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Diameter Constrained Overlays with Faulty Links:
Equilibrium, Stability, and Upper Bounds

Luigi Alfredo Grieco, Senior Member, IEEE, Mahdi Ben Alaya, Thierry Monteil, and Khalil Drira

Abpstract—In network overlays, virtual links among remote
processes are usually established to circnmvent the limitations of
underlying protocols. The resulting dynamics have been recently
studied, based on a novel random graph model that assumes no
link failures can occur. In that model, the case of faulty links
has been only marginally stated to stimulate future research
activities, Unfortunately, network overlays are very prone to
faulty links, caused by any possible reasons that force a node
to loose its conmectivity. To bridge this gap, the present brief
deepen the implications of faulty links in diameter constrained
overlays and demonstrates that: (i) the resulting system has a
unique globally stable equilibrium point; (i) the number of links
composing the network is upper bounded in closed form; (jii) the
speed of convergence to the equilibrium point is upper bounded
in closed form too. These outcomes grant for a stable regime and
serve for estimating the overhead incurred by network nodes and
sizing them adequately. Finally, to characterize the application
bounds of the model, a stochastic analysis of its accuracy has
been proposed along with an extensive simulation campaign that
encompasses a wide range of scenarios.

Index Terms—Graph theory, Topology, Networks, Stability.

I. INTRODUCTION

Overlay systems are virtual networks, built upon logical
links that are established between remote processes that
wish to set up information delivery platforms [1]. They can
magnify the capabilities of underlying lower layer protocols
and circumvent possible limitations of physical network in-
frastructures, thus enabling Content Distribution Networks,
Peer-to-Peer (P2P) systems, and Machine-to-Machine (M2M)
applications {2].

Overlays can be classified as structured and unstructured,
The former imposes the position of each node within the
topology in order to optimize the data delivery strategy based
on the constraints of supported applications. The latter lets
nodes progressively discover peers and set up a sub-optimal
(yet efficient} mesh topology [3].

Herein, the attention is focused on diameter constrained
overlays, supporting delay sensitive applications {e.g., P2P TV
[4] and mission critical M2M systerms [51). In these appli-
cations, any message received after the expiration of a time
deadline is discarded. Therefore, it is important to upper bound
the distance (expressed as the number of links composing the
path between any couple of nodes) and its maximum vatue
{i.e., the diameter). Hence, in diameter constrained overlays,
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the diameter is bounded to a predefined threshold D in order
to lower end-to-end communication latencies [1].
The problem of building diameter constrained topologies
has been thoroughly afforded in [6] with reference to struc-
tured overlays, built upon distributed hash tables (DHT).
Recently, the first contribution that describes the dynamics
of an unstructured overlay, subject to a constraint on the
maximum diameter .0, has been formulated in [7]. This model
is grounded on random graph theory [8]-[13] and assumes
ideal conditions (i.e., perfectly reliable and stable links). The
case of unreliable links is only marginally addressed in [7]
to stimulate future research on the topic. Unfortunately, real
overlays are prone to faulty links because any deliberate or
vnfortunate loss of connectivity would result in a link that
disappears from the logical network [2]. To lift this restraint,
an enhanced formulation is proposed hereby, that extends the
findings in [7] to characterize the equilibrium and dynamics
[14] of unstructured overlays with faulty links.
In particular, the approach proposed hereby considers a
discrete time process of arrivals, each one associated to a
couple of vertices that wish to communicate. Accordingly,
a general topology formation mechanism M is formmlated,
expressing the rules that drive the addition of new edges,
obeying to the constraint on the maximum diameter ). Also,
a probabilistic node fault model is introduced that randomly
removes a fraction of links A between any couple of arrivals.
Then an approximated state space discrete time model is
proposed that describes the evolution of the average network
degree subject to M, I}, A, and the total number of nodes .
The resulting model has been theoretically analyzed to
demonstrate that:
« a unique globally stable equilibrium point exists;
¢ the speed of convergence to the equilibrium point is
upper bounded and can be expressed in closed form as a
function of A and N;

« the amplitude of the trajectory starting from zero links in
the network can be upper bounded as a function of A and
N, too.

