
and in its associated semidefinite relaxations (3.6), one may include the additional
constraints

(3.15) φj = nφ0/(n+ jt), ∀j ≤ 2d,

coming from Stokes’ theorem applied to φ∗; see Lemma 3.1. Indeed we are allowed
to do that because φ∗ (which is the unique optimal solution of (3.4)) satisfies these
additional constraints. If it it does not change the optimal value of (3.4) it changes
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that of (3.6) as it makes the corresponding relaxation stronger and therefore τd ≤ ρd
for all d.

Remark 3.4. If one uses the basis of orthonormal polynomials with respect to the
pushforward measure #λ then the new moment matrix M̃d(#λ) (expressed in this
basis) is the identity matrix and therefore τd is the maximum eigenvalue of the

corresponding matrix M̃∗
d (also expressed in that basis). This basis of orthonormal

polynomials can be obtained from the decomposition Md(#λ) = DDT for triangular
matrices D and DT .

Example 1. The following elementary example (the unit disk in R
2) is to show the

first two steps and to confirm the faster convergence. Let n = 2 and g = ‖x‖2 =
x2
1 + x2

2, and B = [−1, 1]2, so that vol(K) = π.

M∗
1 =

[

1 1/2
1/2 1/3

]

; M1(#λ) =

[

1 2/3
2/3 28/45

]

This yields 4 ·τ1 ≈ 3.48 which is already a good upper bound on π whereas 4 ·ρ1 = 4.

M∗
2 =





1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5



 ; M2(#λ) =





1 2/3 28/45
2/3 28/45 24/35

28/45 24/35 2/9 + 8/21 + 6/25





This yields 4 · τ2 ≈ 3.1440 while 4 · ρ2 = 3.8928. Hence τ2 provides a very good
upper bound on π with only moments of order 4.

In dimension n, vol(K) = 1
Γ(1+n/2) π

n/2.

For n = 3, vol(K) = 4.1888 and we obtain 2nτ1 ≈ 4.6881 whereas 2nρ1 = 8.
2nτ2 ≈ 4.2517 whereas 2nρ2 = 6.626. 2nτ3 ≈ 4.1955 whereas 2nρ2 = 6.398. 2nτ4 ≈
4.1894 whereas 2nρ2 = 6.086.

For n = 5, vol(K) ≈ 5.2638 and we obtain 2nτ1 ≈ 10.2892, 2nτ2 ≈ 6.5248,
2nτ3 ≈ 5.5755, whereas 2nρ1 = 16, 2nρ2 = 15.63, and 2nρ=13.36.

4. Extensions

An immediate extension is when K = {x : gj(x) ≤ 1, j = 1, . . . ,m } ⊂ (−1, 1)n

for a family (gj)
m
j=1 of positive homogeneous polynomials, not necessarily of same

degree, say deg(gj) = tj . In this case one may proceed again as suggested in Jasour
et al. [3]. Now #λ is the pushforward on R

m of λ on B, by the mapping:

g : B → R
m, g(x) =





g1(x)
· · ·

gm(x)



 .

In particular #λ has its moments defined by:

#λα =

∫

B

g1(x)
α1 · · · gm(x)αm λ(dx) =

∫

g(B)

zα #λ(dz), ∀α ∈ N
m.

Again all moments #λα can be computed in closed form, and again with S = [0, 1]m

2−nvol(K) = #λ(S).
Let us describe how the generalization works for the case m = 2. Again denote

by φ∗ on R
2 the restriction of #λ to S and let φ∗ = (φ∗

ij)i,j∈N with:

φ∗
ij :=

∫

S

zi1z
j
2 φ

∗(dz), ∀i, j = 0, 1, . . . .
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So the bivariate analogues of the semidefinite relaxations (3.6) read:

(4.1)
ρd = max

φ
{φ0 : 0 � Md(φ) � Md(#λ)

Md(xj(1 − xj)φ) � 0, j = 1, 2 },

where φ = (φij)i+j≤2d, and Md(φ) (resp. Md−1(xj(1−xj)φ), j = 1, 2) is the mo-
ment (resp. localizing) matrix associated with φ (resp. with φ and x 7→ xj(1−xj),
j = 1, 2). Then ρd ↓ #λ(S) as d → ∞. Again the semidefinite relaxations (4.1) are
a lot cheaper to solve than those associated with the n-variate problem (3.8).

As we did for the univariate case we can improve the above convergence by adding
additional constraints that must be satisfied at the optimal solution φ∗ of (3.8).
Again φ∗

0 = 2−nvol(K). Let (i, j, k, ℓ) ∈ N
4 with k, ℓ ≥ 1. Then with X(x) = x,

Stokes’s Theorem yields

0 = n

∫

K

gi1g
j
2 (1− g1)

k(1− g2)
ℓλ(dx)

+

∫

K

〈x,∇[gi1g
j
2(1− g1)

k(1− g2)
ℓ]〉λ(dx)

= n

∫

S

zi1z
j
2 (1− z1)

k(1 − z2)
ℓ #λ(dz)

+it1

∫

S

zi1z
j
2 (1− z1)

k(1− z2)
ℓ #λ(dz)

+jt2

∫

S

zi1z
j
2 (1− z1)

k(1 − z2)
ℓ #λ(dz)

−kt1

∫

S

zi+1
1 zj2 (1− z1)

k−1(1 − z2)
ℓ #λ(dz)

−ℓt2

∫

S

zi1z
j+1
2 (1− z1)

k(1 − z2)
ℓ−1 #λ(dz)

That is, for each (i, j, k, ℓ) ∈ N
4 with k, ℓ ≥ 1 one obtains a linear constraint

that links the moments of φ∗, that we denote by Lijkℓ(φ
∗) = 0. For instance,

0 = L0011(φ
∗) = n(φ∗

0 − φ∗
10 − φ∗

01 + φ∗
11)− t1(φ

∗
0 − φ∗

01)− t2(φ
∗
0 − φ∗

10)

0 = L1111(φ
∗) = (n+ t1+ t2) (φ

∗
11 +φ∗

22−φ∗
21−φ∗

12)− t1(φ
∗
21 −φ∗

22)− t2(φ
∗
12 −φ∗

22),

etc. So we can add this additional constraints to (4.1) and solve

(4.2)

τd = max
φ

{φ0 : 0 � Md(φ) � Md(#λ)

Md(xi(1 − xj)φ) � 0, j = 1, 2
Li,j,k,ℓ(φ) = 0, k, ℓ ≥ 1; i+ j + k + ℓ ≤ 2d }

Of course and again τd ≤ ρd for all d and therefore τd ↓ #λ(S) as d increases. The
difference with the univariate case is that now computing τd still requires to solve a
semidefinite program, namely (4.2). However it is of same dimension as (4.1) and
the convergence τd ↓ #λ(S) is expected to be much faster than ρd ↓ #λ(S).

5. Conclusion
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