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Abstract 
 

A hierarchical modeling framework for the dependability 
evaluation of Internet-based applications is presented and 
illustrated on a travel agency example. Modeling is carried out 
considering four levels, namely: user, function, service and 
resource levels. The first level describes how the users invoke 
the application and the three remaining levels detail how the 
user requests are handled by the application at distinct abstrac-
tion layers. The user perceived availability measure considered 
in this paper takes into account the combined impact of 
performance-related failures and traditional software and 
hardware failures. For illustration purposes, several sensitivity 
analysis results are presented to show the impact on this 
measure of various assumptions concerning, e.g. the users 
operational profile, the travel agency architecture and the fault 
coverage. 
  
 
1. Introduction 

 
Growing usage and diversity of applications on the 

Internet make the issue of assessing the dependability of 
the delivered services as perceived by the users 
increasingly important. The Internet is often used for 
transaction based money critical applications such as 
online banking, stock trading, reservation processing and 
shopping, where the temporary interruption of service 
could have unacceptable consequences on the e-business 
[1-3]. Given the critical nature of such applications, the 
assessment of the user perceived quality of service is a 
key issue for e-business service providers and developers. 
Indeed, it is important for the developers to analyze 
during the architecture design phase how hardware, 
software and performance related failures of the 
infrastructure supporting the delivered services might 
affect the quality of service perceived by the users.  

Internet based applications are implemented on largely 
distributed infrastructures, with multiple interconnected 
layers of software and hardware components, involving 

various types of servers such as web, application, and 
database servers [4, 5]. Three key players are typically 
involved in the provision of the services delivered by such 
applications: 1) the users (i.e., the customers), 2) the e-
business provider (eBP), who implements the e-business 
functions invoked by the users; these functions are based 
on a set of services and resources that are internal to the 
eBP site(s) or are provided by external suppliers, and 3) 
the external suppliers. 

Generally, the eBP has a full control of its own archi-
tecture. Therefore, a detailed dependability modeling and 
analysis of this architecture can be carried out to support 
design architectural decisions. However, only limited 
information is generally available to analyze the depend-
ability of the external suppliers services. In this context, 
remote measurements can be used to evaluate some 
parameters characterizing the dependability of these 
services [6-9]. These parameters can then be incorporated 
into the models describing the impact of eBP component 
failures and repairs on the user perceived dependability.  

The discussion above shows that several issues should 
be taken into account when modeling the user perceived 
dependability of Internet based applications. Due to the 
complexity of the target system and the difficulty to 
combine various types of information (users behavior, 
failure-recovery behaviors of the supporting infrastruc-
ture), a systematic and pragmatic approach is needed to 
support the construction of such dependability models 
[10]. In our work presented in [11], we proposed a 
hierarchical framework for modeling the user perceived 
dependability of e-business applications. Modeling is 
done in two steps: 1) identify the functions and services 
provided to the users and the resources contributing to 
their accomplishment, and characterize how the users 
interact with the application, and, 2) based on this, build 
model(s) to assess the impact of component failures and 
repairs on the quality of service delivered to the users.  
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This paper is aimed to illustrate the main concepts of 
this modeling framework using a web-based travel agency 
(TA) as an example. The objectives are: 1) to show how 
to apply our framework based on the decomposition of 
the target application according to four levels: user, 
function, service and resource levels, and 2) to present 
typical dependability analysis and evaluation results 
obtained from modeling, to help the service providers in 
making objective design decisions. The user perceived 
dependability measure takes into account the combined 
impact of performance related failures and traditional 
software and hardware failures. For illustration purposes, 
several sensitivity analysis results are presented to show 
the impact on the user perceived availability of various 
assumptions concerning, e.g. the users operational profile, 
the travel agency architecture and the fault coverage. 

Section 2 recalls the main concepts of the modeling 
framework. Sections 3 and 4 present the travel agency 
example and its hierarchical description. Section 5 gives 
some examples of dependability evaluation results. 
Finally, Section 6 concludes the paper. 

 
2. Dependability modeling framework [12] 

 
The information needed for dependability modeling 

and analysis is structured into four levels: 
• The user level describes the user operational profile in 
terms of the types of functions invoked and the 
probability of activation of each of them. 
• The function level describes the set of functions 
available at the user level. 
• The service level describes the main services needed to 
implement each function and the interactions among 
them. Two categories of services are distinguished: those 
delivered by the eBP (internal services) and those 
provided by external suppliers (external services). 
• The resource level describes the architecture on which 
the services identified at the service level are 
implemented. At this level, the architecture, and fault 
tolerance and maintenance strategies implemented at the 
eBP site are detailed. However, each service provided by 
an external supplier is represented by a single resource 
that is considered as a black box. 

The dependability modeling and evaluation step is di-
rectly related to the system hierarchical description. This 
is illustrated in Fig. 1 where the dependability measure 
considered is availability. The outputs of a given level are 
used in the next immediately upper level to compute the 
availability measures associated to this level (denoted by 
A(x) where x is a user, a function, a service or a resource). 
Accordingly, at the service level, each service availability 
is derived from the availability of the resources involved 
in its accomplishment. Similarly, at the function level, the 
availability of each function is obtained from the 
availability of the services implementing it. Finally, at the 

user level, the availability measures are obtained from the 
availability of the functions invoked by the users. 

