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VOLUME OF SUBLEVEL SETS OF HOMOGENEOUS

POLYNOMIALS

JEAN B. LASSERRE

Abstract. Consider the compact sub-level set K := {x : g(x) ≤ 1} of a
nonnegative homogeneous polynomial g. We show that its Lebesgue volume

vol(K) can be approximated as closely as desired by solving a sequence of gen-
eralized eigenvalue problems with respect to a pair of Hankel matrices of in-
creasing size, whose entries are obtained in closed form. The methodology also
extends to compact sets of the form {x : a ≤ g(x) ≤ b} for non-homogeneous
polynomials with degree d ≪ n. It reduces the volume computation in Rn to
a “volume” computation in Rd (where d = deg(g)) for a certain pushforward
measure. Another extension to computing volumes of finite intersections of
such sub-level sets is also briefly described.

MSC: 65K05 68U05 65D18 65D30 65F15 68W25 68W30 90C22

1. Introduction

Let g ∈ R[x]t be a nonnegative homogeneous polynomial of degree t (hence t is
even) with associated compact sub-level set

(1.1) K := {x ∈ Rn : g(x) ≤ 1 },

and with no loss of generality we may and will assume that (possibly after scaling)
K ⊂ B where B is the unit box [−1, 1]n. In this paper we describe an efficient nu-
merical scheme to approximate its Lebesgue volume vol(K) (when finite) as closely
as desired.

Motivation. In addition of being an interesting mathematical problem on its own,
computing vol(K) has also a practical interest outside computational geometry. For
instance it has a direct link with computing the integral

∫

exp(−g(x))dx, called an
integral discriminant in Dolotin and Morozov [2] and Morozov and Shakirov [11].
Indeed as proved in [11]:

(1.2) vol(K) =
1

Γ(1 + n+t
2 )

∫

Rn

exp(−g(x)) dx,

and to quote [11], “averaging with exponential weights is an important operation
in statistical and quantum physics”. However, and again quoting [11], “despite
simply looking, (1.2) remains terra incognita”. Nevertheless, for special cases of
homogeneous polynomials, the authors in [11] have been able to obtain a closed form
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2 JEAN B. LASSERRE

expression for (1.2) (hence equivalently for vol(K)) in terms of algebraic invariants
of g.

Various consequences of formula (1.2) have been described and exploited in
Lasserre [6]. For instance, vol(K) is a convex function in the coefficients of the
polynomial g. In particular this strong property has been exploited for proving
an extension of the Löwner-John ellipsoid theorem [7] which permits to completely
characterize the sublevel set K (as in (1.1)) of minimum volume which contains a
given set Ω ⊂ Rn (when minimizing over all positive homogeneous polynomials g
of degree t). But computing this sublevel set of minimum volume that contains K
is a computational challenge since computing (or even approximating) the integral
(1.2) is a hard problem. Our main result is that

(1.3) vol(K) = lim
d→∞

λmin(Ad,Bd),

where λmin(Ad,Bd) is the smallest generalized eigenvalue of the pair (Ad,Bd).
More precisely, vol(K) (and therefore the integral discriminant (1.2)) is the limit
of a monotone sequence of generalized eigenvalue problems with respect to a pair
(Ad,Bd) of given real Hankel matrices of size d + 1. All entries of both Hankel
matrices are easy to obtain in form and the Hankel matrix Bd depends only on
the degree of g. Therefore, in principle the integral (1.2) can be approximated
efficiently and as closely as desired by (linear algebra) eigenvalue routines. To the
best of our knowledge this result is quite new and in addition, even if we do not
provide a closed form expression of (1.2), its new characterization as a limit or
eigenvalue problems could bring new insights. Moreover, a first set of numerical
experiments on an academic problem (retrieving the volume of the Euclidean unit
ball in Rn) to verify the behavior of λmin(Ad,Bd) as d increases, shows a quick
convergence with quite precise approximations obtained with relatively small d; for
instance, with d = 8, the relative error is only 0.6% for n = 8 and 2.15% for n = 9.

Methodology. Computing (and even approximating) the Lebesgue volume of a
convex body is hard (let alone non-convex bodies). Often the only possibility is to
use (non deterministic) Monte Carlo type methods which provide an estimate with
statistical guarantees; that is, generate a sample of N points according to the uni-
form distribution on [−1, 1]n and then the ratio ρN := (number of points in K)/N
provides such an estimate. However ρN is a random variable and is neither an
upper bound or a lower bound on vol(K). For a discussion on volume computation
the interested reader is referred to [4] and the many references therein.

However for basic semi-algebraic sets K ⊂ [−1, 1]n, Henrion et al. [4] have
provided a general methodology to approximate vol(K). It consists in solving a
hierarchy (Qd)d∈N of semidefinite programs of increasing size, whose associated
sequence of optimal values (ρd)d∈N is monotone non increasing and converges to
vol(K). A semidefinite program (SDP) is a conic convex optimization problem with
a remarkable modeling power. It can be solved efficiently in time polynomial in its
input size, up to arbitrary precision fixed in advance; for more details the interested
reader is referred to e.g. Anjos and Lasserre [1].

An optimal solution of Qd is a vector y ∈ Rs(2d) (with s(d) =
(

n+d
n

)

) whose
each coordinate yα, α ∈ Nn

2d, approximates the α-moment of λK, the restriction
to K of the Lebesgue measure λ on Rn; therefore y0 approximates vol(K) from
above. An optimal solution of the dual semidefinite program Q∗

d provides the
coefficients (pα)α∈Nn

2d
of a polynomial p ∈ R[x]2d which approximates on [−1, 1]
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and from above, the (indicator) function x 7→ 1K(x) = 1 if x ∈ K and 0 otherwise.
In general the convergence ρd → vol(K) is slow because of a Gibbs phenomenon1

when one approximates the indicator function 1K by continuous functions. In [4]
the authors have proposed a “tric” which accelerate drastically the convergence but
at the price of loosing the monotone convergence ρd ↓ vol(K). Another acceleration
technique was provided in [8] which still preserves monotone convergence. It uses
the fact that moments of λK satisfy linear equality constraints that follow from
Stokes’ theorem.

