
 1

A vulnerability life cycle based security modeling and evaluation approach

Géraldine Vache, Mohamed Kaâniche, Vincent Nicomette
CNRS; LAAS; 7, Avenue du Colonel Roche, F-31077, Toulouse, France

Université de Toulouse, UPS, INSA, INP, ISAE ; LAAS ; F-31077, Toulouse, France
Email : {gvache, nicomett, kaaniche}@laas.fr

Abstract— The objective of this work is the evaluation of
information systems security using quantitative measures. These
measures aim at forecasting risks and providing information to
monitor the security level of the system in operation. In our
approach, we take into account some environmental factors that
have a significant impact on the security of the system. We have
identified three such factors that are related to the vulnerability
exploitation process: the vulnerability life cycle, the behavior of
the attackers and the behavior of the system administrator. We
have studied the interdependencies between these factors and how
the evolution of these factors could impact the system security.
From this study, we have defined quantitative security measures
taking into account these environmental factors and we have
developed a model based on Stochastic Activity Networks (SANs),
describing how the vulnerability exploitation process could lead to
system to be compromised. We have distinguished two scenarios
according to whether the vulnerability is discovered by a malicious
user or not. By analysing a vulnerability database, we have
characterised the probability of occurrence of several events of the
vulnerability life cycle. This characterization helped us to quantify
the measures by processing the SAN model.

Keywords: Aircraft mission reliability, stochastic assessment,
dependabity modeling, maintenance, mission planning

1. Introduction

Securing an information system is a crucial and tricky
issue: since 2006, more than 7000 vulnerabilities have been
published every year, according to the data recorded in the
OSVDB database [1]. In this context, evaluating information
system security appears to be necessary in order to analyse
and prevent risks.

First approaches for the security evaluation appeared in
the 80’s with the development of security evaluation criteria
such as the TCSEC [2], the ITSEC [3] and more recently the
Common Criteria [4]. These criteria have given rise to the
ISO 27000 standards [5, 6]. They define security levels,
guidelines and processes to support the assessment, during
the design, of the level of protection provided by an
information system to cope with vulnerabilities and security
related risks. The security levels defined in these criteria are
considered as qualitative, in spite of the not well- defined
boundary between quantitative and qualitative assessment in

security. Indeed, the ISO 27000 standards define security
levels, according to the functionalities implemented in the
system and the level of rigour and formalisation of the
development processes, that are mostly considered as
qualitative measures. Moreover, these security evaluation
criteria are not well suited for the evaluation of security risks
considering a dynamic environment: the evaluation
processes take too much time to be run regularly during the
operational life of the system.

Our approach aims at producing quantitative security
measures to assess the level of risk faced by an operational
system considering an evolving environment. For this
purpose, we first identify external factors that have an
important impact on the system vulnerability exploitation
process: the vulnerability life cycle and two environmental
factors that are 1) the attacker population behavior and 2) the
system administrator behavior. To be able to provide
measures and quantify them, we study the evolution of these
factors, define measures considering the impact of these
factors and model them and their interactions with the
system. Then, we quantify the probability of occurrence of
vulnerability life cycle events and process the stochastic
models we developed to evaluate the consequences of
environmental factors on the system security.

This paper is structured as follows: Section 2 describes
existing work related to quantitative security evaluation.
Then, Section 3 details the three factors considered in our
study and their impact on the system. Sections 4 and 5 are
respectively dedicated to the definition of measures and to
the description of the complete model of the system that
enables to evaluate these measures. Section 6 addresses the
estimation of the probability of occurrence of vulnerability
life cycle events based on data in a vulnerability database.
Section 7 details the quantitative measures and the results
derived from the processing of our model.

Section 8 discusses the practical usefulness of the model
from the administrator view point and lists some of the
current limitations. Finally, Section 9 concludes this paper
and presents our perspectives.

2. Related Work

To cope with the limitations of qualitative approaches,
alternative approaches have been proposed to make
quantitative security assessment feasible during the
operational life of the system. In [7], the authors highlight
the need of evaluation techniques for security and discuss

 2

related work of existing methodologies. In 1993, [8] argued
that security can be evaluated in terms of effort, without
proposing a measure and a practical model for assessing
security. During the same year, [9, 10] proposed the privilege
graph model. Based on the identification and analysis of
known vulnerabilities of the system, the privilege graph
highlights the different paths of vulnerability exploitation an
attacker may use to reach a security target. The privilege
graph is a state-based model where arcs model vulnerability
exploitation and places model privileges owned by the
attacker. A weight is assigned to each arc to quantify the
effort needed to exploit the vulnerability. These weights are
used to evaluate a quantitative measure corresponding to the
“Mean Effort To security Failure” (METF), which is aimed
at characterizing the capacity of the system to resist to
attacks [11].

The attack graph formalism described in [12] is based on
similar concepts: each state in the graph represents the
privileges owned by the attacker as well as the attacker’s
knowledge and the system environment state. Several studies
addressed the general and optimization of attack graphs [12,
13, 14], and their use for quantifying security [15, 16, 17].
The attack tree is another formalism used for example in
[18], to assess security risks based on the evaluation of the
exploitability of system vulnerabilities and the analysis of
their dependencies.

Another measure called “Time To Compromise”, was
presented in [19] and is based on three different processes
corresponding to three attack situations: 1) the attacker
knows at least one vulnerability giving the wanted privileges
and there is at least one known exploit; 2) there is at least
one known vulnerability giving the privileges the attacker
wants and the attacker does not know any successful exploit
for the vulnerability; 3) the attacker is continuously looking
for new vulnerabilities and new exploits. The “Time To
Compromise” measure results from the modeling of these
three attack processes and depends on probabilities of
process occurrence and the time needed by the attacker to be
successful for each process.

The quantitative approaches discussed above provide
security measures for systems in operation and consider an
important factor of the environment: the attacker. However,
the attacker is not the only environmental factor that may
impact the system security. In [20], three complementary
metrics, taking into account several environmental factors,
are presented: 1) a base metric that is focused on the needed
access rights to exploit the vulnerability and on the impact on
confidentiality, integrity and availability; 2) a time metric
that is focused on exploit and patch existence; 3) an
environment metric that is focused on computer system
neighbourhood having the same vulnerability. It also takes
into account the assessment of damage on system
environment. Mathematical equations are provided to
compute quantitative values for the proposed metrics.

However it is not explained how the parameters involved in
these equations can be estimated.

These quantitative security metrics take into account the
system environment but do not consider the impact of the
vulnerability life cycle. The modeling approach and the
results presented in this paper aim at addressing these issues.
For example, we consider that the likelihood of an attack
against a system exploiting a vulnerability is not constant in
time: the likelihood that an attacker exploits a new
vulnerability for which a patch does not exist yet may be
higher than the likelihood that an attacker tries to exploit an
old patched vulnerability, under the condition that the
attacker has sufficient knowledge or an easy way to do it.
Thus, the vulnerability impact on the system depend on the
environment evolution, as presented in the next section.

The discussion of related work of this section is not
meant to be exhaustive. We have focused on related studies
that are close to the topic addressed in this paper in order to
position our main contributions in this area. It is noteworthy
that besides the probabilistic models discussed above, other
stochastic approaches have been proposed in security-related
studies (e.g., to analyze security based on bayesian networks
[21, 22], fuzzy logic [23], or game theory [24], etc. or to
model viruses and worms propagation and their impact [25,
26]).

