
HAL Id: hal-01911676
https://laas.hal.science/hal-01911676

Submitted on 3 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A User-Perceived Availability Evaluation of a Web
Based Travel Agency

Mohamed Kaâniche, Karama Kanoun, Magnos Martinello

To cite this version:
Mohamed Kaâniche, Karama Kanoun, Magnos Martinello. A User-Perceived Availability Evaluation
of a Web Based Travel Agency. International Conference on Deependable Systems and Networks
(DSN-2003), Jun 2003, San Francisco, CA, United States. pp.709 - 718, �10.1109/DSN.2003.1209986�.
�hal-01911676�

https://laas.hal.science/hal-01911676
https://hal.archives-ouvertes.fr

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

A User-Perceived Availability Evaluation
of a Web Based Travel Agency

Mohamed Kaâniche, Karama Kanoun, and Magnos Martinello*
LAAS-CNRS — 7 Avenue du Colonel Roche

31077 Toulouse Cedex 4 — France
{Mohamed.Kaaniche, Karama.Kanoun, magnos} @laas.fr

* M. Martinello is supported by a fellowship from CAPES-Brazil.
 This work was partially supported by the European Community

(Project IST-1999-11825-DSoS)

Abstract

A hierarchical modeling framework for the dependability
evaluation of Internet-based applications is presented and
illustrated on a travel agency example. Modeling is carried out
considering four levels, namely: user, function, service and
resource levels. The first level describes how the users invoke
the application and the three remaining levels detail how the
user requests are handled by the application at distinct abstrac-
tion layers. The user perceived availability measure considered
in this paper takes into account the combined impact of
performance-related failures and traditional software and
hardware failures. For illustration purposes, several sensitivity
analysis results are presented to show the impact on this
measure of various assumptions concerning, e.g. the users
operational profile, the travel agency architecture and the fault
coverage.

1. Introduction

Growing usage and diversity of applications on the

Internet make the issue of assessing the dependability of
the delivered services as perceived by the users
increasingly important. The Internet is often used for
transaction based money critical applications such as
online banking, stock trading, reservation processing and
shopping, where the temporary interruption of service
could have unacceptable consequences on the e-business
[1-3]. Given the critical nature of such applications, the
assessment of the user perceived quality of service is a
key issue for e-business service providers and developers.
Indeed, it is important for the developers to analyze
during the architecture design phase how hardware,
software and performance related failures of the
infrastructure supporting the delivered services might
affect the quality of service perceived by the users.

Internet based applications are implemented on largely
distributed infrastructures, with multiple interconnected
layers of software and hardware components, involving

various types of servers such as web, application, and
database servers [4, 5]. Three key players are typically
involved in the provision of the services delivered by such
applications: 1) the users (i.e., the customers), 2) the e-
business provider (eBP), who implements the e-business
functions invoked by the users; these functions are based
on a set of services and resources that are internal to the
eBP site(s) or are provided by external suppliers, and 3)
the external suppliers.

Generally, the eBP has a full control of its own archi-
tecture. Therefore, a detailed dependability modeling and
analysis of this architecture can be carried out to support
design architectural decisions. However, only limited
information is generally available to analyze the depend-
ability of the external suppliers services. In this context,
remote measurements can be used to evaluate some
parameters characterizing the dependability of these
services [6-9]. These parameters can then be incorporated
into the models describing the impact of eBP component
failures and repairs on the user perceived dependability.

The discussion above shows that several issues should
be taken into account when modeling the user perceived
dependability of Internet based applications. Due to the
complexity of the target system and the difficulty to
combine various types of information (users behavior,
failure-recovery behaviors of the supporting infrastruc-
ture), a systematic and pragmatic approach is needed to
support the construction of such dependability models
[10]. In our work presented in [11], we proposed a
hierarchical framework for modeling the user perceived
dependability of e-business applications. Modeling is
done in two steps: 1) identify the functions and services
provided to the users and the resources contributing to
their accomplishment, and characterize how the users
interact with the application, and, 2) based on this, build
model(s) to assess the impact of component failures and
repairs on the quality of service delivered to the users.

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

This paper is aimed to illustrate the main concepts of
this modeling framework using a web-based travel agency
(TA) as an example. The objectives are: 1) to show how
to apply our framework based on the decomposition of
the target application according to four levels: user,
function, service and resource levels, and 2) to present
typical dependability analysis and evaluation results
obtained from modeling, to help the service providers in
making objective design decisions. The user perceived
dependability measure takes into account the combined
impact of performance related failures and traditional
software and hardware failures. For illustration purposes,
several sensitivity analysis results are presented to show
the impact on the user perceived availability of various
assumptions concerning, e.g. the users operational profile,
the travel agency architecture and the fault coverage.

Section 2 recalls the main concepts of the modeling
framework. Sections 3 and 4 present the travel agency
example and its hierarchical description. Section 5 gives
some examples of dependability evaluation results.
Finally, Section 6 concludes the paper.

2. Dependability modeling framework [12]

The information needed for dependability modeling

and analysis is structured into four levels:
• The user level describes the user operational profile in
terms of the types of functions invoked and the
probability of activation of each of them.
• The function level describes the set of functions
available at the user level.
• The service level describes the main services needed to
implement each function and the interactions among
them. Two categories of services are distinguished: those
delivered by the eBP (internal services) and those
provided by external suppliers (external services).
• The resource level describes the architecture on which
the services identified at the service level are
implemented. At this level, the architecture, and fault
tolerance and maintenance strategies implemented at the
eBP site are detailed. However, each service provided by
an external supplier is represented by a single resource
that is considered as a black box.

