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Abstract— The objective of this work is the evaluation of 
information systems security using quantitative measures. These 
measures aim at forecasting risks and providing information to 
monitor the security level of the system in operation. In our 
approach, we take into account some environmental factors that 
have a significant impact on the security of the system. We have 
identified three such factors that are related to the vulnerability 
exploitation process: the vulnerability life cycle, the behavior of 
the attackers and the behavior of the system administrator. We 
have studied the interdependencies between these factors and how 
the evolution of these factors could impact the system security. 
From this study, we have defined quantitative security measures 
taking into account these environmental factors and we have 
developed a model based on Stochastic Activity Networks (SANs), 
describing how the vulnerability exploitation process could lead to 
system to be compromised. We have distinguished two scenarios 
according to whether the vulnerability is discovered by a malicious 
user or not. By analysing a vulnerability database, we have 
characterised the probability of occurrence of several events of the 
vulnerability life cycle. This characterization helped us to quantify 
the measures by processing the SAN model. 

Keywords: Aircraft mission reliability, stochastic assessment, 
dependabity modeling, maintenance, mission planning 

1. Introduction 

Securing an information system is a crucial and tricky 
issue: since 2006, more than 7000 vulnerabilities have been 
published every year, according to the data recorded in the 
OSVDB database [1]. In this context, evaluating information 
system security appears to be necessary in order to analyse 
and prevent risks. 

First approaches for the security evaluation appeared in 
the 80’s with the development of security evaluation criteria 
such as the TCSEC [2], the ITSEC [3] and more recently the 
Common Criteria [4]. These criteria have given rise to the 
ISO 27000 standards [5, 6]. They define security levels, 
guidelines and processes to support the assessment, during 
the design, of the level of protection provided by an 
information system to cope with vulnerabilities and security 
related risks. The security levels defined in these criteria are 
considered as qualitative, in spite of the not well- defined 
boundary between quantitative and qualitative assessment in 

security. Indeed, the ISO 27000 standards define security 
levels, according to the functionalities implemented in the 
system and the level of rigour and formalisation of the 
development processes, that are mostly considered as 
qualitative measures. Moreover, these security evaluation 
criteria are not well suited for the evaluation of security risks 
considering a dynamic environment: the evaluation 
processes take too much time to be run regularly during the 
operational life of the system.  

Our approach aims at producing quantitative security 
measures to assess the level of risk faced by an operational 
system considering an evolving environment. For this 
purpose, we first identify external factors that have an 
important impact on the system vulnerability exploitation 
process: the vulnerability life cycle and two environmental 
factors that are 1) the attacker population behavior and 2) the 
system administrator behavior. To be able to provide 
measures and quantify them, we study the evolution of these 
factors, define measures considering the impact of these 
factors and model them and their interactions with the 
system. Then, we quantify the probability of occurrence of 
vulnerability life cycle events and process the stochastic 
models we developed to evaluate the consequences of 
environmental factors on the system security. 

This paper is structured as follows: Section 2 describes 
existing work related to quantitative security evaluation. 
Then, Section 3 details the three factors considered in our 
study and their impact on the system. Sections 4 and 5 are 
respectively dedicated to the definition of measures and to 
the description of the complete model of the system that 
enables to evaluate these measures. Section 6 addresses the 
estimation of the probability of occurrence of vulnerability 
life cycle events based on data in a vulnerability database. 
Section 7 details the quantitative measures and the results 
derived from the processing of our model. 

Section 8 discusses the practical usefulness of the model 
from the administrator view point and lists some of the 
current limitations. Finally, Section 9 concludes this paper 
and presents our perspectives. 

2. Related Work 

To cope with the limitations of qualitative approaches, 
alternative approaches have been proposed to make 
quantitative security assessment feasible during the 
operational life of the system. In [7], the authors highlight 
the need of evaluation techniques for security and discuss 
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related work of existing methodologies. In 1993, [8] argued 
that security can be evaluated in terms of effort, without 
proposing a measure and a practical model for assessing 
security. During the same year, [9, 10] proposed the privilege 
graph model. Based on the identification and analysis of 
known vulnerabilities of the system, the privilege graph 
highlights the different paths of vulnerability exploitation an 
attacker may use to reach a security target. The privilege 
graph is a state-based model where arcs model vulnerability 
exploitation and places model privileges owned by the 
attacker. A weight is assigned to each arc to quantify the 
effort needed to exploit the vulnerability. These weights are 
used to evaluate a quantitative measure corresponding to the 
“Mean Effort To security Failure” (METF), which is aimed 
at characterizing the capacity of the system to resist to 
attacks [11]. 

The attack graph formalism described in [12] is based on 
similar concepts: each state in the graph represents the 
privileges owned by the attacker as well as the attacker’s 
knowledge and the system environment state. Several studies 
addressed the general and optimization of attack graphs [12, 
13, 14], and their use for quantifying security [15, 16, 17]. 
The attack tree is another formalism used for example in 
[18], to assess security risks based on the evaluation of the 
exploitability of system vulnerabilities and the analysis of 
their dependencies. 

Another measure called “Time To Compromise”, was 
presented in [19] and is based on three different processes 
corresponding to three attack situations: 1) the attacker 
knows at least one vulnerability giving the wanted privileges 
and there is at least one known exploit; 2) there is at least 
one known vulnerability giving the privileges the attacker 
wants and the attacker does not know any successful exploit 
for the vulnerability; 3) the attacker is continuously looking 
for new vulnerabilities and new exploits. The “Time To 
Compromise” measure results from the modeling of these 
three attack processes and depends on probabilities of 
process occurrence and the time needed by the attacker to be 
successful for each process. 

The quantitative approaches discussed above provide 
security measures for systems in operation and consider an 
important factor of the environment: the attacker. However, 
the attacker is not the only environmental factor that may 
impact the system security. In [20], three complementary 
metrics, taking into account several environmental factors, 
are presented: 1) a base metric that is focused on the needed 
access rights to exploit the vulnerability and on the impact on 
confidentiality, integrity and availability; 2) a time metric 
that is focused on exploit and patch existence; 3) an 
environment metric that is focused on computer system 
neighbourhood having the same vulnerability. It also takes 
into account the assessment of damage on system 
environment. Mathematical equations are provided to 
compute quantitative values for the proposed metrics. 

However it is not explained how the parameters involved in 
these equations can be estimated. 

These quantitative security metrics take into account the 
system environment but do not consider the impact of the 
vulnerability life cycle. The modeling approach and the 
results presented in this paper aim at addressing these issues. 
For example, we consider that the likelihood of an attack 
against a system exploiting a vulnerability is not constant in 
time: the likelihood that an attacker exploits a new 
vulnerability for which a patch does not exist yet may be 
higher than the likelihood that an attacker tries to exploit an 
old patched vulnerability, under the condition that the 
attacker has sufficient knowledge or an easy way to do it. 
Thus, the vulnerability impact on the system depend on the 
environment evolution, as presented in the next section. 

The discussion of related work of this section is not 
meant to be exhaustive. We have focused on related studies 
that are close to the topic addressed in this paper in order to 
position our main contributions in this area. It is noteworthy 
that besides the probabilistic models discussed above, other 
stochastic approaches have been proposed in security-related 
studies (e.g., to analyze security based on bayesian networks 
[21, 22], fuzzy logic [23], or game theory [24], etc. or to 
model viruses and worms propagation and their impact [25, 
26]). 