Recently, Jasour et al. [5] have considered volume computation in the context of
risk estimation in uncertain environments. They have provided an elegant “trick”
which reduces computing the n-dimensional volume vol(K) to computing φ([0, 1])
for a certain pushforward measure φ on the real line, whose moments are known.
With K as in (1.1) the pushforward measure φ is with respect to the mapping
g. This results in solving the hierarchy of semidefinite programs proposed in [4],
but now for measures on the real line as opposed to measures on Rn. Solving the
corresponding hierarchy of dual semidefinite programs amounts to approximate the
indicator of an interval on the real line by polynomials of increasing degree, and
whose coefficients minimize a linear criterion.

On the one hand, it yields drastic computational savings as passing from Rn to
R is indeed a big and impressive progress. But on the other hand the monotone
convergence remains slow as one cannot apply the acceleration technique based on
Stokes’ theorem proposed e.g. in [8] because the density of φ is not known explicitly.
In the examples provided in §3.2 for comparison, we can observe this typical very
slow convergence. However as the problem is now one-dimensional one may then
solve many more steps of the resulting hierarchy of semidefinite programs provided
that one works with a nice basis of polynomials, e.g., Chebyshev polynomials, to
avoid numerical problems as much as possible. Interestingly, pushforward measures
were also used in Magron et al. [10] to compute the Lebesgue volume of f(K) for
a polynomial mapping f : Rn → Rm. However in this case one has to compute
moments of the measure in Rn whose pushforward measure is the Lebesgue measure
on f(K). The resulting computation is still very expensive and limited to modest
dimensions.

Contribution. We provide a simple numerical scheme to approximate vol(K) with
K as in (1.1) and when g is positive and homogeneous. To do so we are inspired by
the trick of using the pushforward measure in Jasour et al. [5]. The novelty here
is that by taking into account the specific nature (homogeneity) of g in (1.1), we
are able to drastically simplify computations. Indeed the hierarchy of semidefinite
programs defined in [5] can be replaced and significantly improved, with computing
a sequence of scalars (τd)d∈N. Each τd is nothing less than the generalized minimum
eigenvalue of two known Hankel matrices of size d, whose entries are obtained
exactly in closed form with no numerical error. Therefore there is no optimization
involved any more. Moreover, if one uses the basis of orthonormal polynomials
w.r.t. the pushforward measure, then τd is now the minimum eigenvalue of a single
real symmetric matrix of size d.

At last but not least, the philosophy underlying the methodology also extends to
arbitrary compact sets of the form {x : a ≤ g(x) ≤ b} ⊂ Rn where the polynomial

1The Gibbs’ phenomenon appears at a jump discontinuity when one approximates a piecewise
C1 function with a continuous function, e.g. by its Fourier series.
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g is not necessarily homogeneous and positive. This can be potentially interesting
when deg(g) ≪ n because we reduce the initial Lebesgue volume computation in
Rn to a µ-volume computation in Rt, where t = deg(g). The measure µ on Rt is
a certain pushforward measure whose sequence of moments is easily obtained in
closed form. Moreover, and crucial for the approach, we are still able to include
additional constraints based on Stokes’ theorem, which significantly accelerates the
otherwise typically slow convergence. In [5] the problem would be reduced to a ν-
volume computation only in R but with no possibility to include additional Stokes’
constraints to accelerate the slow convergence.

The paper is organized as follows. After some preliminaries in §2, our main
results as well as some experimental results are found in §3 and some extensions in
§4.

2. Notation and definitions

Notation. Let R[x] denote the ring of polynomials in the variables x = (x1, . . . , xn)
and R[x]t ⊂ R[x] denote the vector space of polynomials of degree at most t, hence
of dimension s(t) =

(

n+t
n

)

. Let Σ[x] ⊂ R[x] denote the space of polynomials that
are sums-of-squares (in short SOS polynomials) and let Σ[x]t ⊂ R[x]2t denote the
space of SOS polynomials of degree at most 2t. With α ∈ Nn and x ∈ Rn, the
notation xα stands for xα1

1 · · ·xαn
n . Also for every α ∈ Nn, let |α| :=

∑

i αi and
Nn

t := {α ∈ Nn : |α| ≤ t}, where N = {0, 1, 2, . . .}.
The support of a Borel measure µ on Rn is the smallest closed set Ω such that

µ(Rn \ Ω) = 0. Denote by B(X) the Borel σ-field associated with a topological
space X, and M (X) the space of finite nonnegative Borel measures on X.

Generalized eigenvalue. Given two real symmetric matrices A,C ∈ Rn×n de-
note by λmin(A,C) the smallest generalized eigenvalue with respect to the pair
(A,C), that is, the smallest scalar τ such that Ax = τ Cx for some nonzero vec-
tor x ∈ Rn. When C is the identity matrix then λmin(A,C) is just the smallest
eigenvalue of A. Computing λmin(A,C) can be done via a pure and efficient lin-
ear algebra routine. The notation A � 0 (resp. A ≻ 0) stands for A is positive
semidefinite (resp. positive definite). If C ≻ 0 then:

(2.1) λmin(A,C) = max
τ

{ τ : A � τ C }.

Moment matrix. Given a real sequence φ = (φα)α∈Nn , let Md(φ) denote the
multivariate (Hankel-type) moment matrix defined by Md(φ)(α, β) = φα+β for all
α, β ∈ Nn

d . For instance, in the univariate case n = 1, with d = 2, M2 is the Hankel
matrix

M2(φ) =





φ0 φ1 φ2
φ1 φ2 φ3
φ2 φ3 φ4



 .

If φ = (φj)j∈N is the moment sequence of a Borel measure φ on R then Md(φ) � 0
for all d = 0, 1, . . .. Conversely, if Md(φ) � 0 for all d ∈ N, then φ is the moment
sequence of some finite (nonnegative) Borel measure φ on R. The converse result
is not true anymore in the multivariate case.

Let φ, ν be two finite Borel measures on R. The notation φ ≤ ν stands for
φ(B) ≤ ν(B) for all B ∈ B(R).
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Lemma 2.1. Let φ, ν be two finite nonnegative Borel measures on R with all mo-
ments φ = (φj)j∈N and ν = (νj)j∈N finite. Then φ ≤ ν if and only if

Md(φ) � Md(ν), ∀d = 0, 1, . . .