These features ensure a stable operating regime of the
network and serve for properly estimating the overhead in-
curred by network nodes and sizing them adequately. Finally,
a stochastic analysis of the application bounds of the model
has been formulated too along with an extensive simulation
campaign that encompasses a wide range of scenarios. The
validation clearly shows that: (i) the model is able to predict
the system trajectory for small values of A; (ii) the upper
bound on the number of links is violated in less than 3.2%
of time instants in the worst case. The former result means



that the model is valid as long as the frequency of link faults
is sufficiently smaller than the setup frequency of new data
sessions, which is generally satisfied as condition in realistic
scenarios. The latter means that, albeit the model is only valid
for small values of A, the derived upper bounds are robust
enough to allow a proper sizing of overlay nodes for any A

The rest of the brief is organized as follows: the model
and its properties are presented in Sec. I Its applicability
bounds are theoretically discussed in Sec. IIL. Then, the model
is validated in Sec. IV against computer simulations. The last
Sec. V closes the letter and draws future research,

1I. THE MODEL

Mainly following the notation in [7], the target scenario
considered in this brief consists of a graph of N vertices, n,
being the g¢-th vertix (¢ € [1, N}}. Furthermore, an ordered
sequence of equi-probable ! pairs of vertices is considered,
among which a path composed of no more than I edges has
to be established. The #-th couple in the ordered sequence
of pairs of vertices is described by (n;,,ny, ). For sake of
simplicity, the variable ¢t will be referred to as time from
now on. Knowing the t-th pair, a new edge is established
in the graph if and only if the two vertices n;, and n;, are
not reciprocally reachable in less than D edges. To this end,
P,_, is defined as the probability that a pair of vertices at
time £ will not be reciprocally reachable in no more than D
edges. Since we are assuming homogeneous conditions, P
it is the same for all the possible pairs (n;,,n;,). In other
terms, F; expresses the expected number of links that will
be added at time ¢ + 1. Also, to account for faulty links, the
probability X is introduced to express the probability that a
link is lost between two time instants (i.e., A is the average
fraction of links that will get lost, for any reason, during the
establishment of two consecutive data sessions). It is worth to
note that, based on these assumptions, at any time instant, any
node pair can trigger the creation of a data session with the
same probability. As a such, subsequent results will remain
valid for any sequence of node pairs.

TABLE I
NOTATION.
Symbol | Meaning
N Number of vertices
ke Average degree at time ¢
g g-th vertex
12 Maximum diameter
{n4,, M. ) | -th pair of vertices wishing to establish a path
[ Number of edges at time £
P Probability that no path exists shorier than D + 1
edges between the vertices (n4,, ny, )
Pr{z} Probability of event
A Link Fault Probability

Based on these hypotheses , the dynamics of the number of

U1t is worth to note that equi-probable arrivals and links of the same weight
(i.e., homogeneous conditions) are usually assumed in the current literature
dealing with diameter constrained graphs [6], [7].

links in the overlay can be expressed as follows:
y=L -+ 5 ()

which, considering that the average degree [15] (i.e., the
number of edges per vertex) is k; = 2—1'{[,1, can be also expressed
as:

2
kz+1=kt'(1")\)+ﬁpt @

Tn [7], it has been demonstrated that, for a suificiently large
N, F; can be expressed as:

(%@)DH — 2 1 kDH_p,
P~ AN/ T N = I T |
t e’”p( 2. N PPA\TN TR -1

3
50 that, the dynamic model (1) or equivalently (2) are com-
pletely defined in state space.

To shed some light on the graph dynamics described so far,
Figure 1 shows some selected snapshots from the evolution of
an overlay with N = 100 nodes, link fault probability A =
0.01, and maximum diameter I = 5.