Various techniques can be used to model each level: 
fault trees, reliability block diagrams, Markov chains, 
stochastic Petri nets, etc. The selection of the right 
technique mainly depends on the kinds of dependencies 
between the elements of the considered level and on the 
quantitative measures to be evaluated. In Section 4, we 
mainly make use of block diagrams and Markov chains to 
evaluate the availability of the travel agency. 

As regards the state of the art, the proposed 
hierarchical description builds on some of the concepts 
proposed in [13] to analyze the performance of e-business 
applications. However, as our framework focuses on 
dependability, we have adapted these concepts and 
refined them to fulfill the objectives of our study. 

 
Figure 1. Hierarchical availability modeling framework 
 
The evaluation of quantitative measures characterizing 

user-perceived dependability for web-based applications 
is widely recognized as highly important to faithfully 
reflect the impact of failures from the business point of 
view [14], However, there is still a lack of modeling 
examples illustrating how to address this issue. The work 
presented in this paper intends to fill this gap by 
illustrating on a simplified example how the modeling can 
be carried out and what kinds of practical results can be 
derived. 

 
3. The Travel Agency (TA) example  

 
The TA is designed to allow the users to plan and book 

trips over the web. For this end, it interacts through 
dedicated interfaces with several flight reservation 
systems (AF, KLM, …), hotel reservation systems 
(Sofitel, Holiday Inn, …), and car rental systems (Hertz, 
…).  

The TA can be seen as composed of two basic 
components: the client side and the server side. The client 
side handles user’s inputs, performs necessary checks and 
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forwards the data to the server side component. The latter 
is the main component of the TA. It is designed to 
respond to a number of calls from the client side 
concerning e.g., availability checking, booking, payment 
and cancellation of each item of a trip. It handles all 
transactions to, and from, the booking systems, composes 
items into full trips, converts incoming data into a 
common data structure and finally handles all exceptions.  

Starting from this very high-level description, we will 
further detail it according to the various aspects required 
for the hierarchical description. We will first focus on the 
function and user levels together, then the service and 
function levels before addressing the resource level. 

 
3.1. Function and User levels 

 
The behavior of the users accessing the TA web site is 

characterized by the operational profile example 
presented in Figure 2. The nodes “Start” and “Exit” 
represent the start and end of a user visit to the TA web 
site, and the other nodes identify the functions invoked by 
the users during their visit. For the sake of illustration, we 
have considered five functions for the TA example:  
• Home: invoked when a user accesses the TA home page. 
• Browse: the customer navigates through the links 
available at the TA site to view any of the pages of the 
site. These links include the weekly promotions, help 
pages, frequent queries, etc. 
• Search: the TA checks the availability of trip offers 
corresponding to the criteria specified by the customer. A 
user request can be composed of a flight, a hotel and a car 
reservation. Based on the information provided by the 
user, the TA converts the user requests into transactions to 
several hotel, flight and car reservation systems and 
returns the results of the search to the user.  
• Book: the customer chooses the trip that suits his request 
and confirms his reservation. 
• Pay: the customer is ready to pay for the reservation 
fees for the trips booked on the TA site. 
 

 
Figure 2. User operational profile graph 

The transitions among the nodes and the associated 
probabilities pij describe how the users interact with the 
TA web site. A given class of users is defined by a 
specific set of pij. These probabilities can be obtained by 
collecting data on the web site (see e.g., [15]). 

The operational profile defines all user execution 
scenarios (or shortly, user scenarios) when visiting the TA 
web site. Each scenario is defined by the set of functions 
invoked and the probability of activation of each function 
in the corresponding scenario. The “Start” and “Exit” 
nodes denote the beginning and end of a user scenario.  

The identification of the most frequently activated 
scenarios gives useful insights into the most significant 
scenarios to be considered when evaluating the user 
perceived dependability. Indeed, the higher the activation 
probability of a given scenario, the higher its impact on 
the dependability perceived at the user level. Such 
measure is affected by the dependability of the functions, 
services and resources involved in this scenario. 

Table 1 lists the user execution scenarios derived from 
Figure 2 and gives the probabilities of these scenarios (in 
terms of percentage), associated to two customer profiles 
(denoted as user class A and user class B). The notations 
{Home - Browse}*and {Search-Book}* mean that these 
functions are activated more than once in the 
corresponding scenarios, due to the presence of cycles in 
the graph. 

User scenario π i, Class A π i, Class B 
1: St-Ho-Ex 10.0 10.0 
2: St-Br-Ex 26.7 6.6 
3: St-{Ho- Br}*-Ex 11.3 4.2 
4: St-Ho-Se-Ex 18.4 13.9 
5: St-Br-Se-Ex 12.2 20.4 
6: St-{Ho- Br}*-Se-Ex 7.6 9.7 
7: St-Ho-{Se-Bo}*-Ex 3.0 4.7 
8: St-Br-{Se-Bo}*-Ex 2.0 6.9 
9: St-{Ho- Br}*-{Se-Bo}*-Ex 1.3 3.3 
10: St-Ho-{Se-Bo}*-Pa-Ex 3.6 6.4 
11: St-Br-{Se-Bo}*-Pa-Ex 2.4 9.4 
12:St-{Ho-Br}*-{Se-Bo}*-Pa-
Ex 1.5 4.5 
St: Start  Ho: Home   Br: Browse   Se: Search Bo: Book    Pa: Pay    Ex: Exit 

Table 1. User scenario probabilities (in%) 
 

For the class A profile, a high proportion of users are 
mainly seeking for information without a buying 
intention, whereas the class B profile is characterized by a 
higher proportion of users really seeking for booking a 
trip. Indeed, the percentage of transactions that end up 
with a payment of a trip is around 20% for user class B 
while it is almost 3 times lower for user class A. 
Moreover, it can be seen from Table 1 that, for the class B 
profile, 80% of user transactions lead to the invocation of 
the functions Search, Book or Pay. Such scenarios involve 
the external reservation systems in addition to the TA 
system. Therefore, the quality of the service offered by 
these reservation systems has a significant impact on the 
user perceived dependability. The percentage is lower 
(50%) when considering the class A profile. 
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These two examples of user classes are used in Section 
4 to evaluate the user perceived availability. 