Proof. Only if part: φ ≤ ν implies that ν − φ with associated sequence ν − φ =
(νj − φj)j∈N is a finite nonnegative Borel measure on R, and therefore:

Md(ν)−Md(φ) = Md(ν − φ) � 0, d ∈ N,

i.e., Md(ν) � Md(φ) for all d ∈ N.
If part: If Md(φ) � Md(ν) for all d ∈ N then the sequence ν−φ = (νj −φj)j∈N

satisfies Md(φ − ν) � 0 for all d ∈ N. Therefore, the moment sequence ν − φ =
(νj − φj)j∈N of the possibly signed measure ν − φ is in fact the moment sequence
of a finite nonnegative Borel measure on R, and therefore ν ≥ φ. �

Localizing matrix. Given a real sequence φ = (φα)α∈Nn and a polynomial x 7→
p(x) :=

∑

γ pγx
γ , let Md(pφ) denote the real symmetric matrix defined by:

Md(pφ)(α, β) =
∑

γ

pγ φα+β+γ , α, β ∈ Nn
d .

For instance, with n = 1, d = 2 and x 7→ p(x) = x(1 − x):

M2(pφ) =





φ1 − φ2 φ2 − φ3 φ3 − φ4
φ2 − φ3 φ3 − φ4 φ4 − φ5
φ3 − φ4 φ4 − φ5 φ5 − φ6



 ,

also a Hankel matrix.

Lemma 2.2. Let x 7→ p(x) = x(1− x).
(i) If a real (finite) sequence φ = (φj)j≤2d satisfies Md(φ) � 0 and Md−1(pφ) �

0, then there is a nonnegative Borel measure µ on [0, 1] whose moments µ =
(µj)j≤2d match φ.

(ii) If a real (infinite) sequence φ = (φj)j∈N satisfies Md(φ) � 0 and Md(pφ) �
0 for all d, then there is a nonnegative Borel measure µ on [0, 1] whose moments
µ = (µj)j∈N match φ.

See for instance Lasserre [9] and the many references therein.

Pushforward measure. Let K ⊂ Rn be a Borel set and λ a probability measure
on K. Given a measurable mapping f : K → Rp, the pushforward (nonnegative)
Borel measure of λ on Rp w.r.t. f , is denoted by #λ and satisfies:

#λ(B) := λ(f−1(B)), ∀B ∈ B(Rp).

In particular, its moments are given by

(2.2) #λα :=

∫

Rp

zα #λ(dz) =

∫

K

f(x)α λ(dx), α ∈ Np.

A version of Stokes’ theorem. LetΩ ⊂ Rn be a smooth manifold with boundary
∂Ω and let x 7→ X(x) be a given vector field. Let “Div” denote the Divergence
operator so that Div(X) =

∑

i ∂X/∂xi. Then Stokes’ theorem states that

(2.3)

∫

Ω

Div(X)f(x) dx +

∫

Ω

〈X,∇f(x)〉 dx =

∫

∂Ω

〈~nx,X〉f(x) dσ,
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where ~nx is the outward pointing normal to Ω at x ∈ ∂Ω, and σ is the (n − 1)-
dimensional Hausdorff measure on the boundary ∂Ω; see e.g. Taylor [12, Proposi-
tion 3.2, p. 128]. Then Whitney [13, Theorem 14A] generalized Stokes’ theorem to
rough domains Ω, e.g. domains with corners.

3. Main result

Let K in (1.1) be strictly contained in B := [−1, 1]n, and with boundary
∂K = {x : g(x) = 1}. Let λ be the Lebesgue measure on B normalized to a
probability measure so that vol(K) = 2nλ(K). Let g in (1.1) be a nonnegative and
homogeneous polynomial of degree t. That is, g(θx) = θtg(x) for all θ ∈ R, x ∈ Rn.
Denote by:

(3.1) bg := max{ g(x) : x ∈ B }; ag := min{ g(x) : x ∈ B }.

Notice that ag = 0 because 0 ∈ B and g is nonnegative with g(0) = 0, and therefore

g(B) = [0, bg]. We next follow an elegant idea of Jasour et al. [5] adapted to the
present context. It reduces the computation of vol(K) in Rn to a certain volume
computation in R, by using a particular pushforward measure of the Lebesgue
measure λ on B.

Let #λ be a measure on the positive half line, the pushforward measure of λ
by the polynomial mapping g : B → [0, bg]. From (3.1), the support of #λ is the

interval I := [0, bg] ⊂ R. Then in view of (2.2):

(3.2) #λk :=

∫

I

zk #λ(dz) =

∫

B

g(x)k λ(dx), k = 0, 1, . . .

All scalars (#λk)k∈N can be obtained in closed form as g is a polynomial and λ is
the (normalized) Lebesgue measure on B. Namely, writing the expansion

x 7→ g(x)k =
∑

α∈Nn
kd

gkα xα,

for some coefficients (gkα), one obtains:

(3.3) #λk = 2−n
∑

α∈Nn
kd

gkα

(

n
∏

i=1

(1 − (−1)αi+1)

αi + 1

)

, k = 0, 1, . . .

Next observe that 2−nvol(K) = #λ(g(K)) and note that g(K) = [0, 1]. Therefore

following the recipe introduced in Henrion et al. [4], and with S := [0, 1] ⊂ [0, bg]:

(3.4) #λ(S) = max
φ∈M (S)

{φ(S) : φ ≤ #λ }.

Denote by φ∗ the nonnegative Borel measure on the real line which is the restriction
to S ⊂ I of the pushforward measure #λ. That is,

(3.5) φ∗(B) := #λ(B ∩ S), ∀B ∈ B(R).

Then φ∗ is the unique optimal solution of (3.4) and therefore φ∗(S) = #λ(S) ; see
e.g. Henrion et al. [4]. Then to approximate φ∗(S) from above, one possibility is
to solve the hierarchy of semidefinite relaxations indexed by d ∈ N:

(3.6) ρd = max
φ

{φ0 : 0 � Md(φ) � Md(#λ); Md−1(x(1 − x)φ) � 0 },
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where φ = (φj)j≤2d, Md(#λ) is the Hankel moment matrix (with moments up
to order 2d) associated with the pushforward measure #λ, and Md(φ) (resp.
Md−1(z(1−z)φ)) is the Hankel moment (resp. localizing) matrix with moments up
to order 2d, associated with the sequence φ and the polynomial x 7→ p(x) = x(1−x);
see §2. Indeed (3.6) is a relaxation of (3.4) and the sequence (ρd)d∈N is monotone
non increasing and converges to φ∗(S) = #λ(S) from above; see e.g. [4].