The dependability modeling and evaluation step is di-
rectly related to the system hierarchical description. This
is illustrated in Fig. 1 where the dependability measure
considered is availability. The outputs of a given level are
used in the next immediately upper level to compute the
availability measures associated to this level (denoted by
A(x) where x is a user, a function, a service or a resource).
Accordingly, at the service level, each service availability
is derived from the availability of the resources involved
in its accomplishment. Similarly, at the function level, the
availability of each function is obtained from the
availability of the services implementing it. Finally, at the

user level, the availability measures are obtained from the
availability of the functions invoked by the users.

Various techniques can be used to model each level:
fault trees, reliability block diagrams, Markov chains,
stochastic Petri nets, etc. The selection of the right
technique mainly depends on the kinds of dependencies
between the elements of the considered level and on the
quantitative measures to be evaluated. In Section 4, we
mainly make use of block diagrams and Markov chains to
evaluate the availability of the travel agency.

As regards the state of the art, the proposed
hierarchical description builds on some of the concepts
proposed in [13] to analyze the performance of e-business
applications. However, as our framework focuses on
dependability, we have adapted these concepts and
refined them to fulfill the objectives of our study.

Figure 1. Hierarchical availability modeling framework

The evaluation of quantitative measures characterizing

user-perceived dependability for web-based applications
is widely recognized as highly important to faithfully
reflect the impact of failures from the business point of
view [14], However, there is still a lack of modeling
examples illustrating how to address this issue. The work
presented in this paper intends to fill this gap by
illustrating on a simplified example how the modeling can
be carried out and what kinds of practical results can be
derived.

3. The Travel Agency (TA) example

The TA is designed to allow the users to plan and book

trips over the web. For this end, it interacts through
dedicated interfaces with several flight reservation
systems (AF, KLM, …), hotel reservation systems
(Sofitel, Holiday Inn, …), and car rental systems (Hertz,
…).

The TA can be seen as composed of two basic
components: the client side and the server side. The client
side handles user’s inputs, performs necessary checks and

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

forwards the data to the server side component. The latter
is the main component of the TA. It is designed to
respond to a number of calls from the client side
concerning e.g., availability checking, booking, payment
and cancellation of each item of a trip. It handles all
transactions to, and from, the booking systems, composes
items into full trips, converts incoming data into a
common data structure and finally handles all exceptions.

Starting from this very high-level description, we will
further detail it according to the various aspects required
for the hierarchical description. We will first focus on the
function and user levels together, then the service and
function levels before addressing the resource level.

3.1. Function and User levels

The behavior of the users accessing the TA web site is

characterized by the operational profile example
presented in Figure 2. The nodes “Start” and “Exit”
represent the start and end of a user visit to the TA web
site, and the other nodes identify the functions invoked by
the users during their visit. For the sake of illustration, we
have considered five functions for the TA example:
• Home: invoked when a user accesses the TA home page.
• Browse: the customer navigates through the links
available at the TA site to view any of the pages of the
site. These links include the weekly promotions, help
pages, frequent queries, etc.
• Search: the TA checks the availability of trip offers
corresponding to the criteria specified by the customer. A
user request can be composed of a flight, a hotel and a car
reservation. Based on the information provided by the
user, the TA converts the user requests into transactions to
several hotel, flight and car reservation systems and
returns the results of the search to the user.
• Book: the customer chooses the trip that suits his request
and confirms his reservation.
• Pay: the customer is ready to pay for the reservation
fees for the trips booked on the TA site.

Figure 2. User operational profile graph

The transitions among the nodes and the associated
probabilities pij describe how the users interact with the
TA web site. A given class of users is defined by a
specific set of pij. These probabilities can be obtained by
collecting data on the web site (see e.g., [15]).

The operational profile defines all user execution
scenarios (or shortly, user scenarios) when visiting the TA
web site. Each scenario is defined by the set of functions
invoked and the probability of activation of each function
in the corresponding scenario. The “Start” and “Exit”
nodes denote the beginning and end of a user scenario.

The identification of the most frequently activated
scenarios gives useful insights into the most significant
scenarios to be considered when evaluating the user
perceived dependability. Indeed, the higher the activation
probability of a given scenario, the higher its impact on
the dependability perceived at the user level. Such
measure is affected by the dependability of the functions,
services and resources involved in this scenario.

Table 1 lists the user execution scenarios derived from
Figure 2 and gives the probabilities of these scenarios (in
terms of percentage), associated to two customer profiles
(denoted as user class A and user class B). The notations
{Home - Browse}*and {Search-Book}* mean that these
functions are activated more than once in the
corresponding scenarios, due to the presence of cycles in
the graph.