3. External Factors

Our purpose is twofold: 1) produce quantitative measures
taking into account three relevant environmental factors that
affect system security (the vulnerability life cycle, the
attackers behaviors and the administrators behaviors) and 2)
study how a change in the environment may have an impact
on the evolution of the likelihood for a system to be secure or
compromised. Of course, various system environments such
as military systems and banking systems may be very
different from one another. In our study, we mainly focus on
mass-market information systems. In this section, we
identify important external factors and we study how these
factors interact with the information system and with one
another

3.1. The vulnerability lifecycle

We define the vulnerability life cycle as the set of events
that could occur during the life of the vulnerability. In [27],
the authors take into account the events corresponding to the
vulnerability discovery, the vulnerability disclosure, the
patch release and the exploit availability, but also the birth
and the death of the vulnerability. This approach is also
followed by [28] considering that the exploit availability and
the resulting attacks happen always after the vulnerability
disclosure. In [29], the author does not take into account the
vulnerability birth and death but adds the patch application
as an event of the vulnerability life cycle. In our approach,
we aim at characterizing quantitatively the vulnerability life
cycle events. The patch application is not included in the

 3

vulnerability life cycle. It is taken into account through the
characterization of the administrator behavior (cf. Section
3.3). Thus, we focus on the main events of the vulnerability
life cycle that are considered by existing approaches, and
define them as follows:

- the discovery of the vulnerability: once this event has
occurred, the discoverer knows about the vulnerability
existence and can use this knowledge for a malicious or
non malicious purpose.

- the disclosure of the vulnerability: this is the first
time the information about the vulnerability is freely
available on an important source. This vulnerability has
generally been studied by expert for risk evaluation

- the release of the vulnerability patch: once this event
has occurred, it is possible to protect the system by
removing the vulnerability

- the availability of the exploit: this event enables the
attacker population to simply exploit the vulnerability.
The exploit may be elaborated by the attackers or may
result from the reuse of the proof of concept disclosed
at the same time as the vulnerability disclosure.

Clearly, the exploit availability has a high impact on the
attackers behavior. We can distinguish two different
scenarios.

In the first scenario, the vulnerability is discovered by a
non-malicious person, who informs the developer of the
vulnerable component that the vulnerability exists and this
action leads to the disclosure of the vulnerability. The
disclosure of the vulnerability enables administrators to be
careful but also informs the attackers population that the
vulnerability exists. From that moment, an attacker may
develop the exploit enabling all the attackers population to
perform attacks.

In the second scenario, the vulnerability is discovered by
a malicious person, who may inform other malicious persons
of the existence of the vulnerability or create himself an
exploit. The use of this exploit (i.e. attacks performed thanks
to that exploit) leads to the vulnerability disclosure. In both
scenarios, we assume that the vulnerability patch may be
disclosed at the same time as the vulnerability disclosure or
later. From this section, the non malicious (resp. malicious)
discovery scenario will be abbreviated by the notation NM-S
(resp. M-S).

3.2. Attackers behavior
The attackers population is an important environmental

factor. However, it is difficult to characterize because this
population is not homogeneous. In [30, 31], the authors
describe a two dimensional classification considering the
attackers motivations and skills. In [32], the authors studied
two categories of attackers: the script kiddies and the black
hats. The first ones need an exploit to be able to perform
attacks. The second ones are experts, who elaborate most of
the exploits. Moreover, the authors note that the black hats
represent a small proportion of the attackers population.

According to that, our approach is focused on the biggest
part of the population that are the script kiddies.

3.3. Administrator Behavior

The third external factor that is investigated in our
approach is the administrator’s awareness about information
system security. This is a key parameter in our approach.
Indeed, whether the administrator is aware about security
risks or not, may have serious consequences on the system: if
the administrator does not regularly check for patch releases
and does not install them as soon as they appear, the system
may stay vulnerable a long time, despite of the patch release.
It is noteworthy that the impact of the administrator’s
behavior on the security of the system depends on the
vulnerability life cycle: even if the administrator is very
cautious, we make the pessimistic assumption that he cannot
protect his system as long as the vulnerability patch does not
exist.

In the following, we will consider the two possible
administrators behaviors: lax or rigorous.

4. System States and Measures

4.1. System States
In this section, we present the different states of the

system, considering one vulnerability and the external
factors described in Section 3. Once the vulnerability is in
the system, the system becomes vulnerable. When an
exploit for this vulnerability is available, the system
becomes exposed. There is not much difference for the
system itself between these two states: the state transition
results from an environment change.

As soon as the exploit exists and is available for the
attackers population, the system may be attacked
successfully and compromised. If an attacker performs a
successful attack, the system moves to the compromised
state. The system stays in this state until the administrator
patches the system, provided that the patch is available.
Thus, the system becomes patched. However, it does not
mean that, in this state, there is no risk anymore: an attacker
may have obtained new privileges thanks to the exploitation
of the vulnerability that could allow him to still access the
system even after the vulnerability patch, unless the system
is carefully checked and cleaned. For instance, an attacker
that has successfully exploited the vulnerability may have
installed a backdoor or a keylogger in the system. The
backdoor allows him to obtain remote access to the
computer (even if the vulnerability is patched), the
keylogger allows him to capture all the keystrokes hit by the
users of the system (which may reveal confidential data,
such as passwords for instance). We consider that, in these
two states (compromised and patched), the system is in
danger. So, as the system is still in danger, it is necessary
for the administrator to clean and repair the system to bring
it in a secure state. For instance, the administrator may re-
install all or part of the system software from a safe backup.

 4

He may also compute checksums of all the binary files and
compare them to previously backed-up checksums in order
to detect modified binaries and re-install them. Of course, if
the patch is available, the administrator may have patched
the system before the exploit availability or before an
attacker has enough time to perform a successful attack. In
this case, the system state changes directly from vulnerable
or exposed to secure. All these system states, as well as the
impact of the external factors, are pictured in Figure 1.

Different measures could be defined based on these
states and events, as detailed in the next section. As it is
described in the previous paragraph, the difference between
the vulnerable and the exposed states is only caused by an
environment change. To make the definition of the measures
more understandable, we aggregate these two states into a
single state called vulnerable or exposed.

Vulnerability life cycle evaluation approach 7

no risk anymore: an attacker may have obtained new

privileges thanks to the exploitation of the vulnerability

that could allow him to still access the system even after

the vulnerability patch, unless the system is carefully

checked and cleaned. For instance, an attacker that

has successfully exploited the vulnerability may have

installed a backdoor or a keylogger in the system. The

backdoor allows him to obtain remote access to the

computer (even if the vulnerability is patched), the

keylogger allows him to capture all the keystrokes hit by

the users of the system (which may reveal confidential

data, such as passwords for instance). We consider

that, in these two states (compromised and patched),

the system is in danger. So, as the system is still in

danger, it is necessary for the administrator to clean

and repair the system to bring it in a secure state.

For instance, the administrator may re-install all or

part of the system software from a safe backup. He

may also compute checksums of all the binary files and

compare them to previously backed-up checksums in

order to detect modified binaries and re-install them. Of

course, if the patch is available, the administrator may

have patched the system before the exploit availability

or before an attacker has enough time to perform a

successful attack. In this case, the system state changes

directly from vulnerable or exposed to secure. All these

system states, as well as the impact of the external

factors, are pictured in Figure 1.

Different measures could be defined based on these

Administrator behavior
(lax or rigorous)

Vulnerability life cycle

Attackers behavior
(use of the exploit)

System state

Vulnerability

discovery

Vulnerability

disclosure

Patch

release

Exploit availability

Vulnerable

Exposed

Compromised

Secure Patched

FIGURE 1. Summary of external factors and system
states

states and events, as detailed in the next section. As

it is described in the previous paragraph, the difference

between the vulnerable and the exposed states is only

caused by an environment change. To make the

definition of the measures more understandable, we

aggregate these two states into a single state called

vulnerable or exposed.

4.2. Measures definition

In our context, we define four quantitative measures

that are illustrated by Figure 2. This figure identifies,

for each of the four measures, the system states that are

considered (colored states): we measure the probability

for the system to be in one of the colored states. The

four probability measures mentioned in this figure are

defined in the following.