Theorem 1. For O < A < 1 and a
sufficiently  large N, the system (2) has «a
unique globally asympriotically stable equilibrium point
koo that satisfies the following inequality Z:

D+1
Proof. The proof of uniqueness has been derived in [7].
To demonstrate the asymptotical stability of the equilibrium
point, the definition of asymptotical stability will be used.
Accordingly, in £ = g it is applied a perturbation Ay to the
equilibrium point k, and the resulting trajectory is observed.
At the next time step, to + 1 the state of the system (2) moves
to:

2
koo + A1 =(1-A) - (koo + Au) + N - g(kso, Do) (9)
where A; represents the shift from the equilibrium after

one time step from the perturbation and g(keo, Do) =
S S (e )
€zp Nhoo 8 —1) .

By replacing (4) in (5), the following expression can be
obtained:

_ 2
Ay =(1=2)- Do+ 5= f(ke, Ao) ©)
— _iL_h__l —
where f(keo,Ao) = exp ( : +1$€kw+ﬁu(fl)+Au )

gPF_g
exp (—m)

Now, for Ag > 0, it can be noticed that f{keo, Ap) < 0 and
hence A; < (1—A): Ag. Moreover, | f(ks, Do)l < 1, so that,
for a sufficiently large N, A; > 0. Therefore, the following
inequalities can be written:

D<A <{1-X) A 0}

2The accuracy of the model as a function of IV has been investigated in
Sec. IV using computer simulations.
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Fig. 1. Evolution of a random graph (N = 100, A = 0.01, D = 5): a)
initial state; b) a new link is added (bold}; ¢) some links fail (hatched); d) no
link is added because a path already exists with less than [+ 1 links (bald).

Conversely, if the perturbation is negative, ie., &g < 0,
Flkoos &g) > 0 and hence A; > (1 — A) - Ag. Moreover,
since | f{koo, Ag)| < 1, for a sufficiently large NV eq. (6) gives
Ay < 0. Suramarizing, the following inequalities hold:

(I—-A)-Ap<A1 <0 (8)
Now, by putting (7) and (6) together, it yields:
{A1] < (1=A)- A )

The same approach can be used to derive the next status of
the system &y + As, which will result as:

[Agf < (1= X)-|Agf < (1= X)%-|Ag] (10)

This result can be extended also to future states, so that
the system will converge again to k. and, in general,
the maximum displacement from the equilibrium is Ap
during the transient. In other words, for ¢ > fo, |k — keo| <
Ag, for any perturbation Ag applied to the equilibrium state
and ky — ko, for £t — oo, O

Theorem 1 tells us that whatever its initial state, the system
will naturally converge to one and only one equilibrium
point. This condition, which is not straightforward in non
linear systems, means that the topology formation mechanism
described so far will provide a stable regime with limited
perturbations across the unique equilibrium point that solves
eq. (4). Furthermore, any perturbation to the equilibrivm point
applied at the time instant £, will be damped quicker than the
function {1 — A)®~%. This latter information is also useful to
predict, at steady state, the dynamics of possible perturbations
across the equilibrium and help sizing the overlay.

Besides the steady state behavior, it is also important to
study the natural trajectory of the overlay (i.e., the evolution
of the overlay starting from an initial state of zero links).

Theorem 2. For any N, the trajectory of system (2) having
as initial point kg = 0 is upper bounded as follows:
2 1-(1-X)¢ 2
by < — -
' SN

SN T (11)
Progf. For ky =0, k; can be derived from (2) thus obtaining
ki = %. Following the same rationale, ky = % - [1 — A +
Pland ks = 2 -[(1 - X)? + (1 — NP, + P,). In general,
ke = f 3ol — A - P < 2370751 = ), since
B <1Vl O

Corollary 1. The equilibrium point of system (2} is upper
bounded as follows:

2
< =
boo < 1 (12)
FProof. The proof can be easily derived from Theorem 1 with
t— oo, |

Remark L. Considering Corollary 1 and that k = %, the
number of links (oo} at steady state is no larger than 1/

Remark 2. Considering Theorem 2 and that k = %\,—‘- the
number of links (I;) is bounded by 1/X for the trajectory
starting with zero links at time zero,



Remark 3. Considering Theorem 2, the speed of convergence
to the equilibrium point is driven by (1 — A)%.