User scenario π i, Class A π i, Class B
1: St-Ho-Ex 10.0 10.0
2: St-Br-Ex 26.7 6.6
3: St-{Ho- Br}*-Ex 11.3 4.2
4: St-Ho-Se-Ex 18.4 13.9
5: St-Br-Se-Ex 12.2 20.4
6: St-{Ho- Br}*-Se-Ex 7.6 9.7
7: St-Ho-{Se-Bo}*-Ex 3.0 4.7
8: St-Br-{Se-Bo}*-Ex 2.0 6.9
9: St-{Ho- Br}*-{Se-Bo}*-Ex 1.3 3.3
10: St-Ho-{Se-Bo}*-Pa-Ex 3.6 6.4
11: St-Br-{Se-Bo}*-Pa-Ex 2.4 9.4
12:St-{Ho-Br}*-{Se-Bo}*-Pa-
Ex 1.5 4.5
St: Start Ho: Home Br: Browse Se: Search Bo: Book Pa: Pay Ex: Exit

Table 1. User scenario probabilities (in%)

For the class A profile, a high proportion of users are
mainly seeking for information without a buying
intention, whereas the class B profile is characterized by a
higher proportion of users really seeking for booking a
trip. Indeed, the percentage of transactions that end up
with a payment of a trip is around 20% for user class B
while it is almost 3 times lower for user class A.
Moreover, it can be seen from Table 1 that, for the class B
profile, 80% of user transactions lead to the invocation of
the functions Search, Book or Pay. Such scenarios involve
the external reservation systems in addition to the TA
system. Therefore, the quality of the service offered by
these reservation systems has a significant impact on the
user perceived dependability. The percentage is lower
(50%) when considering the class A profile.

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

These two examples of user classes are used in Section
4 to evaluate the user perceived availability.

3.2. Service and Function levels

The service level identifies the set of servers involved

in the execution of each function and describes their
interactions. This analysis requires a deep understanding
of the business logic and the technical solutions
implemented by the TA system provider.

For the sake of illustration, Table 2 gives a simplified
example of mapping between the functions provided at
the TA site, the internal servers directly controlled by the
TA system provider and the external servers operated and
controlled by external suppliers.

The external suppliers correspond to the flight, hotel,
and car reservation systems that provide information on
the corresponding items of a trip. Also, we assume that
the TA provider uses the services of an external payment
system for handling card-based transactions.

The internal services are supported by three types of
servers: 1) Web servers that receive user requests and
send back the requested data, 2) Application servers that
implement the main operations needed to process user
requests, and Database servers handling data related
operations (for storing and retrieving information about
flight, hotel and car reservation companies, as well as
information on customer orders).

 Internal services External services

 Web Appli-
cation

Data
base Flight Hotel Car Pay

ment
Home 
Browse       
Search       
Book       
Pay       

Table 2. Mapping between functions and services

The “Home” function execution involves the web

server only. However, for the other functions several
servers are required. In this case, it is necessary to analyze
for each function the interactions among the servers
involved and all possible execution scenarios (referred to
as function scenarios). This is achieved through the
interaction diagram dedicated to each function. Examples
of interaction diagrams for the Browse, Search, Book and
Pay functions are given hereafter.
Browse: Figure 3 describes the interactions among the
servers involved in the accomplishment of the Browse
function. The “Begin” and “End” nodes identify the
beginning and the end of each function execution. Each
path from the “Begin” node to the “End” node identifies
one possible function scenario. The probability of
activation of each scenario can be evaluated by taking
into account the probabilities qij associated to the
transitions involved in the corresponding scenario. Note

that the probability of activation of non-labeled transitions
is one.

We can identify three scenarios described as follows:
• 1→2→3: The user sends a request to the web server
(node 2). The data requested is available in the local
cache and returned back to the user (node 3).
• 1→2→4→5→6: The web server accepts the user
request and sends it to the application server (node 4). In
this case the requested data is not available in the local
cache. The application server processes the request and
returns a dynamically generated page to the web server
(node 5). The latter is then forwarded to the user (node 6).
The database is not involved in this case.
• 1→2→4→7→8→9→10: The application server
requires some specific information that is on the TA
database server (node 7). After the database server has
answered the application server, the latter processes the
user request (node 8) and sends the results to the web
server (node 9). The latter generates an HTML page
incorporating the corresponding outputs (node 10).

Figure 3. Interaction diagram of the “Browse” function

Search: The interaction diagram describing the execution
of the Search function is decomposed into 9 stages
(Figure 4). The input data provided in the search request
issued by the user (node 1) are first processed by the web
server WS (node 2). WS performs necessary checks, and
then breaks down the user request into three individual
requests corresponding to each aspect of the trip. If data is
correct and in the right format, it is forwarded to the
application server AS (node 4), otherwise an exception is
sent to the user (node 3). AS uses the request information
to formulate a query and asks the database server (node 5)
for the list of booking systems to be contacted. Based on
the answer received, AS sends a query (node 6) to the
selected systems (identified by the Flight, Hotel and Car
nodes). The AND operator means that the request is
submitted to the three types of booking systems (nodes
7.a, 7.b, 7.c). The answers returned to AS are formatted
(node 8) and sent to WS (node 9) that forwards them to
the user (node 10).

The number of Flight, Hotel and Car reservation
systems is not indicated in this figure. We assume that the
TA always interacts with the same systems. A transaction
is successful when, for each service (Flight, Hotel and Car
reservation), at least one system responds.

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

Figure 4. Interaction diagram of the “Search” function

Book: An example of interaction diagram of the Book
function is given in Figure 5. The trip booking order
received from the user through WS is processed by AS.
Using the parameters embedded in the book order, AS
interacts with the corresponding flight, hotel and car
booking systems to book the selected trip. The booking
references returned to the application server are then
stored in the database, before a confirmation is sent to the
user through the web server.

Figure 5. Interaction diagram of the “Book” function

Pay: The interaction diagram for the Pay function is
presented in Figure 6. When a payment call is received
through the web server, the booking data is first checked
by the application server, then a call is sent to the
payment server, for authentication and verification
purposes, and also to accomplish the payment. Finally,
the application server updates the information in the
database concerning client orders, before sending a
confirmation to the user.