3. External Factors 

Our purpose is twofold: 1) produce quantitative measures 
taking into account three relevant environmental factors that 
affect system security (the vulnerability life cycle, the 
attackers behaviors and the administrators behaviors) and 2) 
study how a change in the environment may have an impact 
on the evolution of the likelihood for a system to be secure or 
compromised. Of course, various system environments such 
as military systems and banking systems may be very 
different from one another. In our study, we mainly focus on 
mass-market information systems. In this section, we 
identify important external factors and we study how these 
factors interact with the information system and with one 
another 

3.1. The vulnerability lifecycle  

We define the vulnerability life cycle as the set of events 
that could occur during the life of the vulnerability. In [27], 
the authors take into account the events corresponding to the 
vulnerability discovery, the vulnerability disclosure, the 
patch release and the exploit availability, but also the birth 
and the death of the vulnerability. This approach is also 
followed by [28] considering that the exploit availability and 
the resulting attacks happen always after the vulnerability 
disclosure. In [29], the author does not take into account the 
vulnerability birth and death but adds the patch application 
as an event of the vulnerability life cycle. In our approach, 
we aim at characterizing quantitatively the vulnerability life 
cycle events. The patch application is not included in the 
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vulnerability life cycle. It is taken into account through the 
characterization of the administrator behavior (cf. Section 
3.3). Thus, we focus on the main events of the vulnerability 
life cycle that are considered by existing approaches, and 
define them as follows:  

- the discovery of the vulnerability: once this event has 
occurred, the discoverer knows about the vulnerability 
existence and can use this knowledge for a malicious or 
non malicious purpose. 

- the disclosure of the vulnerability: this is the first 
time the information about the vulnerability is freely 
available on an important source. This vulnerability has 
generally been studied by expert for risk evaluation 

- the release of the vulnerability patch: once this event 
has occurred, it is possible to protect the system by 
removing the vulnerability 

- the availability of the exploit: this event enables the 
attacker population to simply exploit the vulnerability. 
The exploit may be elaborated by the attackers or may 
result from the reuse of the proof of concept disclosed 
at the same time as the vulnerability disclosure.  

Clearly, the exploit availability has a high impact on the 
attackers behavior. We can distinguish two different 
scenarios. 

In the first scenario, the vulnerability is discovered by a 
non-malicious person, who informs the developer of the 
vulnerable component that the vulnerability exists and this 
action leads to the disclosure of the vulnerability. The 
disclosure of the vulnerability enables administrators to be 
careful but also informs the attackers population that the 
vulnerability exists. From that moment, an attacker may 
develop the exploit enabling all the attackers population to 
perform attacks. 

In the second scenario, the vulnerability is discovered by 
a malicious person, who may inform other malicious persons 
of the existence of the vulnerability or create himself an 
exploit. The use of this exploit (i.e. attacks performed thanks 
to that exploit) leads to the vulnerability disclosure. In both 
scenarios, we assume that the vulnerability patch may be 
disclosed at the same time as the vulnerability disclosure or 
later. From this section, the non malicious (resp. malicious) 
discovery scenario will be abbreviated by the notation NM-S 
(resp. M-S). 

3.2. Attackers behavior  
The attackers population is an important environmental 

factor. However, it is difficult to characterize because this 
population is not homogeneous. In [30, 31], the authors 
describe a two dimensional classification considering the 
attackers motivations and skills. In [32], the authors studied 
two categories of attackers: the script kiddies and the black 
hats. The first ones need an exploit to be able to perform 
attacks. The second ones are experts, who elaborate most of 
the exploits. Moreover, the authors note that the black hats 
represent a small proportion of the attackers population. 

According to that, our approach is focused on the biggest 
part of the population that are the script kiddies. 

3.3. Administrator Behavior 

The third external factor that is investigated in our 
approach is the administrator’s awareness about information 
system security. This is a key parameter in our approach. 
Indeed, whether the administrator is aware about security 
risks or not, may have serious consequences on the system: if 
the administrator does not regularly check for patch releases 
and does not install them as soon as they appear, the system 
may stay vulnerable a long time, despite of the patch release. 
It is noteworthy that the impact of the administrator’s 
behavior on the security of the system depends on the 
vulnerability life cycle: even if the administrator is very 
cautious, we make the pessimistic assumption that he cannot 
protect his system as long as the vulnerability patch does not 
exist. 

In the following, we will consider the two possible 
administrators behaviors: lax or rigorous. 

4. System States and Measures 

4.1. System States 
In this section, we present the different states of the 

system, considering one vulnerability and the external 
factors described in Section 3. Once the vulnerability is in 
the system, the system becomes vulnerable. When an 
exploit for this vulnerability is available, the system 
becomes exposed. There is not much difference for the 
system itself between these two states: the state transition 
results from an environment change. 

As soon as the exploit exists and is available for the 
attackers population, the system may be attacked 
successfully and compromised. If an attacker performs a 
successful attack, the system moves to the compromised 
state. The system stays in this state until the administrator 
patches the system, provided that the patch is available. 
Thus, the system becomes patched. However, it does not 
mean that, in this state, there is no risk anymore: an attacker 
may have obtained new privileges thanks to the exploitation 
of the vulnerability that could allow him to still access the 
system even after the vulnerability patch, unless the system 
is carefully checked and cleaned. For instance, an attacker 
that has successfully exploited the vulnerability may have 
installed a backdoor or a keylogger in the system. The 
backdoor allows him to obtain remote access to the 
computer (even if the vulnerability is patched), the 
keylogger allows him to capture all the keystrokes hit by the 
users of the system (which may reveal confidential data, 
such as passwords for instance). We consider that, in these 
two states (compromised and patched), the system is in 
danger. So, as the system is still in danger, it is necessary 
for the administrator to clean and repair the system to bring 
it in a secure state. For instance, the administrator may re-
install all or part of the system software from a safe backup. 
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He may also compute checksums of all the binary files and 
compare them to previously backed-up checksums in order 
to detect modified binaries and re-install them. Of course, if 
the patch is available, the administrator may have patched 
the system before the exploit availability or before an 
attacker has enough time to perform a successful attack. In 
this case, the system state changes directly from vulnerable 
or exposed to secure. All these system states, as well as the 
impact of the external factors, are pictured in Figure 1. 

Different measures could be defined based on these 
states and events, as detailed in the next section. As it is 
described in the previous paragraph, the difference between 
the vulnerable and the exposed states is only caused by an 
environment change. To make the definition of the measures 
more understandable, we aggregate these two states into a 
single state called vulnerable or exposed. 
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states and events, as detailed in the next section. As

it is described in the previous paragraph, the difference

between the vulnerable and the exposed states is only

caused by an environment change. To make the

definition of the measures more understandable, we

aggregate these two states into a single state called

vulnerable or exposed.

4.2. Measures definition

In our context, we define four quantitative measures

that are illustrated by Figure 2. This figure identifies,

for each of the four measures, the system states that are

considered (colored states): we measure the probability

for the system to be in one of the colored states. The

four probability measures mentioned in this figure are

defined in the following.

PPC(t) quantifies the probability that the system is

in the compromised state at instant t. It means that the

system has been compromised due to a successful attack

and has not been patched during the interval [0, t].
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are illustrated by Figure 2. This figure identifies, for each of 
the four measures, the system states that are considered 
(colored states): we measure the probability for the system 
to be in one of the colored states. The four probability 
measures mentioned in this figure are defined in the 
following. 

PPC(t) quantifies the probability that the system is in the 
compromised state at instant t. It means that the system has 
been compromised due to a successful attack and has not 
been patched during the interval [0, t]. 

PC(t) quantifies the probability for the system to be at 
time t in the compromised, patched or secure states given 
that the system has been compromised and repaired. Indeed, 
this measure quantifies the probability of occurrence of a 
successful attack during the interval [0, t]. It can be used to 
evaluate the maximum time during which the probability of 

having the system compromised by vulnerability 
exploitation does not exceed an acceptable threshold. 

Besides the previous measures, the level of risk faced by 
the system can be assessed through the evaluation of 
PCNR(t), which quantifies the probability, at instant t, that 
the system has been compromised due to a successful attack 
but the damage caused by attacker intrusion has not been 
repaired yet. This situation corresponds to the case where 
the system is in the compromised or patched states. 

The last measure considered in Figure 2 is PS(t) which 
quantifies the probability that the system is secure, taking 
into account the impact of the considered vulnerability. This 
measure takes into account the two possible scenarios 
during the considered interval [0, t]: 

1) a patch is applied before a successful attack occurs, 
and 2) an attack occurs followed by the application of a 
patch and repair actions. 