Theorem 2 and the subsequent remarks and corollaries
tell us that it is possible to upper bound the number of
links in the overlay (and hence the equilibrium point) for
the natoral trajectory in closed form. This property is very
relevant because knowing the single parameter A, it is possible
to forecast an upper limit of the number of links, whatever N
and D, Also in this case, this upper bound is useful to predict
the average degree of the overlay (i.e., the average number
of links per vertex) and size nodes adequately. Moreover,
Theorem 2 confirms the findings of Theorem 1 that refer to the
speed of convergence, that is driven by the function (1 — A)%
Moreover, with reference to Remark 2, it is worth to note that
the number of links cannot grow faster than one link per time
glot, whatever IV, so that also its upper bound is independent
from N.

In any case, it is worth to note that the results of both
Theorems are approximated because the recursive model (1)
is based on the assumption that the expected number of links
at the mext time step, knowing the number of links at the
current step, it is an accurate approximation of the actual
number of links at the next time step. In addition, even if
this one step approximation is accurate, i.., it is characterized
by a small error, the recursion in eq. (1} could magnify
the overall estimation error. For this reason, in the next
Section, the accuracy of the model will be studied through a
stochastic analysis of the standard deviation and the coefficient
of variation of the key variables of the system.

III. MODEL ACCURACY
As for any model, it is important to evaluate the applicability
of Eqs. (2} and (1) to the study of a real overlay. To this end,
the conditional random variable l;41]l; (ie., liy1 assuming
that I; is known} is introduced hereby as follows:

byl =0+ A — 5 (13)

where A; and F; are independent random variables that model
the number of links added and the number of links fallen
during the last time step, respectively. In particular, A4; is equal
to one with probability F; and to zero with probability 1— F;.
On the other hand, F; can assume any value f in the range
[O,I;]; with probability Cy, fAf - (1 — M¥e=T, with O, y =

Tl ="

Now, the expected value of 1.1 |l; can be evaluated as:

(14)

It is worth noticing that Eq. (1) is equal to the average value
of the conditional random variable Z;41|/;, so that the value of
ly1 provided by Eq. (1) is an unbiased one step estimate of
the actual value ly.q;.

To understand the accuracy of such an estimate, it is nec-
essary to evaluate the variance of [iy1|l: o ({s41|ls). Since,
A, and F, are independent of each other, o#(l41|l;) can be
computed as:

pllega)de) =L+ P — 1 - A

O'z(lt_l.lllt) = O'ﬁt +U%‘t (15)

Now, since A; and [ are binomial random variables, it
yields 6%, = P, - (1—-P)and 0%, =L - A-(1—A). Asa
consequence, the coefficient of variation C'oV = %gff‘ff%
is equal to:

VB QP+l A 1—N
L-(1—N+ P,

The coefficient CoV measures the degree of dispersion around
the expected value g, so that it is highly desirable it is much
less than one. Now, the CoV will be analyzed in different
cases. In this analysis, it will be assumed that A < 0.5, which
means that a link is more likely to remain active than falling in
each time step. This assumption is motivated alse by Theorem
2, which would result in less than two active links at steady
state for A > 0.5. By deriving Eq. (16) with respect to A, it is
immediate to discover that the maximum value of the CoV is
obtained for A = 0.5, and it is:

VB {(1—B)+ %
Covpy = Y U R+

“+P

It is worth to note that C'oVys is upper bounded by ; [+ 5
t

This means that the one step predictor used to derive the
overlay dynamics is very accurate for sufficiently large values
of I;. Now, considering that from Theorem 2 I, < %, it results
that increasing A will worsen the accuracy of the model. For
this reason, the proposed model can-be considered valid when
A<< L ‘

Notice that, this assumption does not limit the applicability
of the model because the hypothesis A << 1 simply means
that the average frequency at which links fall is much smaller
than the average rate at which new data sessions are estab-
lished, which is quite common in practice. Moreover, in the
next section it will be shown that while the model is accurate
for A << 1, the bound 1/ on the number of links, derived in
Theorem 2 and Remark 2, remains valid for almost all values
of A in the considered scenarios.