 
3.2. Service and Function levels  

 
The service level identifies the set of servers involved 

in the execution of each function and describes their 
interactions. This analysis requires a deep understanding 
of the business logic and the technical solutions 
implemented by the TA system provider. 

For the sake of illustration, Table 2 gives a simplified 
example of mapping between the functions provided at 
the TA site, the internal servers directly controlled by the 
TA system provider and the external servers operated and 
controlled by external suppliers.  

The external suppliers correspond to the flight, hotel, 
and car reservation systems that provide information on 
the corresponding items of a trip. Also, we assume that 
the TA provider uses the services of an external payment 
system for handling card-based transactions. 

The internal services are supported by three types of 
servers: 1) Web servers that receive user requests and 
send back the requested data, 2) Application servers that 
implement the main operations needed to process user 
requests, and Database servers handling data related 
operations (for storing and retrieving information about 
flight, hotel and car reservation companies, as well as 
information on customer orders). 

 Internal services External services 

  Web  Appli-
cation  

Data 
base  Flight  Hotel  Car  Pay 

ment  
Home        
Browse        
Search         
Book        
Pay         

Table 2. Mapping between functions and services 
 
The “Home” function execution involves the web 

server only. However, for the other functions several 
servers are required. In this case, it is necessary to analyze 
for each function the interactions among the servers 
involved and all possible execution scenarios (referred to 
as function scenarios). This is achieved through the 
interaction diagram dedicated to each function. Examples 
of interaction diagrams for the Browse, Search, Book and 
Pay functions are given hereafter. 
Browse: Figure 3 describes the interactions among the 
servers involved in the accomplishment of the Browse 
function. The “Begin” and “End” nodes identify the 
beginning and the end of each function execution. Each 
path from the “Begin” node to the “End” node identifies 
one possible function scenario. The probability of 
activation of each scenario can be evaluated by taking 
into account the probabilities qij associated to the 
transitions involved in the corresponding scenario. Note 

that the probability of activation of non-labeled transitions 
is one.   

We can identify three scenarios described as follows: 
• 1→2→3: The user sends a request to the web server 
(node 2). The data requested is available in the local 
cache and returned back to the user (node 3).  
• 1→2→4→5→6: The web server accepts the user 
request and sends it to the application server (node 4). In 
this case the requested data is not available in the local 
cache. The application server processes the request and 
returns a dynamically generated page to the web server 
(node 5). The latter is then forwarded to the user (node 6). 
The database is not involved in this case. 
• 1→2→4→7→8→9→10: The application server 
requires some specific information that is on the TA 
database server (node 7). After the database server has 
answered the application server, the latter processes the 
user request (node 8) and sends the results to the web 
server (node 9). The latter generates an HTML page 
incorporating the corresponding outputs (node 10). 

 
Figure 3. Interaction diagram of the “Browse” function 

 
Search: The interaction diagram describing the execution 
of the Search function is decomposed into 9 stages 
(Figure 4). The input data provided in the search request 
issued by the user (node 1) are first processed by the web 
server WS (node 2). WS performs necessary checks, and 
then breaks down the user request into three individual 
requests corresponding to each aspect of the trip. If data is 
correct and in the right format, it is forwarded to the 
application server AS (node 4), otherwise an exception is 
sent to the user (node 3). AS uses the request information 
to formulate a query and asks the database server (node 5) 
for the list of booking systems to be contacted. Based on 
the answer received, AS sends a query (node 6) to the 
selected systems (identified by the Flight, Hotel and Car 
nodes). The AND operator means that the request is 
submitted to the three types of booking systems (nodes 
7.a, 7.b, 7.c). The answers returned to AS are formatted 
(node 8) and sent to WS (node 9) that forwards them to 
the user (node 10).  

The number of Flight, Hotel and Car reservation 
systems is not indicated in this figure. We assume that the 
TA always interacts with the same systems. A transaction 
is successful when, for each service (Flight, Hotel and Car 
reservation), at least one system responds. 
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Figure 4. Interaction diagram of the “Search” function 

 
Book: An example of interaction diagram of the Book 
function is given in Figure 5. The trip booking order 
received from the user through WS is processed by AS. 
Using the parameters embedded in the book order, AS 
interacts with the corresponding flight, hotel and car 
booking systems to book the selected trip. The booking 
references returned to the application server are then 
stored in the database, before a confirmation is sent to the 
user through the web server.  

 
Figure 5. Interaction diagram of the “Book” function 

 
Pay: The interaction diagram for the Pay function is 
presented in Figure 6. When a payment call is received 
through the web server, the booking data is first checked 
by the application server, then a call is sent to the 
payment server, for authentication and verification 
purposes, and also to accomplish the payment. Finally, 
the application server updates the information in the 
database concerning client orders, before sending a 
confirmation to the user.  