The dual of (3.6) is the semidefinite program

(3.7)
ρ∗d = max

p∈R[x]2d
{

∫

p d#λ : p− 1 = σ0 + σ1 x(1 − x)

p, σ0 ∈ Σ[x]d; σ1 ∈ Σ[x]d−1 },

and if K has nonempty interior then ρ∗d = ρd. This is the approach advocated
by Jasour et al. [5] and indeed this reduction of the initial (Lebesgue) volume
computation in Rn

(3.8) vol(K) = max
φ∈M (K)

{φ(K) : φ ≤ λ }

to instead compute #λ([0, 1]) (in R) by solving (3.4) is quite interesting as it yields
drastic computational savings. In fact, solving the multivariate analogues for (3.8)
of the univariate semidefinite relaxations (3.6) for (3.4), becomes rapidly impossible
even for moderate d, except for problems of modest dimension (say e.g. n ≤ 4).

However it is important to notice that in general the convergence ρd ↓ #λ(S)
is very slow and numerical problems are expected even for not so large values of
d. To partially remedy this problem the authors of [5] suggest to express moment
and localizing matrices in (3.6) in the Chebyshev basis rather than in the standard
monomial basis. However if this allows to solve a larger number of relaxations, it
does not change the typical slow convergence. The trick based on Stokes’ theorem
used in [8] cannot be used here because the dominating (or reference) measure #λ
in (3.4) is not the Lebesgue measure λ any more (as in (3.8)). On the other hand,
the trick in [4] to accelerate convergence can still be used, that is, in (3.6) one now

maximizes Lφ(x(1 − x)) = φ1 − φ2 instead of φ0. If φd = (φdj )j≤2d is an optimal

solution of (3.6) then φd0 → #λ(S) as d increases, but one looses the monotone
convergence from above.

In the sequel we show that in the particular case where g is positive and homoge-
neous then one can avoid solving the hierarchy (3.6). Instead one solves a hierarchy
of simple generalized eigenvalue problems with no optimization involved and with
a much faster convergence.

3.1. Exploiting homogeneity.

A crucial observation. We apply Stokes’ relation (2.3) with vector fieldX(x) = x

to the function 1− g(x)j which vanishes on the boundary ∂K.
Recall that 2−nvol(K) = #λ(S). So let φ∗ be as in (3.5), and let φ∗ = (φ∗j )j∈N

be its associated sequence of moments. Consider the vector field x 7→ X(x) := x.
Then Div(X) =

∑

i ∂X/∂xi = n. In addition, as g is homogeneous of degree t then
by Euler’s identity, 〈x,∇g(x)〉 = t g(x) for all x ∈ Rn. Recall that K ⊂ int(B) and
therefore g(x) = 1 for every x ∈ ∂K. Next, for every j ∈ N, as g(x)j = 1 on ∂K
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for all j ∈ N, Stokes’ Theorem (2.3) yields:

0 =

∫

∂K

〈~nx,x〉 (1− g(x)j) dσ [as g(x) = 1 on ∂K]

= n

∫

K

(1 − g(x)j)λ(dx) +

∫

K

〈x,∇(1 − g(x)j)〉λ(dx) [by Stokes]

= nλ(K)− (n+ jt)

∫

K

g(x)j λ(dx)

= n#λ(S)− (n+ jt)

∫

g(K)

zj #λ(dz) = nφ∗0 − (n+ jt)φ∗j ,

so that we have proved:

Lemma 3.1. Let φ∗ be the nonnegative Borel measure on R which is the restriction
to S = [0, 1] of the pushforward measure #λ on I. Then its moments φ∗ = (φ∗j )j∈N

satisfy :

(3.9) φ∗0 = 2−n vol(K); φ∗j :=
n

n+ jt
φ∗0, j = 1, 2, . . .

Remarkably, (3.1) relates all moments of φ∗ to its mass φ∗0 = 2−nvol(K) in very
simple manner! However it now remains to compute φ∗0.

Computing φ∗0. Define M∗
d to be the Hankel (moment) matrix with entries:

(3.10) M∗
d(k, ℓ) :=

n

n+ (k + ℓ− 2) t
, k, ℓ = 1, 2, . . . , d+ 1,

so that φ∗0 M
∗
d = Md(φ

∗) for all d ∈ N, whereMd(φ
∗) is the Hankel moment matrix

associated with the sequence φ∗ (equivalently with the measure φ∗).
Similarly, define M∗

d,x(1−x) to be the Hankel matrix with entries:

(3.11) M∗
d,x(1−x)(k, ℓ) :=

n

n+ (k + ℓ− 1) t
−

n

n+ (k + ℓ) t
, k, ℓ = 1, 2, . . . , d+1,

so that φ∗0 M
∗
d,x(1−x) = Md(x(1−x)φ

∗) is the localizing matrix associated with φ∗

and the polynomial x 7→ x(1 − x), for all d ∈ N. As φ∗ is supported on [0, 1] then
φ∗0 M

∗
d,x(1−x) � 0 for all d, which in turn implies

(3.12) M∗
d,x(1−x) � 0, ∀d ∈ N,

because φ∗0 > 0.

Proposition 3.2. The matrix M∗
d defined in (3.10) is the moment matrix (with

moments up to order 2d) of the nonnegative Borel measure dψ = n
t x

n
t
−1dx on [0, 1].

Therefore M∗
d ≻ 0 for all d ∈ N.

Proof. Indeed for every j ∈ N:
∫ 1

0

xj dψ(x) =
n

t

∫ 1

0

xj x
n
t
−1 dx =

n

n+ jt
.

Finally, M∗
d ≻ 0 for all d ∈ N because the density x

n
t
−1 is positive on [0, 1]. �

Theorem 3.3. For each d ∈ N, let M∗
d be as in (3.10) and let Md(#λ) be the

Hankel moment matrix associated with #λ (hence with sequence of moments as in
(3.3)). Then :

(3.13) φ∗0 = lim
d→∞

λmin(Md(#λ),M
∗
d),
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i.e., φ∗0 is the limit of a sequence of minimum generalized eigenvalues associated
with the pair (Md(#λ),M

∗
d), d ∈ N.