PPC(t) quantifies the probability that the system is

in the compromised state at instant t. It means that the

system has been compromised due to a successful attack

and has not been patched during the interval [0, t].

The Computer Journal, Vol. ??, No. ??, ????

Figure 1. Summary of external factors and system states

4.2. Measures definition
In our context, we define four quantitative measures that

are illustrated by Figure 2. This figure identifies, for each of
the four measures, the system states that are considered
(colored states): we measure the probability for the system
to be in one of the colored states. The four probability
measures mentioned in this figure are defined in the
following.

PPC(t) quantifies the probability that the system is in the
compromised state at instant t. It means that the system has
been compromised due to a successful attack and has not
been patched during the interval [0, t].

PC(t) quantifies the probability for the system to be at
time t in the compromised, patched or secure states given
that the system has been compromised and repaired. Indeed,
this measure quantifies the probability of occurrence of a
successful attack during the interval [0, t]. It can be used to
evaluate the maximum time during which the probability of

having the system compromised by vulnerability
exploitation does not exceed an acceptable threshold.

Besides the previous measures, the level of risk faced by
the system can be assessed through the evaluation of
PCNR(t), which quantifies the probability, at instant t, that
the system has been compromised due to a successful attack
but the damage caused by attacker intrusion has not been
repaired yet. This situation corresponds to the case where
the system is in the compromised or patched states.

The last measure considered in Figure 2 is PS(t) which
quantifies the probability that the system is secure, taking
into account the impact of the considered vulnerability. This
measure takes into account the two possible scenarios
during the considered interval [0, t]:

1) a patch is applied before a successful attack occurs,
and 2) an attack occurs followed by the application of a
patch and repair actions.

To evaluate PPC(t), PC(t), PCNR(t) and PS(t), it is
necessary to model the factors we have presented in Section
3 and their impact on the states of the system. The next
section presents the proposed model.

5. Modeling
In this section, we present a modeling approach aiming

at describing the system state evolution taking into account
the environmental factors. The model can be used to
evaluate quantitative measures characterizing the
probabilities associated with the different states of the
system, presented in Section 4.

5.1. Choice of the modeling formalism
The modeling is based on Stochastic Activity Networks

(SAN) [33] as this formalism can be easily used to describe
the evolution of the system state and to express event
occurrence conditions considering different types of
stochastic distributions. SAN are composed of four
modeling elements:
• places: they contain one or more tokens and model the

system and environment states;
• activities: they model events that have an effect on the

system or its environment; they can follow probabilistic
or deterministic laws;

• input gates: they contain activity firing conditions; it is
possible to define predicates specifying the conditions to
be satisfied for the firing of the activity, according e.g.,
to the marking of some places;

• output gates: they can be used to specify the
consequences of an activity firing on the marking of the
SAN places.

In the next section, we describe our SAN modeling for one
single vulnerability.

 5

8 G. Vache Marconato, V. Nicomette, M. Kaâniche

Vulnerable or

exposed

Compromised

Patched

Secure

Secure

Successful attack

Patch

Repair

Patch

Vulnerable or

exposed

Compromised

Patched

Secure

Secure

Successful attack

Patch

Repair

Patch

Vulnerable or

exposed

Compromised

Patched

Secure

Secure

Successful attack

Patch

Repair

Patch

Vulnerable or

exposed

Compromised

Patched

Secure

Secure

Successful attack

Patch

Repair

Patch

FIGURE 2. Measures

PC(t) quantifies the probability for the system to

be at time t in the compromised, patched or secure

states given that the system has been compromised

and repaired. Indeed, this measure quantifies the

probability of occurrence of a successful attack during

the interval [0, t]. It can be used to evaluate the

maximum time during which the probability of having

the system compromised by vulnerability exploitation

does not exceed an acceptable threshold.

Besides the previous measures, the level of risk faced

by the system can be assessed through the evaluation

of PCNR(t), which quantifies the probability, at instant

t, that the system has been compromised due to a

successful attack but the damage caused by attacker

intrusion has not been repaired yet. This situation

corresponds to the case where the system is in the

compromised or patched states.

The last measure considered in Figure 2 is PS(t)

which quantifies the probability that the system is

secure, taking into account the impact of the considered

vulnerability. This measure takes into account the two

possible scenarios during the considered interval [0, t] :

1) a patch is applied before a successful attack occurs,

and 2) an attack occurs followed by the application of

a patch and repair actions.

To evaluate PPC(t), PC(t), PCNR(t) and PS(t), it

is necessary to model the factors we have presented in

Section 3 and their impact on the states of the system.

The next section presents the proposed model.

5. MODELING

In this section, we present a modeling approach aiming

at describing the system state evolution taking into

account the environmental factors. The model can be

used to evaluate quantitative measures characterizing

the probabilities associated with the different states of

the system, presented in Section 4.

5.1. Choice of the modeling formalism

The modeling is based on Stochastic Activity Networks

(SAN) [33] as this formalism can be easily used to

describe the evolution of the system state and to express

event occurrence conditions considering different types

of stochastic distributions. SAN are composed of four

modeling elements:

The Computer Journal, Vol. ??, No. ??, ????

Figure 2. Measures

5.2. SAN models description
We created two models, considering the two scenarios

described in Section 3 depending on the malicious or non-
malicious origin of the vulnerability discovery (see Figs 3
and 4). These models are composed of two main parts: the
vulnerability life cycle is modeled at the top; the remainder
of the model describes the different states of the system
including the administrator’s and attackers behaviors. The
dashed lines indicate the places used in the precondition
contained in the input gates of the models.

In this section, we describe the model more in detail,
beginning with the vulnerability life cycle. A preliminary
version of this model is presented in [7].

5.2.1. Vulnerability life cycle modeling

Three activities (discovery,	disclosure,	patch) model the
three events corresponding to the vulnerability discovery,
the vulnerability disclosure and the patch release. States
between these events are modeled by a set of four places Ve,	
V0,	 Vd and Vp defined as follows: (i) Ve (meaning
‘existence’) models the system state in which the
vulnerability exists but has not yet been discovered; (ii) V0
models the system state in which the vulnerability has been
discovered but has not been disclosed yet; (iii) Vd (meaning
‘disclosed’) models the system state in which the
vulnerability has been discovered and disclosed but there is
no patch available yet; (iv) Vp (meaning ‘patched’) models
the system state in which the vulnerability has been
discovered, disclosed and there is a patch available. The
exploit availability is modeled by an activity with different
conditions reflecting the mutual impact between exploit
availability and vulnerability disclosure, with respect to the
two scenarios described in Section 2. So, the activity exploit	
depicted in Fig. 3 models exploit availability after
vulnerability disclosure (according to the NM-S) and the
activity exploit in Fig. 4 models exploit availability before
vulnerability disclosure (according to the M-S). The
preconditions, post-conditions and the parameters
characterizing this activity are different, according to the
scenario. Indeed, the disclosure of the vulnerability
increases the likelihood that attacker population creates an

exploit as more attackers know about the vulnerability. The
existence or the non-existence of the exploit are modeled by
two places named, respectively, E (meaning ‘exploit’) and
NE	(meaning ‘no exploit’). 6 G. Vache Marconato et al.

FIGURE 3. Vulnerability exploitation process model: NM-S.

FIGURE 4. Vulnerability exploitation process model: M-S.

5.2.1. Vulnerability life cycle modeling420

Three activities (discovery, disclosure, patch)
model the three events corresponding to the vulnerability
discovery, the vulnerability disclosure and the patch release.
States between these events are modeled by a set of four
places Ve, V0, Vd and Vp defined as follows: (i) Ve (meaning425

‘existence’) models the system state in which the vulnerability
exists but has not yet been discovered; (ii) V0 models the system

state in which the vulnerability has been discovered but has not
been disclosed yet; (iii) Vd (meaning ‘disclosed’) models the
system state in which the vulnerability has been discovered and 430

disclosed but there is no patch available yet; (iv) Vp (meaning
‘patched’) models the system state in which the vulnerability
has been discovered, disclosed and there is a patch available.