To evaluate PPC(t), PC(t), PCNR(t) and PS(t), it is 
necessary to model the factors we have presented in Section 
3 and their impact on the states of the system. The next 
section presents the proposed model. 

 

5. Modeling 
In this section, we present a modeling approach aiming 

at describing the system state evolution taking into account 
the environmental factors. The model can be used to 
evaluate quantitative measures characterizing the 
probabilities associated with the different states of the 
system, presented in Section 4. 

5.1. Choice of the modeling formalism 
The modeling is based on Stochastic Activity Networks 

(SAN) [33] as this formalism can be easily used to describe 
the evolution of the system state and to express event 
occurrence conditions considering different types of 
stochastic distributions. SAN are composed of four 
modeling elements: 
•  places: they contain one or more tokens and model the 

system and environment states; 
• activities: they model events that have an effect on the 

system or its environment; they can follow probabilistic 
or deterministic laws; 

• input gates: they contain activity firing conditions; it is 
possible to define predicates specifying the conditions to 
be satisfied for the firing of the activity, according e.g., 
to the marking of some places; 

• output gates: they can be used to specify the 
consequences of an activity firing on the marking of the 
SAN places. 

 
In the next section, we describe our SAN modeling for one 
single vulnerability. 
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vulnerability life cycle is modeled at the top; the remainder 
of the model describes the different states of the system 
including the administrator’s and attackers behaviors. The 
dashed lines indicate the places used in the precondition 
contained in the input gates of the models. 

In this section, we describe the model more in detail, 
beginning with the vulnerability life cycle. A preliminary 
version of this model is presented in [7]. 
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5.2.2. Administrator and attackers behavior and system 
states modeling 

The administrator’s behavior is modeled through the 
system states themselves. Initially, the system is in state ok. 
The activity install models the installation of the component 
that can be affected by the considered vulnerability. Thus, 
the system moves to the state vulnerable. It becomes 
exposed as soon as an exploit exists (state modeled by the 
place E). This event is modeled by the instantaneous activity 
test. Conditions for the firing of this activity are defined in 
the input gate: the existence of the exploit and the 
vulnerable state of the system are necessary conditions or 
the system to become exposed (modeled by the place  
Exposed). The use of the exploit by an attacker on the 
system may be successful and this action is modeled by 
three activities attackV0, attackVd and attackVp 
corresponding to an attack event during the different phases 
of the vulnerability life cycle. It is noteworthy that the 
activity attackV0 does not exist if we consider the non-
malicious scenario (see Fig. 4). As a result of such attack, 
the system becomes compromised. It will remain in this 
state until the vulnerability patch application by the 
administrator, provided that the patch is available. This 
action is modeled by the activity patchC: it means that the 
vulnerability has been patched and cannot be exploited 
again. However, the system is not secure yet as the damage 
caused by the intrusion has not been completely fixed. This 
transient state is modeled by the place Patched. From this 
state, the administrator has to clean the system, that brings it 
in the state Secure. It is noteworthy that the vulnerability 
patch application may occur as soon as the patch is 
available, possibly before a vulnerability exploitation. It 
may occur in two other different situations: (i) the system is 
only vulnerable and there is no exploit available yet; (ii) the 
system is in the state exposed but has not been the target of 
an attack. In both cases, the system becomes secure. 

 As described in previous sections, the approach 
considers the script kiddies attackers. However, only a few 
changes in the input gates related to the modeling of attack 
activities are necessary to take into account another attacker 
category and reflect the fact that the black hat attackers do 
not need an exploit to attack the system. 

5.3. SAN models description 
The state graphs generated from the SAN models plotted 

in Figs 3 and 4 and described in this section are presented in 
Figs 5 and 6 for the NMS and MS scenarios, respectively. 
These graphs summarize the possible evolutions of the 
system state that result from the evolution of the 
vulnerability life cycle, the exploit availability process and 
the administrator and attackers behaviors.  
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exploit availability and vulnerability disclosure, with respect
to the two scenarios described in Section 2. So, the activity
exploit depicted in Fig. 3 models exploit availability
after vulnerability disclosure (according to the NM-S) and
the activity exploit in Fig. 4 models exploit availability440

before vulnerability disclosure (according to the M-S). The
preconditions, postconditions and the parameters characterizing
this activity are different, according to the scenario. Indeed,
the disclosure of the vulnerability increases the likelihood that
attacker population creates an exploit as more attackers know445

about the vulnerability. The existence or the non-existence of
the exploit are modeled by two places named, respectively, E
(meaning ‘exploit’) and NE (meaning ‘no exploit’).

5.2.2. Administrator and attackers behavior and system
states modeling450

The administrator’s behavior is modeled through the system
states themselves. Initially, the system is in state ok. The activity
installmodels the installation of the component that can be
affected by the considered vulnerability.Thus, the system moves
to the state vulnerable. It becomes exposed as soon as an exploit455

exists (state modeled by the place E). This event is modeled by
the instantaneous activitytest. Conditions for the firing of this
activity are defined in the input gate: the existence of the exploit
and the vulnerable state of the system are necessary conditions

for the system to become exposed (modeled by the place 460

Exposed). The use of the exploit by an attacker on the system
may be successful and this action is modeled by three activities
attackV0, attackVd and attackVp corresponding to an
attack event during the different phases of the vulnerability life
cycle. It is noteworthy that the activityattackV0 does not exist 465

if we consider the non-malicious scenario (see Fig. 4).As a result
of such attack, the system becomes compromised. It will remain
in this state until the vulnerability patch application by the
administrator, provided that the patch is available. This action is
modeled by the activitypatchC: it means that the vulnerability 470

has been patched and cannot be exploited again. However, the
system is not secure yet as the damage caused by the intrusion
has not been completely fixed. This transient state is modeled
by the place Patched. From this state, the administrator has
to clean the system, that brings it in the state Secure. It is 475

noteworthy that the vulnerability patch application may occur
as soon as the patch is available, possibly before a vulnerability
exploitation. It may occur in two other different situations: (i)
the system is only vulnerable and there is no exploit available
yet; (ii) the system is in the state exposed but has not been the 480

target of an attack. In both cases, the system becomes secure.

Q5

As described in previous sections, the approach considers
the script kiddies attackers. However, only a few changes in
the input gates related to the modeling of attack activities are

FIGURE 5. State graph: NM-S.
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FIGURE 6. State graph: M-S.

necessary to take into account another attacker category and485

reflect the fact that the black hat attackers do not need an exploit
to attack the system.

5.3. State graphs

The state graphs generated from the SAN models plotted in
Figs 3 and 4 and described in this section are presented in490

Figs 5 and 6 for the NMS and MS scenarios, respectively. These
graphs summarize the possible evolutions of the system state
that result from the evolution of the vulnerability life cycle, the
exploit availability process and the administrator and attackers
behaviors. The states are labeled (x, y, z) where x denotes495

one of the vulnerability life cycle states Ve, V0, Vd, Vp; y
denotes whether an exploit is available (E) or not (NE); and
z denotes the system states (ok, Vulnerable, Exposed,
Compromised, Patched, and Secure), represented by the
labels (ok,vul,Exp,C,P, andS), respectively. It is noteworthy500

that only timed activities of the SAN models appear in the state
graphs. The firing of instantaneous transitions leads to vanishing
states that are automatically eliminated and merged with the
following stable states.

The evaluation for the quantitative measures presented in505

Section 4 is based on the processing of the state graphs once
the distributions associated to the different state transitions
are specified. When all the transitions follow exponential
distributions, the state graph corresponds to a Markov chain

that can easily be processed using analytical techniques. 510

Monte-Carlo simulation techniques are more appropriate
when other types of distributions are considered for some
state transitions. Both analytical and Monte-Carlo simulation
techniques are supported by the Möbius tool implementing
the SAN formalism developed by the University of Illinois at 515

Urbana-Champaign [37].