CoV =

(16)

(17

IV. VALIDATION

To validate the model (1) or equivalently (2), an ad hoc
simulator has been developed in Matlab, similarly to what is
done in [7]. The analysis carried out in the previous section
showed that the accuracy of the one step prediction provided
by (1) increases by decreasing A. Herein, the accaracy of the
model is evaluated over multiple time steps. In particular, an
overlay composed by N nodes (with N € [64,1024]) with
D ¢ [3,6] and A € [107%,10"1] has been simulated. At
the end of each simulation, the dynamics of the number of
links resulting from the simulator and from Eq. (1) have been
compared and the average absolute relative error is computed.
Table II reports the minimum and maximum values of the
average absolute relative error obtained by varying D for any
given couple of values (V, A} (sclected results are also shown
in Fig. 2). This analysis clearly shows that, as expected from
the findings of the previous section, the model is valid for
values of A much less than one.
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TABLE 11
VALIDATION RESULTS: AVERAGE ABSOLUTE RELATIVE ERROR (%)
N | A =] A =|Ax =1 A = x =1 A =
10~% 107% 10~ 10~3 10~2 10t
64 3.4, 48] [2.7,4.8]] [2.4,6.7]] [2.4, 12.8][ [6.5,8.7]] > 100
128 [ [1.5,6.5][ [1.2,5.9]1 [2.3,70] | [2.2, 13.6][ [16,30] | > 100
256 | [1.3,4.3][ [1.8,8.2] |1,12.5] | [2.8,9.5] | > 100 > 100
512 | [1.2,5.5]] [1.6,10] | [0.5,13.4] [3.1,7.9] | > 100 > 100
1024 [1.5,7.4]| [0.4,12.4] [0.7,11.3] [14.2, 24.6] > 100 > 100
TABLE III

VALIDATION RESULTS: MAXiMUM PERCENTAGE OF TIMES THE BOUND
1/A IS VIOLATED.

N X = A = by = 2 = A = A =
| 107° ' 10~% | 10— | i0~# | 1072 10t
Z a 0 0 0 3.2
28| 0 a (] 0 0.33 176
356 | 0 0 ] i 157 0.76
52| 0 0 (] i 0.63 0.53
1024 0 0 0 17 0.36 0.46

In particular, the absolute relative error is below 15% for
A < 107%, which makes perceive the proposed model a
very powerful tool to characterize unstructured overlays with
faulty links. Notice that A = 10~ means that the link failure
frequency is four orders of magnitude less than the set up rate
of new data scssions. In other words, assuming A << 1 does
not limit the applicability of the model since, usually, link
Jailures are very sporadic if compared to the rate at which
data sessions are established,

Finally, to provide a further insight, the percentage of time
instants in which the bound 1/M of Theorem 2 is violated
is registered too (see Table III). With reference to this Iast
investigation, it is worth to remark that this percentage is lower
than 3.2%, so that also in those scenarios in which the absolute
relative error is pretty high (i.e., A > 107%), the bound /A
on the number of links can be considered valid and useful to
size the overlay for any A.

V. CONCLUSION

A novel model has been proposed to characterize un-
structured overlays for delay semsitive applications, The ap-
plication bounds of the model have been discussed using
theoretical arguments and computer simulations. Remarkably,
it has been shown that this kind of overlays converge to a
unique globally stable equilibrium point having less than 1/
links, with A being the probability to loose a link during the
establishment of two consecutive data session. Moreover, it
has been demonstrated that the speed of convergence to the
equilibrium point only depends on (1 — A}. Knowing these
bounds it becomes possible to size computing resources, e.g.,
memery and CPU, in overfay nodes in order to accomodate the
overhead incurred by networking primitives. Future research
will explore heterogeneous conditions to broaden the scope of
the model.
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