The exploit availability is modeled by an activity with
different conditions reflecting the mutual impact between 435

The Computer Journal, 2012

Figure 3. Vulnerability exploitation process model: NM-S

6 G. Vache Marconato et al.

FIGURE 3. Vulnerability exploitation process model: NM-S.

FIGURE 4. Vulnerability exploitation process model: M-S.

5.2.1. Vulnerability life cycle modeling420

Three activities (discovery, disclosure, patch)
model the three events corresponding to the vulnerability
discovery, the vulnerability disclosure and the patch release.
States between these events are modeled by a set of four
places Ve, V0, Vd and Vp defined as follows: (i) Ve (meaning425

‘existence’) models the system state in which the vulnerability
exists but has not yet been discovered; (ii) V0 models the system

state in which the vulnerability has been discovered but has not
been disclosed yet; (iii) Vd (meaning ‘disclosed’) models the
system state in which the vulnerability has been discovered and 430

disclosed but there is no patch available yet; (iv) Vp (meaning
‘patched’) models the system state in which the vulnerability
has been discovered, disclosed and there is a patch available.

The exploit availability is modeled by an activity with
different conditions reflecting the mutual impact between 435

The Computer Journal, 2012

Figure 4. Vulnerability exploitation process model: M-S

 6

5.2.2. Administrator and attackers behavior and system
states modeling

The administrator’s behavior is modeled through the
system states themselves. Initially, the system is in state ok.
The activity install models the installation of the component
that can be affected by the considered vulnerability. Thus,
the system moves to the state vulnerable. It becomes
exposed as soon as an exploit exists (state modeled by the
place E). This event is modeled by the instantaneous activity
test. Conditions for the firing of this activity are defined in
the input gate: the existence of the exploit and the
vulnerable state of the system are necessary conditions or
the system to become exposed (modeled by the place
Exposed). The use of the exploit by an attacker on the
system may be successful and this action is modeled by
three activities attackV0, attackVd and attackVp
corresponding to an attack event during the different phases
of the vulnerability life cycle. It is noteworthy that the
activity attackV0 does not exist if we consider the non-
malicious scenario (see Fig. 4). As a result of such attack,
the system becomes compromised. It will remain in this
state until the vulnerability patch application by the
administrator, provided that the patch is available. This
action is modeled by the activity patchC: it means that the
vulnerability has been patched and cannot be exploited
again. However, the system is not secure yet as the damage
caused by the intrusion has not been completely fixed. This
transient state is modeled by the place Patched. From this
state, the administrator has to clean the system, that brings it
in the state Secure. It is noteworthy that the vulnerability
patch application may occur as soon as the patch is
available, possibly before a vulnerability exploitation. It
may occur in two other different situations: (i) the system is
only vulnerable and there is no exploit available yet; (ii) the
system is in the state exposed but has not been the target of
an attack. In both cases, the system becomes secure.

 As described in previous sections, the approach
considers the script kiddies attackers. However, only a few
changes in the input gates related to the modeling of attack
activities are necessary to take into account another attacker
category and reflect the fact that the black hat attackers do
not need an exploit to attack the system.

5.3. SAN models description
The state graphs generated from the SAN models plotted

in Figs 3 and 4 and described in this section are presented in
Figs 5 and 6 for the NMS and MS scenarios, respectively.
These graphs summarize the possible evolutions of the
system state that result from the evolution of the
vulnerability life cycle, the exploit availability process and
the administrator and attackers behaviors.

Vulnerability Life Cycle Evaluation Approach 7

exploit availability and vulnerability disclosure, with respect
to the two scenarios described in Section 2. So, the activity
exploit depicted in Fig. 3 models exploit availability
after vulnerability disclosure (according to the NM-S) and
the activity exploit in Fig. 4 models exploit availability440

before vulnerability disclosure (according to the M-S). The
preconditions, postconditions and the parameters characterizing
this activity are different, according to the scenario. Indeed,
the disclosure of the vulnerability increases the likelihood that
attacker population creates an exploit as more attackers know445

about the vulnerability. The existence or the non-existence of
the exploit are modeled by two places named, respectively, E
(meaning ‘exploit’) and NE (meaning ‘no exploit’).

5.2.2. Administrator and attackers behavior and system
states modeling450

The administrator’s behavior is modeled through the system
states themselves. Initially, the system is in state ok. The activity
installmodels the installation of the component that can be
affected by the considered vulnerability.Thus, the system moves
to the state vulnerable. It becomes exposed as soon as an exploit455

exists (state modeled by the place E). This event is modeled by
the instantaneous activitytest. Conditions for the firing of this
activity are defined in the input gate: the existence of the exploit
and the vulnerable state of the system are necessary conditions

for the system to become exposed (modeled by the place 460

Exposed). The use of the exploit by an attacker on the system
may be successful and this action is modeled by three activities
attackV0, attackVd and attackVp corresponding to an
attack event during the different phases of the vulnerability life
cycle. It is noteworthy that the activityattackV0 does not exist 465

if we consider the non-malicious scenario (see Fig. 4).As a result
of such attack, the system becomes compromised. It will remain
in this state until the vulnerability patch application by the
administrator, provided that the patch is available. This action is
modeled by the activitypatchC: it means that the vulnerability 470

has been patched and cannot be exploited again. However, the
system is not secure yet as the damage caused by the intrusion
has not been completely fixed. This transient state is modeled
by the place Patched. From this state, the administrator has
to clean the system, that brings it in the state Secure. It is 475

noteworthy that the vulnerability patch application may occur
as soon as the patch is available, possibly before a vulnerability
exploitation. It may occur in two other different situations: (i)
the system is only vulnerable and there is no exploit available
yet; (ii) the system is in the state exposed but has not been the 480

target of an attack. In both cases, the system becomes secure.

Q5

As described in previous sections, the approach considers
the script kiddies attackers. However, only a few changes in
the input gates related to the modeling of attack activities are

FIGURE 5. State graph: NM-S.

The Computer Journal, 2012

Figure 5. State graph: NM-S

8 G. Vache Marconato et al.

FIGURE 6. State graph: M-S.

necessary to take into account another attacker category and485

reflect the fact that the black hat attackers do not need an exploit
to attack the system.

5.3. State graphs

The state graphs generated from the SAN models plotted in
Figs 3 and 4 and described in this section are presented in490

Figs 5 and 6 for the NMS and MS scenarios, respectively. These
graphs summarize the possible evolutions of the system state
that result from the evolution of the vulnerability life cycle, the
exploit availability process and the administrator and attackers
behaviors. The states are labeled (x, y, z) where x denotes495

one of the vulnerability life cycle states Ve, V0, Vd, Vp; y
denotes whether an exploit is available (E) or not (NE); and
z denotes the system states (ok, Vulnerable, Exposed,
Compromised, Patched, and Secure), represented by the
labels (ok,vul,Exp,C,P, andS), respectively. It is noteworthy500

that only timed activities of the SAN models appear in the state
graphs. The firing of instantaneous transitions leads to vanishing
states that are automatically eliminated and merged with the
following stable states.

The evaluation for the quantitative measures presented in505

Section 4 is based on the processing of the state graphs once
the distributions associated to the different state transitions
are specified. When all the transitions follow exponential
distributions, the state graph corresponds to a Markov chain

that can easily be processed using analytical techniques. 510

Monte-Carlo simulation techniques are more appropriate
when other types of distributions are considered for some
state transitions. Both analytical and Monte-Carlo simulation
techniques are supported by the Möbius tool implementing
the SAN formalism developed by the University of Illinois at 515

Urbana-Champaign [37].