 
Figure 6. Interaction diagram of the “Pay” function 

3.3. Resource level 
 
The various services are mapped into the resources 

involved in their accomplishment. Therefore, we need to 
take into account the real hardware and software 
organization of the system. With respect to external 
services, as the architecture on which these services is not 
known, we associate to each external service a single 
resource that is considered as a black box. For internal 
services, it is possible to detail the organization of internal 
resources for which the architecture is known. 

Various architectural solutions are possible for 
implementing the internal services, considering different 
organizations of the servers on the hardware support (e.g., 
dedicated hosts for each server, vs. multiple servers on the 
same host) or different fault tolerance strategies (non-
redundant servers vs. replicated servers). Replicated 
servers can be located at one site or be geographically 

distributed at distinct sites. Also, fault tolerance can be 
applied to provide redundant accesses to the Internet or 
redundant communication links between internal 
resources. Additionally, the architecture solutions might 
be compared with regards to the maintenance strategy 
adopted by the TA provider (e.g., immediate vs. deferred 
maintenance, dedicated vs. shared repair resources).  

For illustration purposes, we consider the two 
architectures presented in figures 7 and 8. We assume that 
the external resources are identical for both architectures. 
They correspond to Flight reservation, Hotel reservation, 
Car reservation and Payment. We assume that the flight, 
hotel and car reservation services are provided by 
respectively NF, NH and NC components each. 

The basic architecture (Figure 7) consists in allocating 
a dedicated host to each server and interconnecting these 
hosts through a LAN. The LAN is viewed as a single 
resource providing communication between the servers.  

 
Figure 7. Basic architecture  

 
Figure 8. Redundant architecture  

The basic architecture suffers from several weak points 
due to the lack of redundancy and scalability. The 
architecture described in Figure 8 applies redundancy in 
several places to improve the dependability and 
scalability of the basic architecture. It is based on a server 
farm configuration with load balancing, including NW 
web servers, two application servers and two database 
servers with two mirrored disks. The servers are 
connected through a LAN. Indeed, several LANs are 
generally used to interconnect these servers, nevertheless 
we will assume that all of them are represented as a single 
LAN. Also, to simplify the modeling, the load balancers 
are not explicitly described in this architecture. 

In the next section, we will model the availability of 
both the basic and redundant architectures. 
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4. TA availability modeling  
 
The availability modeling of the TA will be carried out 

according to the hierarchical description of the system in 
four steps (see Figure 1), starting at the service level 
considering the two architectures of Figures 7 and 8. 

 
4.1. Service level availability  

 
At this step, we are concerned with the evaluation of 

external and internal service availabilities.  
 

4.1.1. External services. Each external system is 
modeled as a black box that is assumed to fail 
independently of all the others.  
Let us consider the following notations: 
• AFi, AHj and ACk : Availabilities of a flight, hotel and car 
reservation system, (i = 1, …, NF; j = 1, … NH; k = 1, …, 
NC). 
• APS : Availability of the payment system. 
• Anet: Availability of the TA connectivity to the Internet.  

Using the failure independence assumption and 
considering that the service is provided as long as at least 
one reservation system for each item of a trip (flight, hotel 
and car reservation) is available, the availability of the 
external services can be derived as in Table 3. It is worth 
mentioning that if the TA connectivity to the Internet is 
unavailable, none of these services is provided. Thus, the 
availability of the TA connectivity to the Internet will be 
accounted for by multiplying the user perceived 
availability expression by Anet (cf. Section 4.3). 

 

  

! 

A(Flight) = 1 " (1"
i=1

NF

# AFi)
 

  

! 

A(Hotel) =1 " (1"
i=1

NH

# AHi)
 

  

! 

A(Car) = 1 " (1"
i=1

NC

# ACi)  A(Payment service) = APS 

Table 3. External service availability 
 

4.1.2. Internal services. These concern the web, 
application and database services.  

For both architectures of Figures 7 and 8, the 
communication between servers is achieved by a local 
area network (LAN). The LAN is assumed to be a single 
point of failure, i.e., when the LAN is unavailable, all 
internal services are unavailable. As a consequence, the 
LAN availability, denoted by ALAN, is a multiplying factor 
in all equations giving the various function availabilities 
(as will be seen in Section 4.2). ALAN can be evaluated 
using for example the models discussed in [16, 17].  

As the primary objective of this paper is to show the 
applicability of the proposed approach to the TA example, 
we make simplistic assumptions for the application and 
database services. More realistic assumptions are made 
for the web service, to illustrate the kind of more complex 
calculations that can be performed.  

 
Application and database service availability: Let us 
denote by A(CAS) and A(CDS) the availabilities of the 
computer hosts associated to the application and database 
servers, respectively. The disk availability is denoted by 
A(Disk). To simplify the presentation we assume that the 
computer hosts and the disks fail independently of each 
other. The application and database service availability 
(denoted as, A(AS) and A(DS)) are given in Table 4. 
 

 
Basic 
architecture Redundant  architecture 

A(AS)   

! 

A(CAS)    

! 

1 " 2(1 "A(CAS))  

A(DS)   

! 

A(CDS)A(Disk)   

! 