Proof. By Proposition 3.2, M∗
d ≻ 0 for all d ∈ N. For every d ∈ N, let

(3.14) τd := λmin(Md(#λ),M
∗
d) = max { τ : τM∗

d � Md(#λ) } [by (2.1)],

which implies τdM
∗
d � Md(#λ). In addition, τd M

∗
d,x(1−x) � 0 follows from (3.12).

On the other hand, as φ∗ ≤ #λ, we also have φ∗0 M
∗
d = Md(φ

∗) � Md(#λ) for all
d ∈ N. Hence, φ∗0 ≤ τd for all d ∈ N, and the sequence (τd)d∈N is monotone non
increasing.

We next show that τd ↓ φ∗0 as d→ ∞. As τd ≥ φ∗0 for all d, limd→∞ τd = τ∗ ≥ φ∗0.
Consider the sequence µ = (µj)j∈N defined by:

µj = τ∗
n

n+ jt
, j ∈ N.

Then from τdM
∗
d � 0 for all d, and the convergence τd → τ∗, we obtain

τ∗ M∗
d = Md(µ) � 0, ∀d ∈ N.

For similar reasons

τ∗ M∗
d,x(1−x) = Md(x(1 − x)µ) � 0, ∀d ∈ N.

By Lemma 2.2, µ is the moment sequence of a measure µ supported on [0, 1] with
mass µ0 = µ([0, 1]) = τ∗, and by construction we also have µ ≤ #λ. Therefore
µ ∈ M (S) is a feasible solution of (3.4) which implies µ([0, 1]) ≤ φ∗0. But on the
other hand,

φ∗0 ≤ τ∗ = µ([0, 1]) ≤ φ∗0,

which yields the desired result τ∗ = φ∗0. �

Algorithm 3.4 below provides the value τd of (3.14). Therefore to approximate
vol(K) from above, apply Algorithm 3.4 for a sequence d = 1, 2, . . .. It produces
the required monotone sequence of upper bounds (τd)d∈N on φ∗0, which converges
to φ∗0 = 2−nvol(K) as d increases.

Algorithm 3.4 (Computing τd in (3.14)).

(1) Compute all moments #λk, k = 1, . . . , 2d, of #λ by (3.3)
(2) Build up the Hankel matrices M∗

d and Md(#λ) in (3.10)
(3) Compute ρ := λmin(Md(#λ),M

∗
d) (e.g., by a standard linear algebra rou-

tine)
(4) Return ρ.

Finally, the following result shows that τd ≤ ρd.

Proposition 3.5. For each d ∈ N, let ρd (resp. τd) be as in (3.6) (resp. (3.14)).
Then ρd ≥ τd.

Proof. Consider the sequence µ = (µj)j≤2d defined by:

µj = τd
n

n+ jt
, j ≤ 2d.

Then from (3.14), τd M
∗
d = Md(µ) and therefore, 0 � Md(µ) � Md(#λ). Simi-

larly, τdMd−1,x(1−x) = Md−1(x(1− x)µ) � 0. In other words, the sequence µ is a
feasible solution of (3.6), which implies µ0 (= τd) ≤ ρd. �
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Hence the above eigenvalue procedure (with no optimization involved) provides a
monotone sequence of upper bounds on φ∗0. Those upper bounds are better than the
sequence of upper bounds (ρd)d∈N obtained by solving the hierarchy of semidefinite
relaxations (3.6). Notice also that the matrix M∗

d depends only on the degree “t”
of g and not on g itself; see Proposition 3.2.

In fact there is a simple interpretation of this improvement. In Problem (3.4)
and in its associated semidefinite relaxations (3.6), one may include the additional
constraints

(3.15) φj = nφ0/(n+ jt), ∀j ≤ 2d,

coming from Stokes’ theorem applied to φ∗; see Lemma 3.1. Indeed we are allowed
to do that because φ∗ (which is the unique optimal solution of (3.4)) satisfies these
additional constraints. If it does not change the optimal value of (3.4), it changes
that of (3.6) as it makes the corresponding relaxation stronger and therefore τd ≤ ρd
for all d.

Remark 3.6. (i) If one uses the basis of orthonormal polynomials with respect

to the pushforward measure #λ then the new moment matrix M̃d(#λ) (expressed
in this basis) is the identity matrix. Therefore τ−1

d is the maximum eigenvalue

of the corresponding matrix M̃∗
d also expressed in that basis. This basis of or-

thonormal polynomials can be obtained from the decomposition Md(#λ) = DDT

for triangular matrices D and DT . For more details on multivariate orthogonal
polynomials, the interested reader is referred to Dunkl and Xu [3] and the many
references therein.

(ii) Alternatively one may also use an orthonormal basis associated with the se-
quence of moments (n/(n+jt))j∈N, i.e., a basis of polynomials that are orthonormal
with respect to the measure ψ of Proposition 3.2. In this case the new moment
matrix M̃∗

d expressed in this basis is the identity matrix and τd is now the minimum

eigenvalue of the new moment matrix M̃d(#λ) expressed in this basis. Notice that
the orthonormal basis depends on the degree t of g, and not on g itself.

(iii) Finally, another possibility is to simply use the basis of Chebyshev poly-
nomials. Then computing τd is still solving a generalized eigenvalue problem but
which involves matrices with a much better numerical conditioning.

Two straightforward extensions. A first extension is when g is quasi-homogeneous,
i.e., when there exists u ∈ Qn such that g(λu1

1 x1, . . . , λ
un

1 xn) = λ g(x) for all λ > 0

and all x ∈ Rn. Euler’s identity becomes
∑

i ui
∂g(x)
∂xi

xi = g(x) for all x. If one ap-

plies Stokes relation (2.3) with vector field X = (u1x1, . . . , unxn), then in Lemma
3.1 one obtains φ∗j = ū φ∗0/(ū+ j) with ū =

∑

j uj. With M∗
d modified accordingly,

Theorem 3.3 is still valid.
A second straightforward extension is to compute

∫

K
xα dλ for a fixed α ∈ Nn,

once sufficiently many moments (φ∗j ) of the measure φ∗ in Lemma 3.1 have been
approximated. As K ⊂ B = [−1, 1]n, consider the positive measure dλα := (1 −
xα)dλ on B and its associated pushforward measure #λα by the mapping g. Its
moments (#λαj )j∈N are also obtained in closed form easily. Let φα∗ = (φα∗)j∈N

be the moments of the restriction of #λα to K. Using Stokes relation (2.3) with
X = x and f = (1 − gj)(1 − xα), in the analogue of Lemma 3.1 one now obtains
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the identity:

φα∗j =
n+ |α|

n+ |α|+ tj
φα∗0 +

|α|

n+ |α|+ tj
(φ∗j − φ∗0), ∀ j ∈ N.