6. VULNERABILITY LIFE CYCLE EVENTS
CHARACTERIZATION

To quantify the measures defined in Section 4, it is important
to set realistic parameters to the activities of the models. This
section addresses the characterization of such parameters based
on real data. 520

In [38], the authors study the impact of vulnerability
disclosure and patch availability on the attack process. Using
a data set of 308 vulnerabilities, they quantify an economical
model to predict the evolution of the number of expected
attacks per host and per day. In [39], the analyses are centered 525

on the disclosure date: patch release and exploit availability
events are studied, taking the disclosure date as the time
origin. The study included 14 326 vulnerabilities collected
from several databases. This work could have been useful for
us but, unfortunately, it does not consider the vulnerability 530

discovery. Thus, such data does not allow us (i) to quantify
the disclosure event considering the vulnerability discovery
and (ii) to characterize the exploit availability considering the
vulnerability discovery.

In [40], the authors analyze 140 vulnerabilities of the 535

OpenBSD operating system to study the vulnerability report
rate. They extend the analysis described in [25] that studies the
vulnerability life cycle and conclude that the rate of vulnera-
bility discovery for an operating system can be considered as
constant. 540

To the best of our knowledge, there are only a few studies
about the characterization of the events we consider in our
approach and existing work cannot be reused. Thus, the next
section presents the work aiming at quantifying the probability
of occurrence of the vulnerability life cycle events based on real 545

data.

6.1. Existing vulnerability databases and statistical
reports

Several organizations collect and study vulnerabilities. Some
of them regularly produce reports giving information and 550

trends about vulnerability evolution: for example, Symantec
Corporation edits a survey each year, focusing on vulnerability
trends and presenting analyses of quantitative data recorded by
their products like their antivirus solution [41]. Other reports
exist like the X Force trends and risk report [42] that classifies, 555

e.g. the operating systems considering how many vulnerabilities
were disclosed [43].
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The states are labeled (x, y, z) where x denotes one of 
the vulnerability life cycle states Ve,	V0,	Vd,	Vp; y denotes 
whether an exploit is available (E) or not (NE); and z denotes 
the system states (ok,	Vulnerable,	 Exposed,	Compromised,	
Patched, and Secure), represented by the labels (ok,	 vul,	
Exp,	 C,	 P, and S), respectively. It is noteworthy that only 
timed activities of the SAN models appear in the state 
graphs. The firing of instantaneous transitions leads to 
vanishing states that are automatically eliminated and 
merged with the following stable states. 

The evaluation for the quantitative measures presented 
in Section 4 is based on the processing of the state graphs 
once the distributions associated to the different state 
transitions are specified. When all the transitions follow 
exponential distributions, the state graph corresponds to a 
Markov chain that can easily be processed using analytical 
techniques. Monte-Carlo simulation techniques are more 
appropriate when other types of distributions are considered 
for some state transitions. Both analytical and Monte-Carlo 
simulation techniques are supported by the Möbius tool 
implementing the SAN formalism developed by the 
University of Illinois at Urbana-Champaign [37]. 
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To quantify the measures defined in Section 4, it is 
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models. This section addresses the characterization of such 
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In [38], the authors study the impact of vulnerability 
disclosure and patch availability on the attack process. 
Using a data set of 308 vulnerabilities, they quantify an 
economical model to predict the evolution of the number of 
expected attacks per host and per day. In [39], the analyses 
are centered on the disclosure date: patch release and exploit 
availability events are studied, taking the disclosure date as 
the time origin. The study included 14326 vulnerabilities 
collected from several databases. This work could have been 
useful for us but, unfortunately, it does not consider the 
vulnerability 530 discovery. Thus, such data does not allow 
us (i) to quantify the disclosure event considering the 
vulnerability discovery and (ii) to characterize the exploit 
availability considering the vulnerability discovery. 

In [40], the authors analyze 140 vulnerabilities of the  
OpenBSD operating system to study the vulnerability report 
rate. They extend the analysis described in [25] that studies 
the vulnerability life cycle and conclude that the rate of 
vulnerability discovery for an operating system can be 
considered as constant.  

To the best of our knowledge, there are only a few 
studies about the characterization of the events we consider 
in our approach and existing work cannot be reused. Thus, 
the next section presents the work aiming at quantifying the 
probability of occurrence of the vulnerability life cycle 
events based on real data. 

 

6.1. Existing vulnerability databases and statistical reports 
Several organizations collect and study vulnerabilities. 

Some of them regularly produce reports giving information 
and trends about vulnerability evolution: for example, 
Symantec Corporation edits a survey each year, focusing on 
vulnerability trends and presenting analyses of quantitative 
data recorded by their products like their antivirus solution 
[41]. Other reports exist like the X Force trends and risk 
report [42] that classifies, e.g. the operating systems 
considering how many vulnerabilities were disclosed [43]. 

 Data are also available in several databases that record 
each new vulnerability and characterize it by several 
attributes. The National Vulnerability Database (NVD) [44], 
managed by the National Institute of Standards and 
Technology of the United States and associated with the 
Common Vulnerabilities and Exposures (CVE), records 
vulnerabilities since 1999 and provides an evaluation of 
each vulnerability based on the CVSS metrics [23]. The 
Security Focus vulnerability database [45] is managed by 
Symantec Corporation and contains around 35 000 
vulnerabilities recorded since October 1998. The OSVDB 
was created by the Black Hat Conference community and 
contains more than 52 000 vulnerabilities [1] recorded since 
December 1998. Secunia, a private company that provides 
services in security defense and vulnerability analysis, 
maintains also a vulnerability database since 2002 [46]. The 
database also indicates the severity based on the CVSS 
metrics. The characteristics of each vulnerability database 
are summarized in Table 1, indicating the vulnerability life 
cycle events for which the corresponding date is available. 

 
 

TABLE 1. Vulnerability databases comparison. 
Database NVD Security 

Focus 
OSVD Secunia 

Discovery date No No Yes No 
Disvlosure date Yes Yes Yes Yes 
Patcg date No No Yes No 
Exploit date No No Yes No 

 

6.2. Events characterization 
To estimate the parameters characterizing the occurrence 

of the vulnerability life cycle events described in our 
models, it is necessary to obtain a sufficient and as complete 
as possible vulnerability data set. The most complete data 
set is, of course, the union of the data provided by every 
vulnerability database. Unfortunately, the vulnerability 
databases are very heterogeneous. Even if the CVE 
reference seems to be a useful and unique vulnerability 
reference, it is not indicated in each database. Thus it is not 
easy to merge and to correlate the information reported in 
different vulnerability databases. Thus, before analyzing 
data, we have to choose the most relevant vulnerability 
database for our study. As our goal is to characterize the 
vulnerability life cycle events, our interest is focused 
primarily on timed parameters. The OSVDB database 
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matches our requirements as it is the only one that records 
that kind of information for all the events. This database 
provides a large set of data. We analyzed 52 000 
vulnerabilities extracted from the database and recorded 
since December 1998. For each vulnerability, the OSVDB 
identifier, the vulnerability categories, and the time 
corresponding to the discovery date, the disclosure date, the 
patch release date and the exploit date are recorded if they 
are available. Unfortunately, this is not the case for each 
vulnerability. The next section presents the first step of our 
analysis. This work is an extension of the work described in 
[8]. 

 

6.3. Preliminary analysis of the data set 
Before analyzing the data set to fit the intervals between 

two of these events with probabilistic distribution, this 
subsection provides a preliminary analysis of the data set, 
based on the information summarized in Table 2. 

The number in cell(i,j) indicates the number of events 
for which the occurrence date of the corresponding events i 
and j is available. The percentage in cell(i,j) indicates the 
proportion among the set of vulnerabilities with information 
available about the occurrence of event i for which 
information is also available about the occurrence of event j. 
Let us take as a simple example the set of vulnerabilities for 
which both discovery and disclosure dates are available. 
This set of 3926 vulnerabilities represents only a small 
proportion of the total number of vulnerabilities: 7.8%. But 
it also represents 99.12% of the set of vulnerabilities for 
which the discovery date is available. This small number of 
vulnerabilities may be explained by the fact that the 
vulnerability discovery is not an event that is officially 
published. 