 1 " 2(1 "A(CDS))[ ] 1 " 2(1 "A(Disk))[ ] 

Table 4. A� � � � � � � � � �  and database service 
availability 

 
In the following, we focus on the evaluation of the web 

service availability considering the basic and redundant 
architectures, respectively.  

 
Web service availability: We take into account:1) 
hardware and software failures that affect the computer 
host and lead to web server failure, and 2) performance-
related failures that occur when the incoming requests are 
not serviced due to the limited capacity of the web servers 

The web service is assumed to be available when 
neither of the above types of failures occurs. 

The impact of both types of failures on the web service 
availability can be accounted for by adopting a composite 
performance and availability evaluation approach [18, 
19]. The main idea consists in combining the results 
obtained from two models: a pure performance model and 
a pure availability model. The performance model takes 
into account the request arrival and service processes and 
evaluates performance related measures conditioned on 
the state of the system as determined from the availability 
model. The availability model is used to evaluate the 
steady state probability associated to the system states that 
result from the occurrence of failures and recoveries.  

This approach is based on the assumption that the sys-
tem reaches a quasi steady state with respect to the per-
formance-related events, between successive occurrences 
of failure-recovery events. This assumption is valid when 
the failure/recovery rates are much lower than the request 
arrival/service rates, which is typically true in our context.  
Basic architecture: It is composed of a unique computer 
host, CWS. Let us denote by pK the probability that the 
web server input buffer (whose size is K) is full when a 
request is received. The evaluation of pK is derived from 
the performance model and depends on the assumptions 
made about the request arrival process and the request 
service process. Let us assume that the request arrivals are 
modeled by a Poisson process with rate α and the request 
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service times are exponentially distributed with rate ν. 
Then the web server behavior governed by the arrival and 
service processes can be modeled by an M/M/1/K queue.  

The probability that an arriving request is lost due to 
buffer being full is given by (see e.g., [20]): 

! 

 Kp  = 
K
"

1#"

1#
K+1
"

  with " = $
%

  (1) 

The availability model is composed of two states: up 
and down states. The steady state probability of the up 
state corresponds to the system steady-state availability 
denoted A(CWS). 

Thus, the availability of the web service is: 
  

! 

A(Web service) =  (1 "pK )A(CWS)   (2) 
This definition of availability allows incorporation of 

the inherent dependence between performance and 
dependability in one equation. 

  
Redundant Architecture: The redundant architecture is 
composed of NW identical web servers. We assume that 
all component failures are independent and that the web 
service is provided as long as at least one of the redundant 
component systems is available. 

The performance model associated to this architecture 
to evaluate pK(i), the probability that web requests are lost 
due to input buffer being full, is assumed to be described 
by an M/M/i/K queue, where i is the number of servers 
available and K is the size of the buffer.  

For a system state with i operational servers, pK (i), is 
given by (see, e.g., [20]): 

! 

 Kp (i) = 

K"
K-ii i!

 

 #1

 
j"

j!
 +  

j"
j-i

i i!
 

j=i

K
$

j=0

i#1
$
% 

& 
' 

( 

) 
*    i + 2   (3) 

Note that pK (1) is given by equation 1. 
 
With respect to the availability model, the aim is to 

model the redundant architecture behavior resulting from 
the occurrence of failures/repairs, in order to evaluate the 
steady state probability associated to system states i (i is 
the number of operational servers, as denoted above).  

Two assumptions are made with regards to the 
coverage of web server failures: 1) perfect coverage, and  
2) imperfect coverage.  

 
Perfect coverage: In the Figure 9 model, it is assumed 
that each web server runs on a dedicated computer host. 
Web server failures occur with rate λ. The model assumes 
shared repair facilities with repair rate µ. When a server 
fails, it is automatically disconnected and the system is 
reconfigured (with probability 1) with the web servers 
that are still operational.  

 

Figure 9. Markov model (perfect coverage) 
Let us denote by Πi the steady-state probability of state 

i, i = 0, 1, …, NW. In state i, i≠0, i web servers are 
available to process the input requests. (Π0 corresponds to 
the state where all web server are down). 
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The availability of the web service is as follows: 
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A(Web service) = 1" # i pK(i)
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where pK (i) is given by equation (3).  
The expression between the brackets corresponds to 

the probability that a web request is not serviced either 
due a) to buffer being full or b) to web server 
unavailability.  
Imperfect coverage: This assumption is included in the 
model presented in Figure 10, where from each state i, 
two transitions are considered:  
1) After a covered failure (transition with rate icλ  the 

system is automatically reconfigured into an 
operational state with (i-1) web servers.  

2) Upon the occurrence of an uncovered failure 
(transition with rate i(1-c)λ  the system moves to a 
down state yi, where a manual reconfiguration is 
required before moving to operational state (i-1). The 
reconfiguration times are exponentially distributed 
with mean 1/β.  

 
Figure 10. Markov model (imperfect coverage) 

 
Solving Figure 10 model for steady-state probabilities 
leads to: 
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As states yi correspond to down states, the availability 
of the web service is computed as follows: 
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where pK (i), is also given by equation (3). 
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Summary: Table 5 recalls the equations of the web server 
availability for the basic and redundant architecture, 
assuming perfect and imperfect coverage. 