6. VULNERABILITY LIFE CYCLE EVENTS
CHARACTERIZATION

To quantify the measures defined in Section 4, it is important
to set realistic parameters to the activities of the models. This
section addresses the characterization of such parameters based
on real data. 520

In [38], the authors study the impact of vulnerability
disclosure and patch availability on the attack process. Using
a data set of 308 vulnerabilities, they quantify an economical
model to predict the evolution of the number of expected
attacks per host and per day. In [39], the analyses are centered 525

on the disclosure date: patch release and exploit availability
events are studied, taking the disclosure date as the time
origin. The study included 14 326 vulnerabilities collected
from several databases. This work could have been useful for
us but, unfortunately, it does not consider the vulnerability 530

discovery. Thus, such data does not allow us (i) to quantify
the disclosure event considering the vulnerability discovery
and (ii) to characterize the exploit availability considering the
vulnerability discovery.

In [40], the authors analyze 140 vulnerabilities of the 535

OpenBSD operating system to study the vulnerability report
rate. They extend the analysis described in [25] that studies the
vulnerability life cycle and conclude that the rate of vulnera-
bility discovery for an operating system can be considered as
constant. 540

To the best of our knowledge, there are only a few studies
about the characterization of the events we consider in our
approach and existing work cannot be reused. Thus, the next
section presents the work aiming at quantifying the probability
of occurrence of the vulnerability life cycle events based on real 545

data.

6.1. Existing vulnerability databases and statistical
reports

Several organizations collect and study vulnerabilities. Some
of them regularly produce reports giving information and 550

trends about vulnerability evolution: for example, Symantec
Corporation edits a survey each year, focusing on vulnerability
trends and presenting analyses of quantitative data recorded by
their products like their antivirus solution [41]. Other reports
exist like the X Force trends and risk report [42] that classifies, 555

e.g. the operating systems considering how many vulnerabilities
were disclosed [43].

The Computer Journal, 2012

Figure 6. State graph: M-S

 7

The states are labeled (x, y, z) where x denotes one of
the vulnerability life cycle states Ve,	V0,	Vd,	Vp; y denotes
whether an exploit is available (E) or not (NE); and z denotes
the system states (ok,	Vulnerable,	 Exposed,	Compromised,	
Patched, and Secure), represented by the labels (ok,	 vul,	
Exp,	 C,	 P, and S), respectively. It is noteworthy that only
timed activities of the SAN models appear in the state
graphs. The firing of instantaneous transitions leads to
vanishing states that are automatically eliminated and
merged with the following stable states.

The evaluation for the quantitative measures presented
in Section 4 is based on the processing of the state graphs
once the distributions associated to the different state
transitions are specified. When all the transitions follow
exponential distributions, the state graph corresponds to a
Markov chain that can easily be processed using analytical
techniques. Monte-Carlo simulation techniques are more
appropriate when other types of distributions are considered
for some state transitions. Both analytical and Monte-Carlo
simulation techniques are supported by the Möbius tool
implementing the SAN formalism developed by the
University of Illinois at Urbana-Champaign [37].

6. Vulnerability Life Cycle Events Characterization
To quantify the measures defined in Section 4, it is

important to set realistic parameters to the activities of the
models. This section addresses the characterization of such
parameters based on real data.

In [38], the authors study the impact of vulnerability
disclosure and patch availability on the attack process.
Using a data set of 308 vulnerabilities, they quantify an
economical model to predict the evolution of the number of
expected attacks per host and per day. In [39], the analyses
are centered on the disclosure date: patch release and exploit
availability events are studied, taking the disclosure date as
the time origin. The study included 14326 vulnerabilities
collected from several databases. This work could have been
useful for us but, unfortunately, it does not consider the
vulnerability 530 discovery. Thus, such data does not allow
us (i) to quantify the disclosure event considering the
vulnerability discovery and (ii) to characterize the exploit
availability considering the vulnerability discovery.

In [40], the authors analyze 140 vulnerabilities of the
OpenBSD operating system to study the vulnerability report
rate. They extend the analysis described in [25] that studies
the vulnerability life cycle and conclude that the rate of
vulnerability discovery for an operating system can be
considered as constant.

To the best of our knowledge, there are only a few
studies about the characterization of the events we consider
in our approach and existing work cannot be reused. Thus,
the next section presents the work aiming at quantifying the
probability of occurrence of the vulnerability life cycle
events based on real data.

6.1. Existing vulnerability databases and statistical reports
Several organizations collect and study vulnerabilities.

Some of them regularly produce reports giving information
and trends about vulnerability evolution: for example,
Symantec Corporation edits a survey each year, focusing on
vulnerability trends and presenting analyses of quantitative
data recorded by their products like their antivirus solution
[41]. Other reports exist like the X Force trends and risk
report [42] that classifies, e.g. the operating systems
considering how many vulnerabilities were disclosed [43].

 Data are also available in several databases that record
each new vulnerability and characterize it by several
attributes. The National Vulnerability Database (NVD) [44],
managed by the National Institute of Standards and
Technology of the United States and associated with the
Common Vulnerabilities and Exposures (CVE), records
vulnerabilities since 1999 and provides an evaluation of
each vulnerability based on the CVSS metrics [23]. The
Security Focus vulnerability database [45] is managed by
Symantec Corporation and contains around 35 000
vulnerabilities recorded since October 1998. The OSVDB
was created by the Black Hat Conference community and
contains more than 52 000 vulnerabilities [1] recorded since
December 1998. Secunia, a private company that provides
services in security defense and vulnerability analysis,
maintains also a vulnerability database since 2002 [46]. The
database also indicates the severity based on the CVSS
metrics. The characteristics of each vulnerability database
are summarized in Table 1, indicating the vulnerability life
cycle events for which the corresponding date is available.

TABLE 1. Vulnerability databases comparison.
Database NVD Security

Focus
OSVD Secunia

Discovery date No No Yes No
Disvlosure date Yes Yes Yes Yes
Patcg date No No Yes No
Exploit date No No Yes No

6.2. Events characterization
To estimate the parameters characterizing the occurrence

of the vulnerability life cycle events described in our
models, it is necessary to obtain a sufficient and as complete
as possible vulnerability data set. The most complete data
set is, of course, the union of the data provided by every
vulnerability database. Unfortunately, the vulnerability
databases are very heterogeneous. Even if the CVE
reference seems to be a useful and unique vulnerability
reference, it is not indicated in each database. Thus it is not
easy to merge and to correlate the information reported in
different vulnerability databases. Thus, before analyzing
data, we have to choose the most relevant vulnerability
database for our study. As our goal is to characterize the
vulnerability life cycle events, our interest is focused
primarily on timed parameters. The OSVDB database

 8

matches our requirements as it is the only one that records
that kind of information for all the events. This database
provides a large set of data. We analyzed 52 000
vulnerabilities extracted from the database and recorded
since December 1998. For each vulnerability, the OSVDB
identifier, the vulnerability categories, and the time
corresponding to the discovery date, the disclosure date, the
patch release date and the exploit date are recorded if they
are available. Unfortunately, this is not the case for each
vulnerability. The next section presents the first step of our
analysis. This work is an extension of the work described in
[8].

6.3. Preliminary analysis of the data set
Before analyzing the data set to fit the intervals between

two of these events with probabilistic distribution, this
subsection provides a preliminary analysis of the data set,
based on the information summarized in Table 2.

The number in cell(i,j) indicates the number of events
for which the occurrence date of the corresponding events i
and j is available. The percentage in cell(i,j) indicates the
proportion among the set of vulnerabilities with information
available about the occurrence of event i for which
information is also available about the occurrence of event j.
Let us take as a simple example the set of vulnerabilities for
which both discovery and disclosure dates are available.
This set of 3926 vulnerabilities represents only a small
proportion of the total number of vulnerabilities: 7.8%. But
it also represents 99.12% of the set of vulnerabilities for
which the discovery date is available. This small number of
vulnerabilities may be explained by the fact that the
vulnerability discovery is not an event that is officially
published.