Figure 6. Interaction diagram of the “Pay” function

3.3. Resource level

The various services are mapped into the resources

involved in their accomplishment. Therefore, we need to
take into account the real hardware and software
organization of the system. With respect to external
services, as the architecture on which these services is not
known, we associate to each external service a single
resource that is considered as a black box. For internal
services, it is possible to detail the organization of internal
resources for which the architecture is known.

Various architectural solutions are possible for
implementing the internal services, considering different
organizations of the servers on the hardware support (e.g.,
dedicated hosts for each server, vs. multiple servers on the
same host) or different fault tolerance strategies (non-
redundant servers vs. replicated servers). Replicated
servers can be located at one site or be geographically

distributed at distinct sites. Also, fault tolerance can be
applied to provide redundant accesses to the Internet or
redundant communication links between internal
resources. Additionally, the architecture solutions might
be compared with regards to the maintenance strategy
adopted by the TA provider (e.g., immediate vs. deferred
maintenance, dedicated vs. shared repair resources).

For illustration purposes, we consider the two
architectures presented in figures 7 and 8. We assume that
the external resources are identical for both architectures.
They correspond to Flight reservation, Hotel reservation,
Car reservation and Payment. We assume that the flight,
hotel and car reservation services are provided by
respectively NF, NH and NC components each.

The basic architecture (Figure 7) consists in allocating
a dedicated host to each server and interconnecting these
hosts through a LAN. The LAN is viewed as a single
resource providing communication between the servers.

Figure 7. Basic architecture

Figure 8. Redundant architecture

The basic architecture suffers from several weak points
due to the lack of redundancy and scalability. The
architecture described in Figure 8 applies redundancy in
several places to improve the dependability and
scalability of the basic architecture. It is based on a server
farm configuration with load balancing, including NW
web servers, two application servers and two database
servers with two mirrored disks. The servers are
connected through a LAN. Indeed, several LANs are
generally used to interconnect these servers, nevertheless
we will assume that all of them are represented as a single
LAN. Also, to simplify the modeling, the load balancers
are not explicitly described in this architecture.

In the next section, we will model the availability of
both the basic and redundant architectures.

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

4. TA availability modeling

The availability modeling of the TA will be carried out

according to the hierarchical description of the system in
four steps (see Figure 1), starting at the service level
considering the two architectures of Figures 7 and 8.

4.1. Service level availability

At this step, we are concerned with the evaluation of

external and internal service availabilities.

4.1.1. External services. Each external system is
modeled as a black box that is assumed to fail
independently of all the others.
Let us consider the following notations:
• AFi, AHj and ACk : Availabilities of a flight, hotel and car
reservation system, (i = 1, …, NF; j = 1, … NH; k = 1, …,
NC).
• APS : Availability of the payment system.
• Anet: Availability of the TA connectivity to the Internet.

Using the failure independence assumption and
considering that the service is provided as long as at least
one reservation system for each item of a trip (flight, hotel
and car reservation) is available, the availability of the
external services can be derived as in Table 3. It is worth
mentioning that if the TA connectivity to the Internet is
unavailable, none of these services is provided. Thus, the
availability of the TA connectivity to the Internet will be
accounted for by multiplying the user perceived
availability expression by Anet (cf. Section 4.3).

!

A(Flight) = 1 " (1"
i=1

NF

AFi)

!

A(Hotel) =1 " (1"
i=1

NH

AHi)

!

A(Car) = 1 " (1"
i=1

NC

ACi) A(Payment service) = APS

Table 3. External service availability

4.1.2. Internal services. These concern the web,
application and database services.

For both architectures of Figures 7 and 8, the
communication between servers is achieved by a local
area network (LAN). The LAN is assumed to be a single
point of failure, i.e., when the LAN is unavailable, all
internal services are unavailable. As a consequence, the
LAN availability, denoted by ALAN, is a multiplying factor
in all equations giving the various function availabilities
(as will be seen in Section 4.2). ALAN can be evaluated
using for example the models discussed in [16, 17].

As the primary objective of this paper is to show the
applicability of the proposed approach to the TA example,
we make simplistic assumptions for the application and
database services. More realistic assumptions are made
for the web service, to illustrate the kind of more complex
calculations that can be performed.

Application and database service availability: Let us
denote by A(CAS) and A(CDS) the availabilities of the
computer hosts associated to the application and database
servers, respectively. The disk availability is denoted by
A(Disk). To simplify the presentation we assume that the
computer hosts and the disks fail independently of each
other. The application and database service availability
(denoted as, A(AS) and A(DS)) are given in Table 4.

Basic
architecture Redundant architecture

A(AS)

!

A(CAS)

!

1 " 2(1 "A(CAS))

A(DS)

!

A(CDS)A(Disk)

!

 1 " 2(1 "A(CDS))[] 1 " 2(1 "A(Disk))[]

Table 4. A� � � � � � � � � � and database service
availability

In the following, we focus on the evaluation of the web

service availability considering the basic and redundant
architectures, respectively.

Web service availability: We take into account:1)
hardware and software failures that affect the computer
host and lead to web server failure, and 2) performance-
related failures that occur when the incoming requests are
not serviced due to the limited capacity of the web servers

The web service is assumed to be available when
neither of the above types of failures occurs.