 
Basic architecture 
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Redundant architecture (perfect coverage) 
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Redundant Architecture (imperfect coverage) 
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Table 5. Web service availability 
 

4.2. Function level availability  
 
The availability evaluation of each function is based on 

the availabilities of the services involved in its 
accomplishment and — when various function execution 
scenarios are possible — on the activation probability of 
each scenario. Table 6 gives the availability for the Home, 
Browse, Search, Book and Pay functions.  
A(WS), A(AS), A(DS) correspond to A(Web service),  
A (Application service) and A (Database service) given in 
Tables 4 and 5. A (PS) corresponds to A(Payment service) 
given in Table 4. A (Flight), A (Hotel) and A (Car) are 
given in Table 4. The parameters qij involved in the 
availability of the Browse function are associated to the 
three execution scenarios of this function given in 
Section 3.2 (Fig. 3).  

Note that all function equations include the product 
AnetALAN, meaning that if the TA connectivity to the 
Internet or the internal communication among the servers 
is not available, none of the TA functions can be invoked 
by the users. Also, the Book function has the same 
availability equation as the Search function. This is due to 

the assumption that the former uses a subset of the 
resources used by the latter. Indeed, in our example the 
Book function is achieved only if the Search function has 
succeeded. This led us to assume that if the Search 
function succeeds, automatically the Book function 
succeeds. Of course, other situations can be modeled. 
 
A (Home) = Anet ALAN  A(WS) 
A (Browse) = Anet ALAN A(WS) [q23  + A(AS)(q24.q45 + q24.q47.A(DS))] 

A (Search) =AnetALAN A(WS) A(AS) A(DS) A(Flight) A(Hotel) A(Car)  
A (Book) = AnetALAN A(WS) A(AS) A(DS) A(Flight) A(Hotel) A(Car) 
A (Pay) = Anet ALAN A(WS) A(AS) A(DS) A(PS) 

Table 6. Function level availabilities 
 
4.3. User level availability 
  

For a given user operational profile, the user perceived 
availability can be obtained by evaluating for each user 
execution scenario derived from the operational profile, 
the expression specifying that all functions invoked in the 
corresponding scenario are available. When several func-
tions are invoked in a given scenario, a careful analysis of 
the dependencies that might exist among the functions 
due to shared services or resources is needed at this stage 
to evaluate the availability measure associated to the sce-
nario from the availability of the corresponding functions.  

Based on the activation probabilities of all user 
scenarios i, πi, (presented in Table 1) and the availability 
of the functions involved in each scenario, the user 
availability is given by equation (10). 
A(user) = Anet ALAN A(WS)[π1 + 

 (π2 +π3) { q23 + A(AS) (q24 q45 + q24 q47 A(DS)} 
+A(AS)A(DS)A(Flight)A(Hotel)A(Car) 
{(π4 +π5+π6+π7+π8+π9)+(π10 +π11+π12)A(PS)}]    (10) 

 
It can be seen that the availabilities of the LAN, the net 
and the web service are the most influential ones (i.e., 
their impact is of the first order, while the others are at 
least at the second order). This is due to the fact that all 
requests (i.e., all user scenarios) use these three services.  

 
5. Evaluation results 

 
We will first show the impact of the number of web 

servers as well as their failure rates on the web service 
availability, according to the request arrival rates. Then, 
based on the various equations derived in the previous 
section, we will evaluate the user availability as perceived 
by user classes A and B. 

 
5.1. Web service availability results 

 
 Figures 11 and 12 give the web service availability for 

perfect and imperfect fault coverage, with the number of 
web servers NW varying from 1 to 10. When only one 
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web server is used (NW = 1), the results correspond to the 
basic architecture. The parameters used to obtain these 
curves are indicated on the figures. Sensitivity analyses 
are done considering different values of web server failure 
rates (10-2, 10-3 and 10-4 per hour) and request arrival 
rates (50, 100 and 150 requests per second). It is assumed 
that each web server has a processing rate ν equal to 100 
per second and a repair rate µ equal to 1 per hour. The 
mean reconfiguration rate of the web server architecture 
(β) is 12 per hour (i.e., 1/β = 5 min) and the buffer size K 
is assumed to be 10.  

 
Figure 11. Web service unavailability (perfect coverage) 

 
Figure 12. Web service unavailability (imperfect coverage) 

 
Both figures show that increasing the number of web 

servers NW from 1 to 2, 3 or 4 (depending on the failure 
and request arrival rates) reduces the web service 
unavailability. However, the trend is reversed when the 
coverage is imperfect for NW values higher than 4 
(Figure 12). This is due to the fact that when the coverage 
is imperfect, increasing the number of servers also 
increases the probability for the system being in states yi 
(of Figure 10) where the web service is unavailable and a 
manual reconfiguration action is required. Actually, the 
probability of a request being rejected because the buffer 
is full plays a significant role until a certain value of NW. 
When the number of servers is higher than the threshold 
value, the total service rate and the buffer capacity are 
sufficient to handle the flow of arrivals without rejecting 
requests. In this case, the unavailability of the web service 

mainly results from hardware and software failures 
leading the web server architecture to a down state. 
Compared to the imperfect coverage model, it can be 
noticed that the model with perfect coverage is more 
sensitive to the variation of NW. Indeed the unavailability 
decreases exponentially when NW increases and the trend 
is not reversed for values higher than 4. Also, the web 
servers failure rate has a significant impact on availability 
only when the system load (α/ν) is lower than 1. 