Considering the set of vulnerabilities for which both 
vulnerability disclosure and patch release dates are 
available, it counts 871 vulnerabilities and represents only 
1.71% of the set of vulnerabilities for which the 
vulnerability disclosure date is available. This set represents 
75.67% of vulnerabilities for which the patch release date is 
available. 

Two reasons could explain the small number of 
vulnerabilities for which the patch release date is available: 
(i) Only a small proportion of the vulnerabilities that are 630 

disclosed have an available patch. This explanation 
seems possible because we consider that the vulnerabil- 
ity may be disclosed by another source than the producer 
of the vulnerable component, as in [47]. 

(ii) The information reported in the database is incomplete 
and the fact that the patch release date is not recorded 
does not mean that it does not exist. 
 
It is impossible for us to validate or invalidate one of 

these two explanations. However, studies by 
Jumratjaroenvanit  and Teng-amnuay [47] encourage us to 

consider the fact that vulnerabilities could be disclosed and 
not be patched. 

Finally, let us examine the set of vulnerabilities for 
which both exploit availability and disclosure dates are 
available: it represents only 34.34% of the studied 
vulnerability set. This highlights the fact that the exploit 
availability, as the patch release, is not a systematic event in 
the vulnerability life cycle. It is important to take this new 
information into account for the parameterization of our 
models. In the next section, we present the probability 
distributions characterizing the occurrence of the 
vulnerability life cycle events that we estimated based on 
the data set presented in Table 2.  

6.4. Data analysis and event characterization 
To characterize the probability of occurrence of an event 

from the vulnerability state i to the state j, we select the  
vulnerabilities for which the dates ti and tj are available and 
evaluate the duration tj–ti. Thus, a new data set composed of 
the evaluated durations between state i and state j is 
obtained. We need to classify these data to be able to 
analyze them and find the more appropriate probability 
distribution. Organizing the data in bins to estimate the 
corresponding empirical distribution enables to focus on the 
general trend and then to minimize the impact of very little 
variations. However, it is also important not to choose a too 
small number of bins, which could mask important 
information. We determine the number of bins thanks to the 
Sturges formula [48]. We make the choice that all the bins 
contain the same number of data in each bin [8]. 

Once the data are processed, we use the EasyFit tool 
[49] to fit the empirical distribution obtained with several 
probability distributions. The Kolmogorov–Smirnov 
statistical test is used to assess the quality of fit of the 
considered probability distributions. 
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seems possible because we consider that the vulnerabil-
ity may be disclosed by another source than the producer
of the vulnerable component, as in [47].

(ii) The information reported in the database is incomplete635

and the fact that the patch release date is not recorded
does not mean that it does not exist.

It is impossible for us to validate or invalidate one of
these two explanations. However, studies by Jumratjaroenvanit
and Teng-amnuay [47] encourage us to consider the fact that640

vulnerabilities could be disclosed and not be patched.
Finally, let us examine the set of vulnerabilities for which

both exploit availability and disclosure dates are available: it
represents only 34.34% of the studied vulnerability set. This
highlights the fact that the exploit availability, as the patch645

release, is not a systematic event in the vulnerability life cycle.
It is important to take this new information into account

for the parameterization of our models. In the next section,
we present the probability distributions characterizing the
occurrence of the vulnerability life cycle events that we650

estimated based on the data set presented in Table 2.

6.4. Data analysis and event characterization

To characterize the probability of occurrence of an event
from the vulnerability state i to the state j , we select the
vulnerabilities for which the dates ti and tj are available and655

evaluate the duration tj–ti. Thus, a new data set composed of the
evaluated durations between state i and state j is obtained. We
need to classify these data to be able to analyze them and find
the more appropriate probability distribution. Organizing the
data in bins to estimate the corresponding empirical distribution660

enables to focus on the general trend and then to minimize the
impact of very little variations. However, it is also important
not to choose a too small number of bins, which could mask
important information. We determine the number of bins thanks
to the Sturges formula [48]. We make the choice that all the bins665

contain the same number of data in each bin [8].
Once the data are processed, we use the EasyFit tool [49] to

fit the empirical distribution obtained with several probability
distributions. The Kolmogorov–Smirnov statistical test is used
to assess the quality of fit of the considered probability670

distributions.

FIGURE 7. Time intervals between discovery and disclosure dates.

We processed our data to characterize vulnerability
disclosure, patch release and exploit availability events. As
the data set used in our study provides the discovery date of
the vulnerability but does not provide the date of release of the 675

vulnerable component, it is not possible for us to characterize
the vulnerability discovery event.

6.4.1. Vulnerability disclosure event characterization
The vulnerability disclosure event may occur after the non-
malicious discovery of the vulnerability or after the use of the 680

exploit, according to the two scenarios detailed earlier in this
paper.

First, we study the disclosure event in the context of
the non-malicious discovery scenario (NM-S). There are
3926 vulnerabilities in the OSVDB database with discovery 685

and disclosure dates. Seven hundred and eight of them
have been discovered and disclosed at the same time, and
3218 vulnerabilities have been disclosed 1 day or more
after the discovery. The histogram depicted in Fig. 7 represents Q7
the empirical distribution of the time between the discovery and 690

the disclosure of the vulnerability. The first bin has a value equal
to 92.51% and the second one to 2.75%. This sharp decrease of
the probability can be described by a Beta distribution. This was
confirmed by the Kolmogorov–Smirnov test applied to the data.
The parameters and the P -values of the Kolmogorov–Smirnov 695

test are summarized in the recapitulative Table 3: t0 represents
the discovery date; td the disclosure date; tp the patch release
date and te the exploit date. The parameters α and β are the shape

TABLE 3. Summary of parameters of the Beta probability distribution.

Time interval Event α β P-value

td − t0 Vulnerability disclosure (NM-S) 0.03485 1.6282 0.38
tp − td Patch release 0.00352 0.62362 0.41
te − td Exploit availability (NM-S) 0.00090 1.8666 0.35
te − t0 Exploit availability (M-S) 0.02916 1.5813 0.38
td − te Vulnerability disclosure (M-S) 0.03947 0.91506 0.34
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the vulnerable component, it is not possible for us to 
characterize the vulnerability discovery event. 

 
6.4.1. Vulnerability disclosure event characterization 

The vulnerability disclosure event may occur after the 
non- malicious discovery of the vulnerability or after the use 
of the exploit, according to the two scenarios detailed earlier 
in this paper. 

First, we study the disclosure event in the context of the 
non-malicious discovery scenario (NM-S). There are 3926 
vulnerabilities in the OSVDB database with discovery and 
disclosure dates. Seven hundred and eight of them have 
been discovered and disclosed at the same time, and 3218 
vulnerabilities have been disclosed 1 day or more after the 
discovery. The histogram depicted in Fig. 7 represents the 
empirical distribution of the time between the discovery and  
the disclosure of the vulnerability. The first bin has a value 
equal to 92.51% and the second one to 2.75%. This sharp 
decrease of the probability can be described by a Beta 
distribution. This was confirmed by the Kolmogorov–
Smirnov test applied to the data. 

The parameters and the P -values of the Kolmogorov–
Smirnov test are summarized in the recapitulative Table 3: 
t0 represents the discovery date; td the disclosure date; tp 
the patch release date and te the exploit date. The 
parameters α and β are the shape parameters of the Beta 
distribution, whose density function is 
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parameters of the Beta distribution, whose density function is

f (x) = xα−1(1 − x)β−1

B(α, β)
.700

Let us consider the second scenario in which the vulnerability
is discovered by a malicious person (M-S). We need to take into
account the disclosure dates td and the exploit dates te such
as td − te has a positive value. There are 222 vulnerabilities
for which the exploit date predates the disclosure date. The705

time interval between these two events varies from 1 to 2151
days. The probability distribution fitting with the data set is
a Beta distribution once again. The empirical distribution and
the associated Beta probability distribution are depicted in
Fig. 8.710

6.4.2. Patch release event characterization
The patch release event is studied considering the same principle
that we presented for the vulnerability disclosure event. We
studied 871 vulnerabilities. For 712 of them, the date of the
patch release is the same as the date of vulnerability disclosure.715

The time intervals are between 0 and 759 days. It appears
that the Beta distribution fits with our data and satisfies the
Kolmogorov–Smirnov test. The estimated parameters of the
Beta distribution are given in Table 3.