Considering the set of vulnerabilities for which both
vulnerability disclosure and patch release dates are
available, it counts 871 vulnerabilities and represents only
1.71% of the set of vulnerabilities for which the
vulnerability disclosure date is available. This set represents
75.67% of vulnerabilities for which the patch release date is
available.

Two reasons could explain the small number of
vulnerabilities for which the patch release date is available:
(i) Only a small proportion of the vulnerabilities that are 630

disclosed have an available patch. This explanation
seems possible because we consider that the vulnerabil-
ity may be disclosed by another source than the producer
of the vulnerable component, as in [47].

(ii) The information reported in the database is incomplete
and the fact that the patch release date is not recorded
does not mean that it does not exist.

It is impossible for us to validate or invalidate one of

these two explanations. However, studies by
Jumratjaroenvanit and Teng-amnuay [47] encourage us to

consider the fact that vulnerabilities could be disclosed and
not be patched.

Finally, let us examine the set of vulnerabilities for
which both exploit availability and disclosure dates are
available: it represents only 34.34% of the studied
vulnerability set. This highlights the fact that the exploit
availability, as the patch release, is not a systematic event in
the vulnerability life cycle. It is important to take this new
information into account for the parameterization of our
models. In the next section, we present the probability
distributions characterizing the occurrence of the
vulnerability life cycle events that we estimated based on
the data set presented in Table 2.

6.4. Data analysis and event characterization
To characterize the probability of occurrence of an event

from the vulnerability state i to the state j, we select the
vulnerabilities for which the dates ti and tj are available and
evaluate the duration tj–ti. Thus, a new data set composed of
the evaluated durations between state i and state j is
obtained. We need to classify these data to be able to
analyze them and find the more appropriate probability
distribution. Organizing the data in bins to estimate the
corresponding empirical distribution enables to focus on the
general trend and then to minimize the impact of very little
variations. However, it is also important not to choose a too
small number of bins, which could mask important
information. We determine the number of bins thanks to the
Sturges formula [48]. We make the choice that all the bins
contain the same number of data in each bin [8].

Once the data are processed, we use the EasyFit tool
[49] to fit the empirical distribution obtained with several
probability distributions. The Kolmogorov–Smirnov
statistical test is used to assess the quality of fit of the
considered probability distributions.

10 G. Vache Marconato et al.

seems possible because we consider that the vulnerabil-
ity may be disclosed by another source than the producer
of the vulnerable component, as in [47].

(ii) The information reported in the database is incomplete635

and the fact that the patch release date is not recorded
does not mean that it does not exist.

It is impossible for us to validate or invalidate one of
these two explanations. However, studies by Jumratjaroenvanit
and Teng-amnuay [47] encourage us to consider the fact that640

vulnerabilities could be disclosed and not be patched.
Finally, let us examine the set of vulnerabilities for which

both exploit availability and disclosure dates are available: it
represents only 34.34% of the studied vulnerability set. This
highlights the fact that the exploit availability, as the patch645

release, is not a systematic event in the vulnerability life cycle.
It is important to take this new information into account

for the parameterization of our models. In the next section,
we present the probability distributions characterizing the
occurrence of the vulnerability life cycle events that we650

estimated based on the data set presented in Table 2.

6.4. Data analysis and event characterization

To characterize the probability of occurrence of an event
from the vulnerability state i to the state j , we select the
vulnerabilities for which the dates ti and tj are available and655

evaluate the duration tj–ti. Thus, a new data set composed of the
evaluated durations between state i and state j is obtained. We
need to classify these data to be able to analyze them and find
the more appropriate probability distribution. Organizing the
data in bins to estimate the corresponding empirical distribution660

enables to focus on the general trend and then to minimize the
impact of very little variations. However, it is also important
not to choose a too small number of bins, which could mask
important information. We determine the number of bins thanks
to the Sturges formula [48]. We make the choice that all the bins665

contain the same number of data in each bin [8].
Once the data are processed, we use the EasyFit tool [49] to

fit the empirical distribution obtained with several probability
distributions. The Kolmogorov–Smirnov statistical test is used
to assess the quality of fit of the considered probability670

distributions.

FIGURE 7. Time intervals between discovery and disclosure dates.

We processed our data to characterize vulnerability
disclosure, patch release and exploit availability events. As
the data set used in our study provides the discovery date of
the vulnerability but does not provide the date of release of the 675

vulnerable component, it is not possible for us to characterize
the vulnerability discovery event.

6.4.1. Vulnerability disclosure event characterization
The vulnerability disclosure event may occur after the non-
malicious discovery of the vulnerability or after the use of the 680

exploit, according to the two scenarios detailed earlier in this
paper.

First, we study the disclosure event in the context of
the non-malicious discovery scenario (NM-S). There are
3926 vulnerabilities in the OSVDB database with discovery 685

and disclosure dates. Seven hundred and eight of them
have been discovered and disclosed at the same time, and
3218 vulnerabilities have been disclosed 1 day or more
after the discovery. The histogram depicted in Fig. 7 represents Q7
the empirical distribution of the time between the discovery and 690

the disclosure of the vulnerability. The first bin has a value equal
to 92.51% and the second one to 2.75%. This sharp decrease of
the probability can be described by a Beta distribution. This was
confirmed by the Kolmogorov–Smirnov test applied to the data.
The parameters and the P -values of the Kolmogorov–Smirnov 695

test are summarized in the recapitulative Table 3: t0 represents
the discovery date; td the disclosure date; tp the patch release
date and te the exploit date. The parameters α and β are the shape

TABLE 3. Summary of parameters of the Beta probability distribution.

Time interval Event α β P-value

td − t0 Vulnerability disclosure (NM-S) 0.03485 1.6282 0.38
tp − td Patch release 0.00352 0.62362 0.41
te − td Exploit availability (NM-S) 0.00090 1.8666 0.35
te − t0 Exploit availability (M-S) 0.02916 1.5813 0.38
td − te Vulnerability disclosure (M-S) 0.03947 0.91506 0.34

The Computer Journal, 2012

FIGURE 7. Time intervals between discovery and

disclosure dates.

We processed our data to characterize vulnerability

disclosure, patch release and exploit availability events. As
the data set used in our study provides the discovery date of
the vulnerability but does not provide the date of release of

 9

the vulnerable component, it is not possible for us to
characterize the vulnerability discovery event.

6.4.1. Vulnerability disclosure event characterization

The vulnerability disclosure event may occur after the
non- malicious discovery of the vulnerability or after the use
of the exploit, according to the two scenarios detailed earlier
in this paper.

First, we study the disclosure event in the context of the
non-malicious discovery scenario (NM-S). There are 3926
vulnerabilities in the OSVDB database with discovery and
disclosure dates. Seven hundred and eight of them have
been discovered and disclosed at the same time, and 3218
vulnerabilities have been disclosed 1 day or more after the
discovery. The histogram depicted in Fig. 7 represents the
empirical distribution of the time between the discovery and
the disclosure of the vulnerability. The first bin has a value
equal to 92.51% and the second one to 2.75%. This sharp
decrease of the probability can be described by a Beta
distribution. This was confirmed by the Kolmogorov–
Smirnov test applied to the data.