Design decisions can be made based on the results 
presented on these figures. In particular, we can determine 
the number of servers needed to achieve a given 
availability requirement, or evaluate the maximum 
availability that can be obtained when the number of 
servers is set to a given value. For instance, considering 
the model with imperfect coverage, the number of servers 
needed to satisfy an unavailability lower than 5 min/year 
(unavailability < 10-5), with a failure rate equal to 10-3 per 
hour will be at least NW=2 if the request arrival rate is 50 
per second and NW=4 if the request arrival rate is 100 per 
second. We obtain the same result with a failure rate  
10-4per hour, however such a requirement cannot be 
satisfied with a failure rate of 10-2per hour.  

Similar sensitivity analyses can be done to study the 
level of availability that can be achieved when the number 
of web servers is set to a given value. For example, if we 
decide to employ three servers to support the web service, 
we would have an unavailability lower than 1 hour per 
year, when the failure rate varies from 10-2 to 10-4 and 
the system load (α/ν) is less than 1.  

 
5.2. User level availability results 

 
Considering equation (9), we will evaluate the 

availability as perceived by user classes A and B. The 
values of the parameters involved in this equation are 
given in Table 7. The probabilities characterizing user 
execution scenarios for classes A and B profiles have 
been presented in Table 1. It is assumed that the web 
service is implemented on four servers, with imperfect 
coverage (NW=4, c=0.98, α=100/sec, λ=10-4/hour).  

 
Anet = ALAN = 0.9966    A(CAS) = A(CDS)= 0.996     A(Disk) = 0.9 
APS  = AFi = AHi = ACi  =  0.9           A(WS) = 0.999995587 
q23 = 0.2    q24 = 0.8      q45 = 0.4      q47  = 0.6 

Table 7. Model parameters 
 
Table 8 presents the user perceived availability for user 

classes A and B, considering different values for the 
number of flight, car and hotel reservation systems (NF, 
NH, NC) interacting with the travel agency system. The 
same number is assumed for NF, NH and NC.   

The results show that for a given user class, the user 
perceived availability increases significantly when the 
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number of reservation systems increases from 1 to 4, and 
then stabilizes. The availability variation rate is directly 
related to the availability assigned to each reservation 
system. Comparison of the results obtained for class A 
and B users show that different operational profiles might 
lead to significant differences in the availability perceived 
by the users. For instance, considering the case NF = NH = 
NC ≥ 5, the user perceived unavailability is about 173 
hours per year for class A users and 190 hours for class B 
users. Such unavailability takes into account all the 
scenarios that might be invoked by the users. 
 

Table 8. Class A and B user availabilities wrt NF, NH , NC 
 
The user perceived availability can be analyzed from 

another perspective by grouping user scenarios into four 
categories, denoted as SC1, SC2, SC3 and SC4, and 
evaluating the contribution of each category to the 
perceived availability: 

• SC1 gathers all scenarios that lead to the execution of 
functions “Home” or “Browse” without invoking the 
other functions (scenarios 1-3 of Table 1).  

• SC2 gathers all scenarios that include the invocation of 
the “Search” function, without going through the “Book” 
or “Pay” functions (scenarios 4-6 of Table 1). 

• SC3 gathers all scenarios that include the “Book” function 
(scenarios 7-9 of Table 1). 

• SC4 gathers all scenarios that reach the “Pay” function 
(i.e., scenarios 10-12 of Table 1).  

This is illustrated on figure 13 considering class A and 
class B users, respectively, and assuming that the web 
service is implemented on four servers with imperfect 
coverage.  

UA (A users) (respectively UA (B users)) denotes the 
unavailability perceived by Class A users, and UA(SCi) 
denotes the contribution of scenarios SCi to the user 
perceived unavailability.  

   
Figure 13. User perceived unavailability and UA(SCi)  
 
It can be seen that the unavailability caused by 

scenarios SC4 that end up with a trip payment is higher 
for class B users compared to class A users (43 hours 
downtime per year for class B users compared to 16 hours 

for class A users. when considering the steady values). 
Therefore, the impact in terms of loss of revenue for the 
TA provider will be higher. Indeed. if the users 
transaction rate is 100 per second, the total number of 
transactions ending up with a payment that are lost is 5.7 
million for class A users and 15.5 million for class B 
users. Assuming that the average revenue generated by 
each transaction is 100$. Then the loss of revenue 
amounts to 570 million dollar and 1.55 billion dollar, 
respectively. This result clearly shows that it is important 
to have a faithful estimation of the user operational profile 
to obtain realistic predictions of the impact of failures 
from the economic and business viewpoints. 

 
6. Conclusion 

 
In this paper, we have illustrated the main concepts 

that we defined within our hierarchical modeling 
framework proposed in [12] for the dependability 
evaluation of internet based applications on a travel 
agency example. Our objectives were: 1) to show how to 
apply our framework considering the decomposition of 
the target system according to four levels: user, function, 
service, and resource levels, and 2) to present typical 
dependability analysis and evaluation results that could be 
obtained from the modeling to help the e-business 
providers in making objective design decisions.  

For the sake of illustration, we have deliberately 
considered simplified (yet realistic) assumptions, 
concerning the users operational profile and the TA 
architecture models, and analyzed their impact on the user 
perceived availability. The availability measure 
considered takes into account the impact of performance 
related failures as well as traditional software and 
hardware failures. The sensitivity analyses presented in 
this paper clearly show the appropriateness of this 
measure. We have showed that the proposed hierarchical 
framework provides a systematic and pragmatic modeling 
approach, that is necessary to be able to evaluate the 
dependability characteristics of the target application at 
different levels of abstractions.  