The impact of both types of failures on the web service
availability can be accounted for by adopting a composite
performance and availability evaluation approach [18,
19]. The main idea consists in combining the results
obtained from two models: a pure performance model and
a pure availability model. The performance model takes
into account the request arrival and service processes and
evaluates performance related measures conditioned on
the state of the system as determined from the availability
model. The availability model is used to evaluate the
steady state probability associated to the system states that
result from the occurrence of failures and recoveries.

This approach is based on the assumption that the sys-
tem reaches a quasi steady state with respect to the per-
formance-related events, between successive occurrences
of failure-recovery events. This assumption is valid when
the failure/recovery rates are much lower than the request
arrival/service rates, which is typically true in our context.
Basic architecture: It is composed of a unique computer
host, CWS. Let us denote by pK the probability that the
web server input buffer (whose size is K) is full when a
request is received. The evaluation of pK is derived from
the performance model and depends on the assumptions
made about the request arrival process and the request
service process. Let us assume that the request arrivals are
modeled by a Poisson process with rate α and the request

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

service times are exponentially distributed with rate ν.
Then the web server behavior governed by the arrival and
service processes can be modeled by an M/M/1/K queue.

The probability that an arriving request is lost due to
buffer being full is given by (see e.g., [20]):

!

 Kp =
K
"

1#"

1#
K+1
"

 with " = $
%

 (1)

The availability model is composed of two states: up
and down states. The steady state probability of the up
state corresponds to the system steady-state availability
denoted A(CWS).

Thus, the availability of the web service is:

!

A(Web service) = (1 "pK)A(CWS) (2)
This definition of availability allows incorporation of

the inherent dependence between performance and
dependability in one equation.

Redundant Architecture: The redundant architecture is
composed of NW identical web servers. We assume that
all component failures are independent and that the web
service is provided as long as at least one of the redundant
component systems is available.

The performance model associated to this architecture
to evaluate pK(i), the probability that web requests are lost
due to input buffer being full, is assumed to be described
by an M/M/i/K queue, where i is the number of servers
available and K is the size of the buffer.

For a system state with i operational servers, pK (i), is
given by (see, e.g., [20]):

!

 Kp (i) =

K"
K-ii i!

 #1

j"

j!
 +

j"
j-i

i i!

j=i

K
$

j=0

i#1
$
%

&
'

(

)
* i + 2 (3)

Note that pK (1) is given by equation 1.

With respect to the availability model, the aim is to

model the redundant architecture behavior resulting from
the occurrence of failures/repairs, in order to evaluate the
steady state probability associated to system states i (i is
the number of operational servers, as denoted above).

Two assumptions are made with regards to the
coverage of web server failures: 1) perfect coverage, and
2) imperfect coverage.

Perfect coverage: In the Figure 9 model, it is assumed
that each web server runs on a dedicated computer host.
Web server failures occur with rate λ. The model assumes
shared repair facilities with repair rate µ. When a server
fails, it is automatically disconnected and the system is
reconfigured (with probability 1) with the web servers
that are still operational.

Figure 9. Markov model (perfect coverage)
Let us denote by Πi the steady-state probability of state

i, i = 0, 1, …, NW. In state i, i≠0, i web servers are
available to process the input requests. (Π0 corresponds to
the state where all web server are down).

!

 i" = 1
i!

i
µ

#
$

%
&
'

(
) o" and 0" = 1

i!

i
µ

#
$

%
&
'

(
)

i=0

wN

*
+

,
-

.

/
0

 11

 (4)

The availability of the web service is as follows:

!

A(Web service) = 1" # i pK(i)
i=1

Nw

$ + #o

%
&

'
(

 (5)

where pK (i) is given by equation (3).
The expression between the brackets corresponds to

the probability that a web request is not serviced either
due a) to buffer being full or b) to web server
unavailability.
Imperfect coverage: This assumption is included in the
model presented in Figure 10, where from each state i,
two transitions are considered:
1) After a covered failure (transition with rate icλ  the

system is automatically reconfigured into an
operational state with (i-1) web servers.

2) Upon the occurrence of an uncovered failure
(transition with rate i(1-c)λ  the system moves to a
down state yi, where a manual reconfiguration is
required before moving to operational state (i-1). The
reconfiguration times are exponentially distributed
with mean 1/β.

Figure 10. Markov model (imperfect coverage)

Solving Figure 10 model for steady-state probabilities
leads to:

!

i" = 1
i!

i
µ

#
$

%
&
'

(
) o" i=1,..., NW

 (6)

!

i
y" =

µ(1#c)
$(i-1)!

i-1
µ
%
&

'
(

)

*
+ o" i=1,..., NW -2

 (7)

!

0" = 1
i!

i
µ
#
$

%
&

'

(
)

i=0

Nw

* +
µ(1+c)

,(Nw-i-1)!

Nw-i-1
µ
#()

i=0

Nw-2

*
-

.
/

0

1
2

 +1

 (8)

As states yi correspond to down states, the availability
of the web service is computed as follows:

!

A(Web service) = 1" # i
i=1

Nw

$ pK(i) + #
iy

i=1

Nw"2
$ + # o

%

&

'

(
 (9)

where pK (i), is also given by equation (3).

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

Summary: Table 5 recalls the equations of the web server
availability for the basic and redundant architecture,
assuming perfect and imperfect coverage.

Basic architecture

!

A(Web service) = A(CWS)(1 "pK)

!

 Kp =
K
"

1#"

1#
K+1
"

 " = $
%

Redundant architecture (perfect coverage)

!

A(Web service) = 1" # i pK(i)
i=1

Nw

$ + #o

%
&

'
(

!

 Kp (i) =

K"
K-ii i!