Again, every φα∗j is expressed in terms of the single unknown φα∗0 since φ∗0 and φ∗j
are known. With M∗

d modified accordingly, an adapted version of Theorem 3.3 is
still valid.

3.2. Some numerical examples. To show how this approximation of vol(K) from
above by a sequence of eigenvalue problems of increasing size is much more efficient
than solving the hierarchy of semidefinite programs (3.6) as suggested in [5], we
have considered a favorable case for (3.6). We chose K to be the Euclidean unit
ball {x : ‖x‖ ≤ 1} with Lebesgue volume ρ∗ = πn/2/Γ(1+n/2) and the box B that
contains K is the smallest one, i.e., B = [−1, 1]n. Indeed, the smaller is the box B,
the better are the approximation by ρd in (3.6).

We first describe the first two steps to appreciate the simplicity of the approach.
Let n = 2 and g = ‖x‖2 = x21 + x22, and B = [−1, 1]2, so that vol(K) = π. Then:

M∗
1 =

[

1 1/2
1/2 1/3

]

; M1(#λ) =

[

1 2/3
2/3 28/45

]

This yields 4·τ1 ≈ 3.20 which is already a good upper bound on π whereas 4·ρ1 = 4.

M∗
2 =





1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5



 ; M2(#λ) =





1 2/3 28/45
2/3 28/45 24/35

28/45 24/35 2/9 + 8/21 + 6/25





This yields 4 · τ2 ≈ 3.1444 while 4 · ρ2 = 3.8928. Hence 4τ2 already provides a very
good upper bound on π with only moments of order 4. To appreciate the difference
in speed of convergence between ρd and τd, Table 1 displays both values τd and ρd in
the case of n = 4 variables and d = 1, . . . , 5. While the convergence τd → 4.9348 is
quite fast with a relative error of 0.03% at step d = 5, the convergence ρd → 4.9348
is extremely slow as ρ5 ≈ 8.499 only; see Figure 1

Table 1. n = 4, ρ∗ = 4.9348; ρd versus τd

d d = 1 d = 2 d = 3 d = 4 d = 5

2nρd 12.19 11.075 9.163 8.878 8.499

2nτd 6.839 5.309 5.001 4.945 4.936

We next provide results for the same problem but now in larger dimensions
n = 5, 8, 9, 10 in Table 3, Table 4, Table 5, and Table 6 respectively. From inspection
we can observe a fast and regular decrease in the value 2nτd as d increases, and
similarly for the relative error.

Table 2. n = 4, ρ∗ = 4.9348; τd and relative error

d d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

2nτd 6.839 5.309 5.001 4.945 4.936 4.935
100(2nτd−ρ∗)

ρ∗
38.6% 7.58% 1.35% 0.22% 0.03% 0.004%
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Figure 1. n = 4; Comparing τd (red below) with ρd (blue above)

Table 3. n = 5, ρ∗ = 5.26; τd and relative error

d d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

2nτd 10.2892 6.5248 5.57 5.3347 5.2788 5.266
100(2nτd−ρ∗)

ρ∗
95% 23.95% 5.92% 1.34% 0.28% 0.05%

Table 4. n = 8, ρ∗ = 4.0587; τd and relative error

d d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

2nτd 43.16 15.04 7.97 5.569 4.639 4.272 4.133 4.083
100(2nτd−ρ∗)

ρ∗
963% 270% 96% 37% 14% 5.26% 1.83% 0.60%

Table 5. n = 9, ρ∗ = 3.298; τd and relative error

d d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

2nτd 73.406 21.682 9.801 5.935 4.413 3.764 3.485 3.369
100(2nτd−ρ∗)

ρ∗
2125% 557% 197% 79% 33.8% 14.1% 5.6% 2.15%

For n = 10 and d = 8, we have encountered numerical problems because the
Hankel matrix M8(#λ) is ill-conditioned and then one should use another basis of
polynomials in which to express the matrices M∗

8 and M8(#λ); see Remark 3.6.

Influence of the size of the box B. If one increases the size of the box B =
[−r, r]n that contains K then one expects a slower convergence and this is why it
is recommended to take for B the smallest box that contains K. An appropriate
choice is the box

∏n
i=1[−ui, ui] where ui (resp. vi) is a lower bound (resp. upper

bound) as close as possible to min{ xi : x ∈ K } (resp. max{xi : x ∈ K }), which
can be computed by the first step of the Moment-SOS hierarchy described in [9].
From results displayed in Table 7 with r = 1 and r = 1.3, one observes that even
though the convergence is a bit slower, it is still quite good. The initial value τ1 is
significantly higher but then τd (with r = 1.3) still decreases very fast; see Figure
2.
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Table 6. n = 10, ρ∗ = 2.55; τd and relative error

d d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

2nτd 32.432 12.657 6.662 4.375 3.379 2.921
100(2nτd−ρ∗)

ρ∗
1171% 396.3% 161% 71.6% 32.5% 14.54%

Table 7. n = 5; vol(K) = 5.2638; Influence of the size of B =
[−r, r]n with r = 1 and r = 1.3

d d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

r = 1.3; (2r)nτd 26.345 11.744 7.622 6.149 5.585 5.373 5.299 5.275

r = 1; (2r)nτd 10.289 6.524 5.575 5.334 5.278 5.266 5.264 5.2639

1 2 3 4 5 6 7 8

5

10

15

20

25

30

Figure 2. n = 8; Comparing τd with r = 1.3 (red above) and
r = 1 (blue below)

4. Extensions

In this section we discuss two extensions of the above methodology, when:

• K := {x : a ≤ g(x) ≤ b} ⊂ (−1, 1)n and g is not homogeneous anymore.
• K is now {x : gj(x) ≥ 0, j = 1, . . . ,m} ⊂ (−1, 1)n and each gj is homoge-
neous (with one of them being nonnegative).