Future work will be focused on the extension of the 
framework to handle more complex assumptions and 
models. For example, besides taking into account 
performance failures related to the loss of user 
transactions due to servers input buffers being full, we can 
also extend the measure to include failures that occur 
when the response time exceeds an acceptable threshold.   
 
References 
[1] Bakos Y., “The Emerging Role of Electronic Marketplaces 
on the Internet”, Communications of the ACM, 41 (8), pp.35-42, 
1998. 

NF = NH = NC A(A users) A(B users) 
1 0.84235 0.76875 
2 0.96509 0.95529 
3 0.97867 0.97593 
4 0.98004 0.97802 
5 0.98018 0.97822 
10 0.98020 0.97825 



Proceedings of the International Conference on Dependable Systems and Networks (DSN-03), Performance and Dependability Symposium, 
San Francisco, CA, USA, June 2003, pp. 709-718 

 
 

  

[2] Menascé D. A. and Almeida V. A. F., Capacity Planning 
for Web Services: Metrics, Models, and Methods, Prentice Hall 
PTR, Upper Saddle River, NJ, USA, 2002. 

[3] Shim S. S. Y., Pendyala V. S., Sundaram M. and Gao J. Z., 
“Business-to-Business E-Commerce Frameworks”, Computer 
(October), pp.40-47, 2000. 

[4] Purba S., Architectures for E-Business Systems: Building 
the Foundation for Tomorrow's Success, Best Practices Series, 
AUERBACH Publications - CRC Press LLC, Boca Raton, FL, 
USA, 2002. 

[5] Goodyear M., Enterprise System Architectures: Building 
Client/Server and Web-based Systems, AUERBACH 
Publications - CRC Press LLC, Boca Raton, FL, USA, 2000. 

[6] Long D., Muir A. and Golding R., “A Longitudinal Survey 
of Internet Host Reliability”, in Proc. 14th Symposium on 
Reliable Distributed Systems (SRDS-95), pp.2-9, Bad Neuenahr, 
Germany, September 1995. 

[7] Kalyanakrishnam M., Iyer R. K. and Patel J. U., 
“Reliability of Internet Hosts: a Case Study from the End User's 
Perspective”, Computer Networks, 31, pp.47-57, 1999. 

[8] Machiraju V., Dekhil M., Griss M. and Wurster K., E-
services Management Requirements, HP Laboratories Palo Alto, 
CA, USA, N°HPL-2000-60, May 2000. 

[9] Paxson V., Mahdavi J., Adams A. and Mathis M., “An 
Architecture for Large-Scale Internet Measurement”, IEEE 
Communications Magazine (August), pp.48-54, 1998. 

[10] Xie W., Sun H., Cao Y. and Trivedi K. S., “Modeling of 
Online Service Availability Perceived by Web Users”, in IEEE 
Global Telecommunications Conference (GLOBECOM 2002), 
IEEE Computer Society, Taipei, Taiwan, November 2002. 

[11] Kaâniche K., Kanoun K. and Rabah M., A Preliminary 
Framework for SoS Dependability Modelling and Evaluation, 
DSoS Project, IST-1999-11585, LAAS Report N° 01157, April 
2001. 

[12] Kaâniche K., Kanoun K. and Rabah M., “A Framework for 
modeling the Availability of e-Business Systems”, in 10th 
International Conference on Computer Communications and 
Networks, pp.40-45, IEEE CS, Scottsdale, AZ, USA, 15-17 
October 2001. 

[13] Menascé D. A. and Almeida V. A. F., Scaling for E-
Business: Technologies, Models, Performance, and Capacity 
Planning, Prentice Hall PTR, Upper Saddle River, NJ, USA, 
2000. 

[14] van Moorsel A., “Metrics for the Internet Age: Quality of 
Experience and Quality of Business”, in Fifth International 
Workshop on Performability Modeling of Computer and 
Communication Systems, pp.26-31, Universität Erlangen-
Nürnberg, Institut für Informatik, Germany, September 2001. 

[15] Menascé D. A., Almeida V. A. F., Fonseca R. C. and 
Mendes M. A., “Business-oriented Resource Management 
Policies for E-commerce Servers”, Performance Evaluation, 42 
(2-3), pp.223-239, 2000. 

[16] Hariri S. and Mutlu H. B., “A Hierarchical Modeling of 
Availability in Distributed Systems”, in 11th International 

Conference on Distributed Computing Systems, pp.190-197, 
IEEE Computer Society, Arlington, TX, USA, 1991. 

[17] Kanoun K. and Powell D., “Dependability evaluation of bus 
and ring communication topologies for the Delta-4 distributed 
fault-tolerant architecture”, in 10th IEEE Symposium on Reliable 
Distributed Systems (SRDS-10), pp.130-141, IEEE Computer 
Society, Pisa, Italy, 1991. 

[18] Meyer J. F., “On Evaluating the Performability of 
Degradable Computer Systems”, IEEE Transactions on 
Computers, C-29 (8), pp.720-731, 1980. 

[19] Meyer J. F., “Closed-form Solutions of Performability”, 
IEEE Transactions on Computers, C-31 (7), pp.648-657, 1982. 

[20] Allen A. O., Probability, Statistics, and Queuing Theory — 
With Computer Science Applications, Computer Science and 
Applied Mathematics, Academic Press, 1978. 

 