 #1

j"

j!
 +

j"
j-i

i i!

j=i

K
$

j=0

i#1
$
%

&
'

(

)
*

!

 " = #
$

!

 0" = 1

i!

i
µ

#
$

%
&
'

(
)

i=0

wN

*
+

,
-

.

/
0

 11

!

 i" = 1
i!

i
µ

#
$

%
&
'

(
) o"

Redundant Architecture (imperfect coverage)

!

A(Web service) = 1" # i
i=1

Nw

$ pK(i) + #
iy

i=1

Nw"2
$ + #o

%

&

'

(

!

 Kp (i) =

K"
K-ii i!

 #1

j"

j!
 +

j"
j-i

i i!

j=i

K
$

j=0

i#1
$
%

&
'

(

)
*

!

 " = #
$

!

 0" = 1
i!

i
µ
#
$

%
&
'

(
)

i=0

wN

* +
µ(1+c)

,(Nw-i-1)!

wN -i-1
µ
#()

i=0

wN -2

*
-

.
/

0

1
2

 +1

!

 i" = 1
i!

i
µ

#
$

%
&
'

(
) o"

!

iy" =

µ(1#c)
$(i-1)!

i-1
µ
%
&

'
(

)

*
+ o"

Table 5. Web service availability

4.2. Function level availability

The availability evaluation of each function is based on

the availabilities of the services involved in its
accomplishment and — when various function execution
scenarios are possible — on the activation probability of
each scenario. Table 6 gives the availability for the Home,
Browse, Search, Book and Pay functions.
A(WS), A(AS), A(DS) correspond to A(Web service),
A (Application service) and A (Database service) given in
Tables 4 and 5. A (PS) corresponds to A(Payment service)
given in Table 4. A (Flight), A (Hotel) and A (Car) are
given in Table 4. The parameters qij involved in the
availability of the Browse function are associated to the
three execution scenarios of this function given in
Section 3.2 (Fig. 3).

Note that all function equations include the product
AnetALAN, meaning that if the TA connectivity to the
Internet or the internal communication among the servers
is not available, none of the TA functions can be invoked
by the users. Also, the Book function has the same
availability equation as the Search function. This is due to

the assumption that the former uses a subset of the
resources used by the latter. Indeed, in our example the
Book function is achieved only if the Search function has
succeeded. This led us to assume that if the Search
function succeeds, automatically the Book function
succeeds. Of course, other situations can be modeled.

A (Home) = Anet ALAN A(WS)
A (Browse) = Anet ALAN A(WS) [q23 + A(AS)(q24.q45 + q24.q47.A(DS))]

A (Search) =AnetALAN A(WS) A(AS) A(DS) A(Flight) A(Hotel) A(Car)
A (Book) = AnetALAN A(WS) A(AS) A(DS) A(Flight) A(Hotel) A(Car)
A (Pay) = Anet ALAN A(WS) A(AS) A(DS) A(PS)

Table 6. Function level availabilities

4.3. User level availability

For a given user operational profile, the user perceived
availability can be obtained by evaluating for each user
execution scenario derived from the operational profile,
the expression specifying that all functions invoked in the
corresponding scenario are available. When several func-
tions are invoked in a given scenario, a careful analysis of
the dependencies that might exist among the functions
due to shared services or resources is needed at this stage
to evaluate the availability measure associated to the sce-
nario from the availability of the corresponding functions.

Based on the activation probabilities of all user
scenarios i, πi, (presented in Table 1) and the availability
of the functions involved in each scenario, the user
availability is given by equation (10).
A(user) = Anet ALAN A(WS)[π1 +

 (π2 +π3) { q23 + A(AS) (q24 q45 + q24 q47 A(DS)}
+A(AS)A(DS)A(Flight)A(Hotel)A(Car)
{(π4 +π5+π6+π7+π8+π9)+(π10 +π11+π12)A(PS)}] (10)

It can be seen that the availabilities of the LAN, the net
and the web service are the most influential ones (i.e.,
their impact is of the first order, while the others are at
least at the second order). This is due to the fact that all
requests (i.e., all user scenarios) use these three services.

5. Evaluation results

We will first show the impact of the number of web

servers as well as their failure rates on the web service
availability, according to the request arrival rates. Then,
based on the various equations derived in the previous
section, we will evaluate the user availability as perceived
by user classes A and B.

5.1. Web service availability results

 Figures 11 and 12 give the web service availability for

perfect and imperfect fault coverage, with the number of
web servers NW varying from 1 to 10. When only one

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

web server is used (NW = 1), the results correspond to the
basic architecture. The parameters used to obtain these
curves are indicated on the figures. Sensitivity analyses
are done considering different values of web server failure
rates (10-2, 10-3 and 10-4 per hour) and request arrival
rates (50, 100 and 150 requests per second). It is assumed
that each web server has a processing rate ν equal to 100
per second and a repair rate µ equal to 1 per hour. The
mean reconfiguration rate of the web server architecture
(β) is 12 per hour (i.e., 1/β = 5 min) and the buffer size K
is assumed to be 10.