6.4.3. Exploit availability event characterization 720

To characterize the occurrence of the exploit availability event,
we need to compare the dates of exploit availability to the
dates of vulnerability discovery (in the M-S) and vulnerability
disclosure (in the NM-S).

First, we consider the data set of 2131 vulnerabilities for 725

which exploit availability and discovery dates are available: 389
of them have the same discovery and exploit availability dates.
For these ones, we can make the assumption that the discovery
is malicious. This set of 2131 vulnerabilities fits with a Beta dis-
tribution and this fitting satisfies the Kolmogorov–Smirnov test. 730

Then, we focus on the comparison between vulnerability
disclosure and exploit availability dates. It is based on 17 857
vulnerabilities. In this data set, we notice that: (i) for 222
vulnerabilities, the exploit appears before the vulnerability
disclosure (these vulnerabilities are used for the characterization 735

of vulnerability disclosure event in the M-S); (ii) for 17 077
vulnerabilities, the exploit and the vulnerability are disclosed
the same day; (iii) for 558 vulnerabilities, the exploit appears
after the vulnerability disclosure. In this section, we analyze
the vulnerabilities of the two last cases that are very likely to 740

correspond to the NM-S. It is important to notice the large
amount of vulnerabilities that are disclosed and exploited in
the same day. This may highlight the important impact of the
disclosure event. Considering the two last vulnerability sets of,
respectively, 17 077 and 558 vulnerabilities, the analysis of the 745

distribution of the time interval between vulnerability discovery
and exploit availability have shown that the Beta distribution
provides a good fit confirmed by the Kolmogorov–Smirnov test.

6.4.4. Discussion
The previous results show that the Beta distribution provides 750

a good fit to characterize the occurrence of the vulnerability
life cycle events. These results are based on the data stored in
the vulnerability database at the date of 25 December 2008.
It is important to monitor the validity of this distribution and
re-estimate the parameters based on recently collected data. 755

This is important as the validity of the results derived from
the models relies on the representativity of the assumptions
and of the values assigned to the parameters associated to
the events described in the models. As an example, Table 4

TABLE 4. Life cycle events parameters: time evolution.

Global Before 2001 2001–2005 After 2005

Event Mean (h) Nb. vul. Mean (h) Nb. vul. Mean (h) Nb. vul. Mean (h) Nb. vul.

td − t0 1474 3925 1135 113 1280 2676 1958 1137
tp − td 142 871 0 1 1284 17 120 853
te − td ≥ 0 33 17857 73 747 59 6916 13 10 194
te − td < 0 −3098 222 −150 16 −3431 138 −827 68
te − t0 1300 2108 1561 50 1202 1536 1561 522
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FIGURE 8. Time intervals between exploit availability and 
disclosure dates. 
 
TABLE 3. Summary of parameters of the Beta probability 
distribution. 

Time 
Interval 

Event α β p-
value 

td−t0 Vulnerability 
disclosure (NM-S) 

0.03485 1.6282 0.38 

tp−td Patch release 0.00352 0.62362 0.41 
te−td Exploit availability 

(NM-S) 
0.00090 1.8666 0.35 

te−t0 Exploit availability 
(M-S) 

0.02916 1.5813 0.38 

td−te Vulnerability 
disclosure (M-S) 

0.03947 0.91506 0.34 

 
6.4.3. Exploit availability event characterization 

 
To characterize the occurrence of the exploit availability 

event, we need to compare the dates of exploit availability 
to the dates of vulnerability discovery (in the M-S) and 
vulnerability disclosure (in the NM-S). 

First, we consider the data set of 2131 vulnerabilities for 
which exploit availability and discovery dates are available: 
389 of them have the same discovery and exploit 
availability dates. 

For these ones, we can make the assumption that the 
discovery is malicious. This set of 2131 vulnerabilities fits 
with a Beta distribution and this fitting satisfies the 
Kolmogorov–Smirnov test. Then, we focus on the 
comparison between vulnerability disclosure and exploit 
availability dates. It is based on 17 857 vulnerabilities. In 
this data set, we notice that: (i) for 222 vulnerabilities, the 
exploit appears before the vulnerability disclosure (these 
vulnerabilities are used for the characterization of 
vulnerability disclosure event in the M-S); (ii) for 17 077 
vulnerabilities, the exploit and the vulnerability are 
disclosed the same day; (iii) for 558 vulnerabilities, the 
exploit appears after the vulnerability disclosure. In this 
section, we analyze the vulnerabilities of the two last cases 
that are very likely to correspond to the NM-S. It is 
important to notice the large amount of vulnerabilities that 
are disclosed and exploited in the same day. This may 
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highlight the important impact of the disclosure event. 
Considering the two last vulnerability sets of, respectively, 
17077 and 558 vulnerabilities, the analysis of the 
distribution of the time interval between vulnerability 
discovery and exploit availability have shown that the Beta 
distribution provides a good fit confirmed by the 
Kolmogorov–Smirnov test. 

 
6.4.4. Discussion 

 
The previous results show that the Beta distribution 

provides a good fit to characterize the occurrence of the 
vulnerability life cycle events. These results are based on 
the data stored in the vulnerability database at the date of 25 
December 2008. 

It is important to monitor the validity of this distribution 
and re-estimate the parameters based on recently collected 
data. This is important as the validity of the results derived 
from the models relies on the representativeness of the 
assumptions and of the values assigned to the parameters 
associated to the events described in the models. As an 
example, Table 4 reports the average values of the time 
intervals associated to life cycle events considering three 
periods: (i) before 2001, (ii) between 2001 and 2006 and 
(iii) after 2006. The number of vulnerabilities for each 
period is also indicated. In this case, comparing the average 
values computed for the global data set with those obtained 
for each period, we obtain generally the same order of 
magnitude. The more significant differences are observed 
for the cases where the number of vulnerabilities is low. In 
an operational real-life context, a more thorough analysis of 
the possible time evolution of the estimated parameters need 
to be done at a regular basis. 

7. Model Pprocessing and Quantitative Evaluation of the 
measures  

The next step of our approach consists in running 
simulations of the defined models to obtain quantitative 
values of the measures presented in Section 4.2. We use the 
Möbius tool that integrates a set of solvers allowing the 
processing of SAN models using analytical and Monte-
Carlo simulation [37]. Different types of distributions are 
supported by the tool. In this section, we first present how 
we parameterize the models activities. Section 4.2 discusses 
the parameterization of the vulnerability life cycle activities 
based on the results described in Section 6. Section 7.1.2 
focuses on the activities related to the attackers behavior and 
Section 7.1.3 is dedicated to the administrator behavior 
activity parameterization. The results of the model 
processing are presented in Section 7.2. 

In this section, we assume that the vulnerability is 
already in the system. Thus, we do not consider the 
installation process modeled by the activity install and we 
assume that the system is initially in the vulnerable state. 

 

TABLE 4. Life cycle events parameters: time evolution. 
Event td-t0 tp-td te-td ≥0 te-td < 0 te-t0 

Global Mean(h) 1474 142 33 -3098 1300 

Nb Vul 3925 871 17857 222 2108 

Before 
2001 

Mean(h) 1135 0 73 -150 1561 

Nb Vul 113 1 747 16 50 

2001-
2005 

Mean(h) 1280 1284 59 -3431 1202 

Nb Vul 2676 17 6916 138 1536 

After 
2005 

Mean(h) 1958 120 13 -827 1561 

Nb Vul 1137 853 10194 68 522 

 

7.1.Parameters description 
 
7.1.1. Vulnerability life cycle 

To parameterize the activities modeling the life cycle of 
the vulnerability, we use Beta distribution with the results of 
the characterization described in Section 6. 