In the second extension, again following Jasour et al. [5], one considers the push-
forward of the Lebesgue measure by the polynomial mapping g : B → Rm which
maps x ∈ B to the vector (gj(x))

m
j=1 ∈ Rm. Then the initial Lebesgue volume

computation in Rn is reduced to an equivalent “measure” computation problem
of the form (3.8) but now in Rm (instead of R). One may apply the hierarchy of
semidefinite programs described in [4]. But as we did in §3, we can exploit again the
homogeneity of the gj ’s to strengthen the semidefinite relaxations defined in [5], by
introducing additional linear constraints coming from an appropriate application of
Stokes’ theorem. The only difference with the univariate case treated in §3 is that
the problem is not an eigenvalue problem any more.

The first extension to the non homogeneous case is perhaps more interesting.
We now write g as a sum of homogeneous polynomials of increasing degree 1,
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2, . . . , deg(g), and consider again a pushforward of the Lebesgue mesure λ by the
polynomial mapping g : B → Rdeg(g), x 7→ (g1(x), . . . , gdeg(g)(x)).

4.1. The non-homogeneous case. Let B = [−1, 1]n, and suppose that K ⊂ Rn

is now described by:

(4.1) K := {x : a ≤ g(x) ≤ b },

for some a, b ∈ R, where g ∈ R[x]t, and K ⊂ (−1, 1)n, possibly after scaling. With
no loss of generality we may and will assume that g(0) = 0 and write

x 7→ g(x) =

t
∑

k=1

gk(x), x ∈ Rn,

where for each 1 ≤ k ≤ t, gk is a homogeneous polynomial of degree k.
We next see how to adapt the previous methodology of §3 to this more general

case in a relatively simple manner. To simplify the exposition and alleviate notation,
we describe the quadratic case t = 2. It will become obvious to understand how to
proceed for t > 2. So with t = 2, g = g1 + g2 with g1 (resp. g2) homogeneous of
degree 1 (resp. 2).

Consider the pushforward measure #λ on R2 of λ on B, by the polynomial
mapping:

g : B → R2, x 7→ g(x) =

[

g1(x)
g2(x)

]

, x ∈ B.

Let Θ := g(B) ⊂ R2 be the support of the pushforward measure #λ, and observe
that for each i, j ∈ N:

(4.2) #λij :=

∫

Θ

zi1z
j
2 d#λ(z) =

∫

B

g1(x)
i g2(x)

j dλ(x),

can be obtained in closed form. Letting

S := g(K) = {z ∈ Θ : a ≤ z1 + z2 ≤ b },

we obtain 2−nvol(K) = #λ(S). Next, recall that (see (3.4) in §3):

(4.3) 2−nvol(K) = #λ(S) = max
φ∈M (S)

{φ(S) : φ ≤ #λ }

and φ∗ is the unique optimal solution of (4.3).

Let z 7→ h̃(z) := (b−z1−z2)(z1+z2−a). The hierarchy of semidefinite relaxations
associated with (4.3) and indexed by d ∈ N, read:

(4.4) ρd = max
φ

{φ0 : 0 � Md(φ) � Md(#λ); Md−1(h̃φ) � 0 },

where the maximization is over finite bivariate sequences φ = (φij)i+j≤2d. Again
invoking [4], ρd ↓ 2−nvol(K) as d→ ∞.

Next, following the same philosophy as in §3, we are going to use some addi-
tional information on the optimal solution φ∗ of (4.3) to strengthen the semidefinite
relaxations (4.4). To do so we again use Stokes’ theorem.
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Stokes. Recall that K ⊂ (−1, 1)n and therefore, ∂K ⊂ {x ∈ B : h(x) = 0 } where
x 7→ h(x) := (b− g1(x)− g2(x))(g2(x) + g2(x)− a). Therefore by Stokes’ theorem,

0 = n

∫

K

g1(x)
i g2(x)

j h(x) dλ(x)

+

∫

K

〈x,∇(g1(x)
i g2(x)

j h(x)) dλ(x), ∀i, j ∈ N.(4.5)

Developing and using homogeneity of g1, g2, one obtains:

0 = n

∫

S

[

(n+ i+ 2j) zi1z
j
2 (b − z1 − z2)(z1 + z2 − a)

+(z1 + 2z2) z
i
1z

j
2 (a+ b− 2z1 − 2z2)

]

. d#λ(z).

Equivalently, for every i, j ∈ N, introduce the polynomial qij ∈ R[z]:

z 7→ qij(z) := (n+ i+ 2j) zi1z
j
2 (b− z1 − z2)(z1 + z2 − a)(4.6)

+(z1 + 2z2) z
i
1z

j
2 (a+ b− 2z1 − 2z2).

Then one obtains:

(4.7)

∫

S

qij(z) dφ
∗(z) = 0, ∀ i, j ∈ N.

Notice that (4.7) is a linear relation between moments of φ∗, the optimal solution
of (4.3). That is, let φ∗ = (φ∗ij)i,j∈N be the sequence of moments of φ∗ on S, and
let Lφ∗ : R[z] → R be the Riesz functional

q (=
∑

i,j

qijz
i
1 z

j
2) 7→ Lφ∗(q) :=

∑

i,j

qij φ
∗
ij , q ∈ R[z].

Then (4.7) reads

(4.8) Lφ∗(qij) = 0, i, j ∈ N,

So we can strengthen the relaxations (4.4) by adding the additional “Stokes”
moments constraints (4.8), that is, for every d one solves the semidefinite program:

(4.9)
τd = max

φ
{φ0 : 0 � Md(φ) � Md(#λ); Md−1(h̃φ) � 0;

Lφ∗(qij) = 0, for all (i, j) s.t. deg(qij) ≤ 2d },

which is clearly a strengthening of (4.4).

Proposition 4.1. Let ρd (resp. τd) be as in (4.4) (resp. (4.9)), d ∈ N. Then:

(4.10) #λ(S) ≤ τd ≤ ρd for all d, and τd ↓ #λ(S) as d increases.