Figure 11. Web service unavailability (perfect coverage)

Figure 12. Web service unavailability (imperfect coverage)

Both figures show that increasing the number of web

servers NW from 1 to 2, 3 or 4 (depending on the failure
and request arrival rates) reduces the web service
unavailability. However, the trend is reversed when the
coverage is imperfect for NW values higher than 4
(Figure 12). This is due to the fact that when the coverage
is imperfect, increasing the number of servers also
increases the probability for the system being in states yi
(of Figure 10) where the web service is unavailable and a
manual reconfiguration action is required. Actually, the
probability of a request being rejected because the buffer
is full plays a significant role until a certain value of NW.
When the number of servers is higher than the threshold
value, the total service rate and the buffer capacity are
sufficient to handle the flow of arrivals without rejecting
requests. In this case, the unavailability of the web service

mainly results from hardware and software failures
leading the web server architecture to a down state.
Compared to the imperfect coverage model, it can be
noticed that the model with perfect coverage is more
sensitive to the variation of NW. Indeed the unavailability
decreases exponentially when NW increases and the trend
is not reversed for values higher than 4. Also, the web
servers failure rate has a significant impact on availability
only when the system load (α/ν) is lower than 1.

Design decisions can be made based on the results
presented on these figures. In particular, we can determine
the number of servers needed to achieve a given
availability requirement, or evaluate the maximum
availability that can be obtained when the number of
servers is set to a given value. For instance, considering
the model with imperfect coverage, the number of servers
needed to satisfy an unavailability lower than 5 min/year
(unavailability < 10-5), with a failure rate equal to 10-3 per
hour will be at least NW=2 if the request arrival rate is 50
per second and NW=4 if the request arrival rate is 100 per
second. We obtain the same result with a failure rate
10-4per hour, however such a requirement cannot be
satisfied with a failure rate of 10-2per hour.

Similar sensitivity analyses can be done to study the
level of availability that can be achieved when the number
of web servers is set to a given value. For example, if we
decide to employ three servers to support the web service,
we would have an unavailability lower than 1 hour per
year, when the failure rate varies from 10-2 to 10-4 and
the system load (α/ν) is less than 1.

5.2. User level availability results

Considering equation (9), we will evaluate the

availability as perceived by user classes A and B. The
values of the parameters involved in this equation are
given in Table 7. The probabilities characterizing user
execution scenarios for classes A and B profiles have
been presented in Table 1. It is assumed that the web
service is implemented on four servers, with imperfect
coverage (NW=4, c=0.98, α=100/sec, λ=10-4/hour).

Anet = ALAN = 0.9966 A(CAS) = A(CDS)= 0.996 A(Disk) = 0.9
APS = AFi = AHi = ACi = 0.9 A(WS) = 0.999995587
q23 = 0.2 q24 = 0.8 q45 = 0.4 q47 = 0.6

Table 7. Model parameters

Table 8 presents the user perceived availability for user

classes A and B, considering different values for the
number of flight, car and hotel reservation systems (NF,
NH, NC) interacting with the travel agency system. The
same number is assumed for NF, NH and NC.

The results show that for a given user class, the user
perceived availability increases significantly when the

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

number of reservation systems increases from 1 to 4, and
then stabilizes. The availability variation rate is directly
related to the availability assigned to each reservation
system. Comparison of the results obtained for class A
and B users show that different operational profiles might
lead to significant differences in the availability perceived
by the users. For instance, considering the case NF = NH =
NC ≥ 5, the user perceived unavailability is about 173
hours per year for class A users and 190 hours for class B
users. Such unavailability takes into account all the
scenarios that might be invoked by the users.

Table 8. Class A and B user availabilities wrt NF, NH , NC

The user perceived availability can be analyzed from

another perspective by grouping user scenarios into four
categories, denoted as SC1, SC2, SC3 and SC4, and
evaluating the contribution of each category to the
perceived availability:

• SC1 gathers all scenarios that lead to the execution of
functions “Home” or “Browse” without invoking the
other functions (scenarios 1-3 of Table 1).

• SC2 gathers all scenarios that include the invocation of
the “Search” function, without going through the “Book”
or “Pay” functions (scenarios 4-6 of Table 1).

• SC3 gathers all scenarios that include the “Book” function
(scenarios 7-9 of Table 1).

• SC4 gathers all scenarios that reach the “Pay” function
(i.e., scenarios 10-12 of Table 1).

This is illustrated on figure 13 considering class A and
class B users, respectively, and assuming that the web
service is implemented on four servers with imperfect
coverage.

UA (A users) (respectively UA (B users)) denotes the
unavailability perceived by Class A users, and UA(SCi)
denotes the contribution of scenarios SCi to the user
perceived unavailability.

Figure 13. User perceived unavailability and UA(SCi)

It can be seen that the unavailability caused by

scenarios SC4 that end up with a trip payment is higher
for class B users compared to class A users (43 hours
downtime per year for class B users compared to 16 hours

for class A users. when considering the steady values).
Therefore, the impact in terms of loss of revenue for the
TA provider will be higher. Indeed. if the users
transaction rate is 100 per second, the total number of
transactions ending up with a payment that are lost is 5.7
million for class A users and 15.5 million for class B
users. Assuming that the average revenue generated by
each transaction is 100$. Then the loss of revenue
amounts to 570 million dollar and 1.55 billion dollar,
respectively. This result clearly shows that it is important
to have a faithful estimation of the user operational profile
to obtain realistic predictions of the impact of failures
from the economic and business viewpoints.

6. Conclusion

In this paper, we have illustrated the main concepts

that we defined within our hierarchical modeling
framework proposed in [12] for the dependability
evaluation of internet based applications on a travel
agency example. Our objectives were: 1) to show how to
apply our framework considering the decomposition of
the target system according to four levels: user, function,
service, and resource levels, and 2) to present typical
dependability analysis and evaluation results that could be
obtained from the modeling to help the e-business
providers in making objective design decisions.