In the NM-S, the preliminary analysis has shown that the 
exploit availability and the patch release may not occur. 
According to the database, only 2% of the vulnerabilities 
that are disclosed have a patch disclosed as well. This value 
of 2% for the patch existence seems to be very small. Thus, 
we have decided to perform sensitivity analyses on the 
model considering not only this value provided from the 
database analysis, but also other possible values for the 
probability of patch existence (5, 10, 50 and 100%). When 
the patch exists, its disclosure is modeled with a Beta 
distribution. 

The analysis of the vulnerability database shows that 
only 34.5% of the vulnerabilities have an associated 
available exploit. In the malicious discovery scenario, we 
make the assumption that the patch release occurs 
inevitably. This choice is justified by the fact that a 
vulnerability discovered by malicious people, and so 
exploited before the vulnerability disclosure, represents a 
very serious threat. This is the reason why we assume that 
the patch will be disclosed with a probability equal to 1 in 
this case.  

 
7.1.2. Vulnerability exploitation: attack process 

The attack process is different according to the 
vulnerability discovery scenario that is considered. The 
vulnerability may be exploited before the vulnerability 
disclosure only in the M-S and is modeled by the activity 
attackV0. The other two attack activities, attackVd and 
attackVp, are present in the two models. These three 
activities are described by probabilistic exponential 
distributions, based on the work presented in [6, 50]. As 
summarized in Table 5, we assume different rates, defined 
empirically, according to the considered phase of the 820 
vulnerability life cycle and higher attack rates, for the M-S 
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as the vulnerability represents, in this case, a higher threat 
for the system. It is assumed that the attack rate when the 
vulnerability has been disclosed is higher than at any other 
moment of the life cycle, as all the attackers may exploit it 
successfully. A sensitivity analysis considering different 
attack rates values is presented in Section 7.2.1. 
 
7.1.3. Patch application and system repair 

The patch may be applied by the administrator 
considering three different circumstances: the system is 
vulnerable, exposed or compromised (modeled, 
respectively, by the activities patchVul, patchExp, patchC). 
As there is no previous work in literature and no data 
available to provide such information, we assume that these 
activities can be described by normal distributions (cf. Table 
5), as this distribution seems intuitively to well describe the 
time of reaction needed by the administrator1. The higher 
the threat faced by the system (considering the states 
vulnerable, exposed and compromised), the shorter the 
meantime between the patch release and the patch 
application. The patch application prevents other attacks 
from being successful on the system but it is not sufficient 
to make the system secure. The repair of the system 
corresponds to the cleaning and recovery task that is 
necessary to secure the system. In the model processing, we 
assume a one day duration to repair the system. In our study, 
we analyze two different administrator behaviors: lax and 
rigorous2. When there is no exploit and no disclosure of the 
vulnerability, i.e. in a context with no real threat, the lax 
administrator updates the system once a month when the 
rigorous one updates it every day. 

 
Table 5. Parameters for the modeling of attackers and 
administrator related activities (NM-S and M-S scenarios) 

 
Activity Distrib. Parameter Value 
Attack	Vd	(NM-S)	 Exp. Rate 0.5/day 
Attack	Vp	(NM-S)	 Exp. Rate 0.1/day 
Attack	V0	(NM-S)	 Exp. Rate 1/day 
Attack	Vd	(M-S)	 Exp. Rate 5/day 
Attack	Vp	(M-S)	 Exp. Rate 1/day 
patchVul	 Normal Mean, 

Variance 
1/30 days 
0.5 days-2 

patchExp	 Normal Mean, 
Variance 

0.5/15 days 
0.5 days-2 

patchC	 Normal Mean, 
Variance 

0.1/3 days 
0.5 days-2 

repair	   3 days 
0.5 days-2 

 
                                                             

1 The choice of the normal distribution is done empirically and any 
other type of distribution could be considered in our model and 
processed by the Mobius tool. 

2  We study two extreme administrator behaviors in order to 2  We study two extreme administrator behaviors in order to 
highlight the impact of this external factor. An administrator 
may, of course, has an intermediate behavior 

7.2. Results 
7.2.1. Non-malicious discovery scenario (NM-S) 

This section presents the results obtained from the 
processing of NM-S model. We focus on the states of the 
system which are necessary to quantify the measures. The 
first part of this section is dedicated to the study of the 
probability for the system to be in the vulnerable, exposed 
and patched states before evaluating the measures presented 
in Section 4.2. The two different administrator behaviors 
(rigorous and lax) are modeled by the three activities 
patchVul, patchExp and patchC.  

Figure 9 depicts the evolution of the probability for the 
system to be in the vulnerable state. It highlights the 
influence of the patch existence (through probability p) but 
also the difference between the two administrator behaviors. 
When the administrator is rigorous, the probability for the 
system to be in the vulnerable state decreases quickly 
because of the exploit availability (which makes the system 
move to the exposed state) but also because the 
administrator applies the patch as soon as it is disclosed. 
Both events occur around 1 day in average after the 
vulnerability disclosure. In the case of a lax administrator, 
the probability starts by decreasing because of the exploit 
availability (around day 1) that leads the system in the 
exposed state. Anyway, it takes a long time for the 
administrator to apply the patch, as illustrated by the slow 
decreasing curve (starting around day 30).  
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The curves in Fig. 10 depict the evolution of the probability
of having the system exposed. First, the curve exhibits an
increasing trend because of the exploit availability event.
This increase is, however, less important for the rigorous
administrator who has already applied the patch before the 880

occurrence of a successful attack. The decreasing phase may
be caused by two events: the patch application or a successful
attack. In the case considering a low probability of patch
existence (2 and 10%), the event that has the highest impact
is the attack process which has a higher occurrence rate than 885

the patch application rate. On the contrary, for the other cases
(50 and 100%), the decrease of the curve is mainly due to the
patch application and not the vulnerability exploitation.

The evolution of the measure PCNR(t) (cf. Fig. 11) is very
similar to the PPC(t) evolution. Considering a low probability 890

of patch existence (2 or 10%), the curves corresponding to the
lax administrator and the rigorous one are indistinguishable
and increase quickly to the value 34.5%, that is the maximum
probability of exploit availability (cf. Section 6). When we
consider a 100% probability of patch existence, it is noticeable 895
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The curves in Fig. 10 depict the evolution of the 

probability of having the system exposed. First, the curve 
exhibits an increasing trend because of the exploit 
availability event. This increase is, however, less important 
for the rigorous administrator who has already applied the 
patch before the occurrence of a successful attack. The 
decreasing phase may be caused by two events: the patch 
application or a successful attack. In the case considering a 
low probability of patch existence (2 and 10%), the event 
that has the highest impact is the attack process which has a 
higher occurrence rate than the patch application rate. On 
the contrary, for the other cases (50 and 100%), the decrease 
of the curve is mainly due to the patch application and not 
the vulnerability exploitation. 
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very similar to the PPC(t) evolution. Considering a low 
probability of patch existence (2 or 10%), the curves 
corresponding to the lax administrator and the rigorous one 
are indistinguishable and increase quickly to the value 
34.5%, that is the maximum probability of exploit 
availability (cf. Section 6). When we consider a 100% 
probability of patch existence, it is noticeable that there is 
more difference between the values obtained, due to the 
difference between the two administrator behaviors: the lax 
administrator has a small PCNR(t) value but significantly 
higher than the rigorous one. Moreover, the difference 
between the curves is due to the fact that the probability to 
reach the patched state, given that the system has been 
compromised, is lower in the rigorous case compared with 
the lax case is directly related to the fact that the system in 
this case has a higher probability to be patched before a 
successful attack occurs. 
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has a direct impact on the probability for the system to reach 
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probability of patch existence has a high influence on PS(t) 
which exceeds (for a rigorous administrator) 90%, at day 10 
in the case of a 100% patch existence probability, compared 
with 9% when the probability of patch existence is 10%. 
Figure 12 also highlights the difference between the two 
administrator behaviors: with the same patch existence 
probability, it takes at least 25 days for the lax administrator 

to reach the same PS(t) value than the rigorous 
administrator, and certainly after the system has been 
compromised and repaired. 
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FIGURE 12. Evolution of PS(t) in NM-S.

that there is more difference between the values obtained, due
to the difference between the two administrator behaviors: the
lax administrator has a small PCNR(t) value but significantly
higher than the rigorous one. Moreover, the difference between
the curves is due to the fact that the probability to reach the900

patched state, given that the system has been compromised,
is lower in the rigorous case compared with the lax case is
directly related to the fact that the system in this case has a higher
probability to be patched before a successful attack occurs.