Proof. That τd ≤ ρd for all d, is straightforward and similarly for the monotonicity
of the sequence (τd)d∈N. Next, as φ∗ is the optimal solution of (4.3), its sequence
of moments φ∗ = (φ∗ij) is feasible for (4.9), with associated value φ∗0 = #λ(S) =

2−nvol(K). Hence τd ≥ #λ(S). Then the convergence τd ↓ #λ(S) follows from
ρd ↓ #λ(S). �

The difference with the homogeneous case treated in §3 is that now computing τd
requires solving the semidefinite program (4.9) whereas in §3 computing τd reduces
to solving a generalized eigenvalue problem, hence with no optimization involved.
However notice that instead of solving the costly n-variate semidefinite relaxations
associated with (3.8) in Rn, we now solve similar semidefinite relaxations but for
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a bivariate problem on the plane. In addition the (convergence) acceleration tech-
nique based on Stokes’s theorem can also be implemented; see (4.9).

4.2. Multi-homogeneous constraints. Another extension is when K = {x :
gj(x) ≤ 1, j = 1, . . . ,m } ⊂ (−1, 1)n for a family (gj)

m
j=1 of homogeneous polyno-

mials, not necessarily of same degree, say deg(gj) = tj , and at least one of them is
positive on (R \ {0})n. In this case one may proceed again as suggested in Jasour
et al. [5]. Now #λ is the pushforward on Rm of λ on B, by the mapping:

g : B → Rm, g(x) =





g1(x)
· · ·

gm(x)



 .

In particular the moments of #λ are defined by:

#λα =

∫

B

g1(x)
α1 · · · gm(x)αm λ(dx) =

∫

g(B)

zα #λ(dz), ∀α ∈ Nm.

Again all moments #λα can be computed in closed form, and with S = [0, 1]m,
2−nvol(K) = #λ(S). Let us describe how the generalization works for the case
m = 2. Again denote by φ∗ on R2 the restriction of #λ to S and let φ∗ = (φ∗ij)i,j∈N

with:

φ∗ij :=

∫

S

zi1z
j
2 φ

∗(dz), ∀i, j = 0, 1, . . . .

So the bivariate analogues of the semidefinite relaxations (3.6) read:

(4.11)
ρd = max

φ
{φ0 : 0 � Md(φ) � Md(#λ)

Md−1(xj(1− xj)φ) � 0, j = 1, 2 },

where φ = (φij)i+j≤2d, and Md(φ) (resp. Md−1(xj(1−xj)φ), j = 1, 2) is the mo-
ment (resp. localizing) matrix associated with φ (resp. with φ and x 7→ xj(1−xj),
j = 1, 2). Then ρd ↓ #λ(S) as d → ∞. Again the semidefinite relaxations (4.11)
are a lot cheaper to solve than those associated with the n-variate problem (3.8).

As we did for the univariate case we can improve the above convergence by adding
additional constraints that must be satisfied at the optimal solution φ∗ of (3.8).
Again φ∗0 = 2−nvol(K). Let (i, j, k, ℓ) ∈ N4 with k, ℓ ≥ 1. Then with X(x) = x,
Stokes’s Theorem yields
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0 = n

∫

K

gi1g
j
2 (1− g1)

k(1− g2)
ℓλ(dx)

+

∫

K

〈x,∇[gi1g
j
2(1− g1)

k(1− g2)
ℓ]〉λ(dx)

= n

∫

S

zi1z
j
2 (1− z1)

k(1 − z2)
ℓ #λ(dz)

+it1

∫

S

zi1z
j
2 (1− z1)

k(1− z2)
ℓ #λ(dz)

+jt2

∫

S

zi1z
j
2 (1− z1)

k(1− z2)
ℓ #λ(dz)

−kt1

∫

S

zi+1
1 zj2 (1− z1)

k−1(1 − z2)
ℓ #λ(dz)

−ℓt2

∫

S

zi1z
j+1
2 (1− z1)

k(1 − z2)
ℓ−1 #λ(dz).

That is, for each (i, j, k, ℓ) ∈ N4 with k, ℓ ≥ 1, one obtains a linear constraint
that links some moments of φ∗, that we denote by Lφ∗(qijkℓ) where qijkℓ ∈ R[z] is
the above polynomial under the integral sign. For instance,

0 = Lφ∗(q0011) = n(φ∗0 − φ∗10 − φ∗01 + φ∗11)− t1(φ
∗
0 − φ∗01)− t2(φ

∗
0 − φ∗10).

0 = Lφ∗(q1111) = (n+ t1+ t2) (φ
∗
11+φ

∗
22−φ

∗
21−φ

∗
12)− t1(φ

∗
21−φ

∗
22)− t2(φ

∗
12−φ

∗
22),

etc. So we can add these additional constraints to (4.11) and solve:

(4.12)

τd = max
φ

{φ0 : 0 � Md(φ) � Md(#λ)

Md−1(xi(1 − xj)φ) � 0, j = 1, 2
Lφ(qi,j,k,ℓ) = 0, k, ℓ ≥ 1; i+ j + k + ℓ ≤ 2d }.

Of course τd ≤ ρd for all d and therefore τd ↓ #λ(S) as d increases. Again, the
difference with the univariate case is that now computing τd requires to solve the
semidefinite program (4.12) instead of a generalized eigenvalue problem. However
it is of same dimension as (4.11) and the convergence τd ↓ #λ(S) is expected to be
much faster than ρd ↓ #λ(S) as we have been able to include additional constraints
based on Stokes’ theorem.

5. Conclusion

We have presented a new methodology to approximate (in principle as closely
as desired) the Lebesgue volume of the sublevel set {x : g(x) ≤ 1} of a positive
multivariate polynomial g. Inspired by Jasour et al. [5], we formulate an equivalent
“volume” computation µ(I) of an interval I of the real line for a certain pushfor-
ward measure µ. The novelty with respect to [5] is that by using Stokes’ theorem
and exploiting the homogeneity of g, we are able to further reduce the problem
to solving a hierarchy of generalized eigenvalue problems for Hankel matrices of
increasing size, with no optimization involved. To the best of our knowledge, this
characterization of Lebesgue volume as the limit of eigenvalue problems of increas-
ing size is new. Moreover the methodology also extends to sublevel sets of arbitrary
polynomials. It then reduces the Lebesgue volume computation in Rn to a “vol-
ume” computation in Rd for a certain pushforward measure, where d is the degree of
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the initial polynomial. An extension to several homogeneous constraints has been
also described with a pattern similar to the extension for a single non-homogeneous
constraint. Preliminary results on a simple case reveal a drastic improvement on
the approximation scheme proposed in [5].
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