For the sake of illustration, we have deliberately
considered simplified (yet realistic) assumptions,
concerning the users operational profile and the TA
architecture models, and analyzed their impact on the user
perceived availability. The availability measure
considered takes into account the impact of performance
related failures as well as traditional software and
hardware failures. The sensitivity analyses presented in
this paper clearly show the appropriateness of this
measure. We have showed that the proposed hierarchical
framework provides a systematic and pragmatic modeling
approach, that is necessary to be able to evaluate the
dependability characteristics of the target application at
different levels of abstractions.

Future work will be focused on the extension of the
framework to handle more complex assumptions and
models. For example, besides taking into account
performance failures related to the loss of user
transactions due to servers input buffers being full, we can
also extend the measure to include failures that occur
when the response time exceeds an acceptable threshold.

References
[1] Bakos Y., “The Emerging Role of Electronic Marketplaces
on the Internet”, Communications of the ACM, 41 (8), pp.35-42,
1998.

NF = NH = NC A(A users) A(B users)
1 0.84235 0.76875
2 0.96509 0.95529
3 0.97867 0.97593
4 0.98004 0.97802
5 0.98018 0.97822
10 0.98020 0.97825

Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium,
San Francisco, CA, USA, June 2003, pp. 709-718

[2] Menascé D. A. and Almeida V. A. F., Capacity Planning
for Web Services: Metrics, Models, and Methods, Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2002.

[3] Shim S. S. Y., Pendyala V. S., Sundaram M. and Gao J. Z.,
“Business-to-Business E-Commerce Frameworks”, Computer
(October), pp.40-47, 2000.

[4] Purba S., Architectures for E-Business Systems: Building
the Foundation for Tomorrow's Success, Best Practices Series,
AUERBACH Publications - CRC Press LLC, Boca Raton, FL,
USA, 2002.

[5] Goodyear M., Enterprise System Architectures: Building
Client/Server and Web-based Systems, AUERBACH
Publications - CRC Press LLC, Boca Raton, FL, USA, 2000.

[6] Long D., Muir A. and Golding R., “A Longitudinal Survey
of Internet Host Reliability”, in Proc. 14th Symposium on
Reliable Distributed Systems (SRDS-95), pp.2-9, Bad Neuenahr,
Germany, September 1995.

[7] Kalyanakrishnam M., Iyer R. K. and Patel J. U.,
“Reliability of Internet Hosts: a Case Study from the End User's
Perspective”, Computer Networks, 31, pp.47-57, 1999.

[8] Machiraju V., Dekhil M., Griss M. and Wurster K., E-
services Management Requirements, HP Laboratories Palo Alto,
CA, USA, N°HPL-2000-60, May 2000.

[9] Paxson V., Mahdavi J., Adams A. and Mathis M., “An
Architecture for Large-Scale Internet Measurement”, IEEE
Communications Magazine (August), pp.48-54, 1998.

[10] Xie W., Sun H., Cao Y. and Trivedi K. S., “Modeling of
Online Service Availability Perceived by Web Users”, in IEEE
Global Telecommunications Conference (GLOBECOM 2002),
IEEE Computer Society, Taipei, Taiwan, November 2002.

[11] Kaâniche K., Kanoun K. and Rabah M., A Preliminary
Framework for SoS Dependability Modelling and Evaluation,
DSoS Project, IST-1999-11585, LAAS Report N° 01157, April
2001.

[12] Kaâniche K., Kanoun K. and Rabah M., “A Framework for
modeling the Availability of e-Business Systems”, in 10th
International Conference on Computer Communications and
Networks, pp.40-45, IEEE CS, Scottsdale, AZ, USA, 15-17
October 2001.

[13] Menascé D. A. and Almeida V. A. F., Scaling for E-
Business: Technologies, Models, Performance, and Capacity
Planning, Prentice Hall PTR, Upper Saddle River, NJ, USA,
2000.

[14] van Moorsel A., “Metrics for the Internet Age: Quality of
Experience and Quality of Business”, in Fifth International
Workshop on Performability Modeling of Computer and
Communication Systems, pp.26-31, Universität Erlangen-
Nürnberg, Institut für Informatik, Germany, September 2001.

[15] Menascé D. A., Almeida V. A. F., Fonseca R. C. and
Mendes M. A., “Business-oriented Resource Management
Policies for E-commerce Servers”, Performance Evaluation, 42
(2-3), pp.223-239, 2000.

[16] Hariri S. and Mutlu H. B., “A Hierarchical Modeling of
Availability in Distributed Systems”, in 11th International

Conference on Distributed Computing Systems, pp.190-197,
IEEE Computer Society, Arlington, TX, USA, 1991.

[17] Kanoun K. and Powell D., “Dependability evaluation of bus
and ring communication topologies for the Delta-4 distributed
fault-tolerant architecture”, in 10th IEEE Symposium on Reliable
Distributed Systems (SRDS-10), pp.130-141, IEEE Computer
Society, Pisa, Italy, 1991.

[18] Meyer J. F., “On Evaluating the Performability of
Degradable Computer Systems”, IEEE Transactions on
Computers, C-29 (8), pp.720-731, 1980.

[19] Meyer J. F., “Closed-form Solutions of Performability”,
IEEE Transactions on Computers, C-31 (7), pp.648-657, 1982.

[20] Allen A. O., Probability, Statistics, and Queuing Theory —
With Computer Science Applications, Computer Science and
Applied Mathematics, Academic Press, 1978.