The probability for the system to be in a patched state has905

a direct impact on the probability for the system to reach the
secure state PS(t), plotted in Fig. 12.As expected the probability
of patch existence has a high influence on PS(t) which exceeds
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probability of patch existence is 10%. Figure 12 also highlights
the difference between the two administrator behaviors: with
the same patch existence probability, it takes at least 25 days
for the lax administrator to reach the same PS(t) value than the
rigorous administrator, and certainly after the system has been915

compromised and repaired.
An additional insight is obtained by varying the attack rates:

Rd and Rp, that are associated to the rates of activities attackVd

and attackVp. Figure 13 shows the evolution of the probability
PS(t) assuming that the patch always exists. The probability920

evolution considering different attack rates are very similar

FIGURE 13. Evolution of PS(t) in NM-S considering different attack
rates.

FIGURE 14. Evolution of the probability to be in vulnerable state in
M-S compared with NM-S.

when a rigorous administrator is considered, as the patch is
applied as soon as it is disclosed. The case in which we consider
a lax administrator shows a higher sensitivity to the attack rate.
If we consider a high attack rate, the system becomes secure 925

sooner but this quick patch application is due to the fact that the
system has been compromised and repaired before becoming
secure.

7.2.2. Malicious discovery scenario (M-S)
As has been done for the NM-S, we present the probability 930

for the system to be in one of the states and deduce the
values for the measures defined in Section 4. For each state
or measure considered, we compare the trends for the two
administrator behaviors and the two scenarios. First, Fig. 14
depicts the probability for the system to be in the vulnerable state 935

considering the case when the patch always exists (p = 1). The
two curves corresponding to the two administrator behaviors in
M-S scenario are very similar and decrease more quickly than
in the case of the NM-S. This is due to the fact that the exploit
is available before the patch. Thus, even if the administrator 940

is a rigorous one, the patch cannot be applied and the system
moves to the exposed state. Figure 15 depicts the evolution of
the measure PCNR(t) in the M-S, compared with the NM-S.
The difference between the two administrator behaviors is
important: PCNR(t) has a maximum value of 32% with a lax 945

administrator and 4% with a rigorous one. Figure 16 shows the

FIGURE 15. Evolution of PCNR(t) in M-S compared with NM-S.
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two curves considering rigorous administrators follow the same
trend. In the case of the lax administrator, the patch is applied
sooner in the M-S scenario because of the higher probability of
successful attack.

8. DISCUSSION ON PRACTICAL APPLICABILITY
AND LIMITS OF THE MODEL

The modeling approach presented in this paper is a first step965

towards an ‘automated process’ for quantitatively evaluating
the security of information systems. As for now, the proposed
models are useful and adapted to understand, represent and
analyze the influence of some factors on the security level

of information systems. The proposed set of four security 970

measures enables us to have a global vision of the security
risks for the system resulting from the combined effect of three
different factors: the vulnerability life cycle events, the attacker
behavior and the administrator behavior. They enable a system
administrator to answer the following questions: (i) ‘what is the 975

probability for my system to be compromised by a successful
attack?’, (ii) ‘what is the probability for my system to be secure
considering a specific vulnerability?’, (iii) ‘how the time to
patch a given vulnerability affects the probability of the system
to be secure’, etc. These measures should be assessed and 980

updated at a regular basis using recent information reported
in public vulnerability databases. By providing this global view
of the security risks, these measures are aimed at enabling the
security administrators to have a better awareness of the levels
of risks induced by the considered factors and providing them 985

useful hints to mitigate these risks by taking some strategic
decisions such as: patching some particular software as soon as
possible, de-installing some vulnerable component, etc.

The proposed models identify a set of parameters that need
to be estimated based either on data already available from 990

vulnerability databases or based on security experts judgements
(when some of such data are missing). The problem of data
availability is common to all model-based studies and usually
it is sufficient to indicate the order of magnitude of some
parameters to perform sensitivity analyses and derive some 995

general trends about the computed measures.As indicated in the
paper, the information recorded in the vulnerability databases
are heterogenous and sometimes incomplete and some research
studies are needed to improve the content of such databases or
to correlate the information contained in different databases 1000

in order to obtain a more complete dateset compared with
information derived from a single database. On the other hand,
we believe that our work also contributes to identify relevant
information that it would be useful and interesting to record in
the future in the vulnerability databases. 1005

Finally, it is important to note that the models developed
at this stage analyze the system at a macroscopic abstraction
level adopting a black box approach. Further extensions are
needed in order to perform analyses at a finer granularity
taking into account, in addition to the considered factors, the 1010

system architecture and the interactions between the system
components. The development of such a model will require the
analysis of the vulnerabilities at the component level rather than
globally leading to a more detailed description of the system
states. Also, besides patch application, more details could be 1015

included to describe system administrators behavior and the
activities that can be used to manage and resolve software and
system-related vulnerabilities.

Clearly, the complexity of the models increases with the level
of detail included. Such a complexity can be mastered thanks to 1020

the significant progress achieved in the last decade in the area
of SANs and more generally in the context of other state-based
modeling formalisms.
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from vulnerability databases or based on security experts 
judgments (when some of such data are missing). The 
problem of data availability is common to all model-based 
studies and usually it is sufficient to indicate the order of 
magnitude of some parameters to perform sensitivity 
analyses and derive some general trends about the computed 
measures. As indicated in the paper, the information 
recorded in the vulnerability databases are heterogeneous 
and sometimes incomplete and some research studies are 
needed to improve the content of such databases or to 
correlate the information contained in different databases in 
order to obtain a more complete dataset compared with 
information derived from a single database. On the other 
hand, we believe that our work also contributes to identify 
relevant information that it would be useful and interesting 
to record in the future in the vulnerability databases.  

Finally, it is important to note that the models developed 
at this stage analyze the system at a macroscopic abstraction 
level adopting a black box approach. Further extensions are 
needed in order to perform analyses at a finer granularity 
taking into account, in addition to the considered factors, the 
system architecture and the interactions between the system 
components. The development of such a model will require 
the analysis of the vulnerabilities at the component level 
rather than globally leading to a more detailed description of 
the system states. Also, besides patch application, more 
details could be included to describe system administrators’ 
behavior and the activities that can be used to manage and 
resolve software and system-related vulnerabilities. 

Clearly, the complexity of the models increases with the 
level of detail included. Such a complexity can be mastered 
thanks to the significant progress achieved in the last decade 
in the area of SANs and more generally in the context of 
other state-based modeling formalisms. 

 

9. Conclusion and Perspectives 
This paper presented a modeling approach for 

quantitative security evaluation. Our objective is to 
elaborate an evaluation process that can provide measures 
quantifying the risks for the system to be compromised by a 
successful attack exploiting a vulnerability. Our study 
focuses on the characterization and the modeling of the 
vulnerability exploitation process  and its impact on the state 
of the system. The first step of this approach is the 
identification and the characterization of the external factors 
that could have an impact on the vulnerability exploitation 
process. This study highlights three factors that have an 
impact on security: the vulnerability life cycle and two 
environmental factors, the attacker behavior and the 
administrator behavior with respect to the application of 
vulnerability patches. The dependencies between these 
factors led us to distinguish two scenarios based on whether 
the vulnerability is discovered by a malicious or a non-
malicious user. Taking into account these factors, we 
identified the different states of the system and defined four  
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