The parameters and the P -values of the Kolmogorov–
Smirnov test are summarized in the recapitulative Table 3:
t0 represents the discovery date; td the disclosure date; tp
the patch release date and te the exploit date. The
parameters α and β are the shape parameters of the Beta
distribution, whose density function is

Vulnerability Life Cycle Evaluation Approach 11

FIGURE 8. Time intervals between exploit availability and disclosure
dates.

parameters of the Beta distribution, whose density function is

f (x) = xα−1(1 − x)β−1

B(α, β)
.700

Let us consider the second scenario in which the vulnerability
is discovered by a malicious person (M-S). We need to take into
account the disclosure dates td and the exploit dates te such
as td − te has a positive value. There are 222 vulnerabilities
for which the exploit date predates the disclosure date. The705

time interval between these two events varies from 1 to 2151
days. The probability distribution fitting with the data set is
a Beta distribution once again. The empirical distribution and
the associated Beta probability distribution are depicted in
Fig. 8.710

6.4.2. Patch release event characterization
The patch release event is studied considering the same principle
that we presented for the vulnerability disclosure event. We
studied 871 vulnerabilities. For 712 of them, the date of the
patch release is the same as the date of vulnerability disclosure.715

The time intervals are between 0 and 759 days. It appears
that the Beta distribution fits with our data and satisfies the
Kolmogorov–Smirnov test. The estimated parameters of the
Beta distribution are given in Table 3.

6.4.3. Exploit availability event characterization 720

To characterize the occurrence of the exploit availability event,
we need to compare the dates of exploit availability to the
dates of vulnerability discovery (in the M-S) and vulnerability
disclosure (in the NM-S).

First, we consider the data set of 2131 vulnerabilities for 725

which exploit availability and discovery dates are available: 389
of them have the same discovery and exploit availability dates.
For these ones, we can make the assumption that the discovery
is malicious. This set of 2131 vulnerabilities fits with a Beta dis-
tribution and this fitting satisfies the Kolmogorov–Smirnov test. 730

Then, we focus on the comparison between vulnerability
disclosure and exploit availability dates. It is based on 17 857
vulnerabilities. In this data set, we notice that: (i) for 222
vulnerabilities, the exploit appears before the vulnerability
disclosure (these vulnerabilities are used for the characterization 735

of vulnerability disclosure event in the M-S); (ii) for 17 077
vulnerabilities, the exploit and the vulnerability are disclosed
the same day; (iii) for 558 vulnerabilities, the exploit appears
after the vulnerability disclosure. In this section, we analyze
the vulnerabilities of the two last cases that are very likely to 740

correspond to the NM-S. It is important to notice the large
amount of vulnerabilities that are disclosed and exploited in
the same day. This may highlight the important impact of the
disclosure event. Considering the two last vulnerability sets of,
respectively, 17 077 and 558 vulnerabilities, the analysis of the 745

distribution of the time interval between vulnerability discovery
and exploit availability have shown that the Beta distribution
provides a good fit confirmed by the Kolmogorov–Smirnov test.

6.4.4. Discussion
The previous results show that the Beta distribution provides 750

a good fit to characterize the occurrence of the vulnerability
life cycle events. These results are based on the data stored in
the vulnerability database at the date of 25 December 2008.
It is important to monitor the validity of this distribution and
re-estimate the parameters based on recently collected data. 755

This is important as the validity of the results derived from
the models relies on the representativity of the assumptions
and of the values assigned to the parameters associated to
the events described in the models. As an example, Table 4

TABLE 4. Life cycle events parameters: time evolution.

Global Before 2001 2001–2005 After 2005

Event Mean (h) Nb. vul. Mean (h) Nb. vul. Mean (h) Nb. vul. Mean (h) Nb. vul.

td − t0 1474 3925 1135 113 1280 2676 1958 1137
tp − td 142 871 0 1 1284 17 120 853
te − td ≥ 0 33 17857 73 747 59 6916 13 10 194
te − td < 0 −3098 222 −150 16 −3431 138 −827 68
te − t0 1300 2108 1561 50 1202 1536 1561 522

The Computer Journal, 2012

Let us consider the second scenario in which the

vulnerability is discovered by a malicious person (M-S). We
need to take into account the disclosure dates td and the
exploit dates te such as td − te has a positive value. There
are 222 vulnerabilities for which the exploit date predates
the disclosure date. The time interval between these two
events varies from 1 to 2151 days. The probability
distribution fitting with the data set is a Beta distribution
once again. The empirical distribution and the associated
Beta probability distribution are depicted in Fig. 8.

6.4.2. Patch release event characterization

The patch release event is studied considering the same

principle that we presented for the vulnerability disclosure
event. We studied 871 vulnerabilities. For 712 of them, the
date of the patch release is the same as the date of
vulnerability disclosure. The time intervals are between 0
and 759 days. It appears that the Beta distribution fits with
our data and satisfies the Kolmogorov–Smirnov test. The
estimated parameters of the Beta distribution are given in
Table 3.

Vulnerability Life Cycle Evaluation Approach 11

FIGURE 8. Time intervals between exploit availability and disclosure
dates.

parameters of the Beta distribution, whose density function is

f (x) = xα−1(1 − x)β−1

B(α, β)
.700

Let us consider the second scenario in which the vulnerability
is discovered by a malicious person (M-S). We need to take into
account the disclosure dates td and the exploit dates te such
as td − te has a positive value. There are 222 vulnerabilities
for which the exploit date predates the disclosure date. The705

time interval between these two events varies from 1 to 2151
days. The probability distribution fitting with the data set is
a Beta distribution once again. The empirical distribution and
the associated Beta probability distribution are depicted in
Fig. 8.710

6.4.2. Patch release event characterization
The patch release event is studied considering the same principle
that we presented for the vulnerability disclosure event. We
studied 871 vulnerabilities. For 712 of them, the date of the
patch release is the same as the date of vulnerability disclosure.715

The time intervals are between 0 and 759 days. It appears
that the Beta distribution fits with our data and satisfies the
Kolmogorov–Smirnov test. The estimated parameters of the
Beta distribution are given in Table 3.

6.4.3. Exploit availability event characterization 720

To characterize the occurrence of the exploit availability event,
we need to compare the dates of exploit availability to the
dates of vulnerability discovery (in the M-S) and vulnerability
disclosure (in the NM-S).

First, we consider the data set of 2131 vulnerabilities for 725

which exploit availability and discovery dates are available: 389
of them have the same discovery and exploit availability dates.
For these ones, we can make the assumption that the discovery
is malicious. This set of 2131 vulnerabilities fits with a Beta dis-
tribution and this fitting satisfies the Kolmogorov–Smirnov test. 730

Then, we focus on the comparison between vulnerability
disclosure and exploit availability dates. It is based on 17 857
vulnerabilities. In this data set, we notice that: (i) for 222
vulnerabilities, the exploit appears before the vulnerability
disclosure (these vulnerabilities are used for the characterization 735

of vulnerability disclosure event in the M-S); (ii) for 17 077
vulnerabilities, the exploit and the vulnerability are disclosed
the same day; (iii) for 558 vulnerabilities, the exploit appears
after the vulnerability disclosure. In this section, we analyze
the vulnerabilities of the two last cases that are very likely to 740

correspond to the NM-S. It is important to notice the large
amount of vulnerabilities that are disclosed and exploited in
the same day. This may highlight the important impact of the
disclosure event. Considering the two last vulnerability sets of,
respectively, 17 077 and 558 vulnerabilities, the analysis of the 745

distribution of the time interval between vulnerability discovery
and exploit availability have shown that the Beta distribution
provides a good fit confirmed by the Kolmogorov–Smirnov test.

6.4.4. Discussion
The previous results show that the Beta distribution provides 750

a good fit to characterize the occurrence of the vulnerability
life cycle events. These results are based on the data stored in
the vulnerability database at the date of 25 December 2008.
It is important to monitor the validity of this distribution and
re-estimate the parameters based on recently collected data. 755

This is important as the validity of the results derived from
the models relies on the representativity of the assumptions
and of the values assigned to the parameters associated to
the events described in the models. As an example, Table 4

TABLE 4. Life cycle events parameters: time evolution.

Global Before 2001 2001–2005 After 2005

Event Mean (h) Nb. vul. Mean (h) Nb. vul. Mean (h) Nb. vul. Mean (h) Nb. vul.

td − t0 1474 3925 1135 113 1280 2676 1958 1137
tp − td 142 871 0 1 1284 17 120 853
te − td ≥ 0 33 17857 73 747 59 6916 13 10 194
te − td < 0 −3098 222 −150 16 −3431 138 −827 68
te − t0 1300 2108 1561 50 1202 1536 1561 522

The Computer Journal, 2012

FIGURE 8. Time intervals between exploit availability and
disclosure dates.

TABLE 3. Summary of parameters of the Beta probability
distribution.

Time
Interval

Event α β p-
value

td−t0 Vulnerability
disclosure (NM-S)

0.03485 1.6282 0.38

tp−td Patch release 0.00352 0.62362 0.41
te−td Exploit availability

(NM-S)
0.00090 1.8666 0.35

te−t0 Exploit availability
(M-S)

0.02916 1.5813 0.38

td−te Vulnerability
disclosure (M-S)

0.03947 0.91506 0.34

6.4.3. Exploit availability event characterization

To characterize the occurrence of the exploit availability

event, we need to compare the dates of exploit availability
to the dates of vulnerability discovery (in the M-S) and
vulnerability disclosure (in the NM-S).

First, we consider the data set of 2131 vulnerabilities for
which exploit availability and discovery dates are available:
389 of them have the same discovery and exploit
availability dates.

For these ones, we can make the assumption that the
discovery is malicious. This set of 2131 vulnerabilities fits
with a Beta distribution and this fitting satisfies the
Kolmogorov–Smirnov test. Then, we focus on the
comparison between vulnerability disclosure and exploit
availability dates. It is based on 17 857 vulnerabilities. In
this data set, we notice that: (i) for 222 vulnerabilities, the
exploit appears before the vulnerability disclosure (these
vulnerabilities are used for the characterization of
vulnerability disclosure event in the M-S); (ii) for 17 077
vulnerabilities, the exploit and the vulnerability are
disclosed the same day; (iii) for 558 vulnerabilities, the
exploit appears after the vulnerability disclosure. In this
section, we analyze the vulnerabilities of the two last cases
that are very likely to correspond to the NM-S. It is
important to notice the large amount of vulnerabilities that
are disclosed and exploited in the same day. This may

 10

highlight the important impact of the disclosure event.
Considering the two last vulnerability sets of, respectively,
17077 and 558 vulnerabilities, the analysis of the
distribution of the time interval between vulnerability
discovery and exploit availability have shown that the Beta
distribution provides a good fit confirmed by the
Kolmogorov–Smirnov test.

6.4.4. Discussion

The previous results show that the Beta distribution

provides a good fit to characterize the occurrence of the
vulnerability life cycle events. These results are based on
the data stored in the vulnerability database at the date of 25
December 2008.

It is important to monitor the validity of this distribution
and re-estimate the parameters based on recently collected
data. This is important as the validity of the results derived
from the models relies on the representativeness of the
assumptions and of the values assigned to the parameters
associated to the events described in the models. As an
example, Table 4 reports the average values of the time
intervals associated to life cycle events considering three
periods: (i) before 2001, (ii) between 2001 and 2006 and
(iii) after 2006. The number of vulnerabilities for each
period is also indicated. In this case, comparing the average
values computed for the global data set with those obtained
for each period, we obtain generally the same order of
magnitude. The more significant differences are observed
for the cases where the number of vulnerabilities is low. In
an operational real-life context, a more thorough analysis of
the possible time evolution of the estimated parameters need
to be done at a regular basis.

7. Model Pprocessing and Quantitative Evaluation of the
measures

The next step of our approach consists in running
simulations of the defined models to obtain quantitative
values of the measures presented in Section 4.2. We use the
Möbius tool that integrates a set of solvers allowing the
processing of SAN models using analytical and Monte-
Carlo simulation [37]. Different types of distributions are
supported by the tool. In this section, we first present how
we parameterize the models activities. Section 4.2 discusses
the parameterization of the vulnerability life cycle activities
based on the results described in Section 6. Section 7.1.2
focuses on the activities related to the attackers behavior and
Section 7.1.3 is dedicated to the administrator behavior
activity parameterization. The results of the model
processing are presented in Section 7.2.

In this section, we assume that the vulnerability is
already in the system. Thus, we do not consider the
installation process modeled by the activity install and we
assume that the system is initially in the vulnerable state.

TABLE 4. Life cycle events parameters: time evolution.
Event td-t0 tp-td te-td ≥0 te-td < 0 te-t0

Global Mean(h) 1474 142 33 -3098 1300

Nb Vul 3925 871 17857 222 2108

Before
2001

Mean(h) 1135 0 73 -150 1561

Nb Vul 113 1 747 16 50

2001-
2005

Mean(h) 1280 1284 59 -3431 1202

Nb Vul 2676 17 6916 138 1536

After
2005

Mean(h) 1958 120 13 -827 1561

Nb Vul 1137 853 10194 68 522

7.1.Parameters description

7.1.1. Vulnerability life cycle

To parameterize the activities modeling the life cycle of
the vulnerability, we use Beta distribution with the results of
the characterization described in Section 6.

In the NM-S, the preliminary analysis has shown that the
exploit availability and the patch release may not occur.
According to the database, only 2% of the vulnerabilities
that are disclosed have a patch disclosed as well. This value
of 2% for the patch existence seems to be very small. Thus,
we have decided to perform sensitivity analyses on the
model considering not only this value provided from the
database analysis, but also other possible values for the
probability of patch existence (5, 10, 50 and 100%). When
the patch exists, its disclosure is modeled with a Beta
distribution.

The analysis of the vulnerability database shows that
only 34.5% of the vulnerabilities have an associated
available exploit. In the malicious discovery scenario, we
make the assumption that the patch release occurs
inevitably. This choice is justified by the fact that a
vulnerability discovered by malicious people, and so
exploited before the vulnerability disclosure, represents a
very serious threat. This is the reason why we assume that
the patch will be disclosed with a probability equal to 1 in
this case.

7.1.2. Vulnerability exploitation: attack process

The attack process is different according to the
vulnerability discovery scenario that is considered. The
vulnerability may be exploited before the vulnerability
disclosure only in the M-S and is modeled by the activity
attackV0. The other two attack activities, attackVd and
attackVp, are present in the two models. These three
activities are described by probabilistic exponential
distributions, based on the work presented in [6, 50]. As
summarized in Table 5, we assume different rates, defined
empirically, according to the considered phase of the 820
vulnerability life cycle and higher attack rates, for the M-S

 11

as the vulnerability represents, in this case, a higher threat
for the system. It is assumed that the attack rate when the
vulnerability has been disclosed is higher than at any other
moment of the life cycle, as all the attackers may exploit it
successfully. A sensitivity analysis considering different
attack rates values is presented in Section 7.2.1.

7.1.3. Patch application and system repair

The patch may be applied by the administrator
considering three different circumstances: the system is
vulnerable, exposed or compromised (modeled,
respectively, by the activities patchVul, patchExp, patchC).
As there is no previous work in literature and no data
available to provide such information, we assume that these
activities can be described by normal distributions (cf. Table
5), as this distribution seems intuitively to well describe the
time of reaction needed by the administrator1. The higher
the threat faced by the system (considering the states
vulnerable, exposed and compromised), the shorter the
meantime between the patch release and the patch
application. The patch application prevents other attacks
from being successful on the system but it is not sufficient
to make the system secure. The repair of the system
corresponds to the cleaning and recovery task that is
necessary to secure the system. In the model processing, we
assume a one day duration to repair the system. In our study,
we analyze two different administrator behaviors: lax and
rigorous2. When there is no exploit and no disclosure of the
vulnerability, i.e. in a context with no real threat, the lax
administrator updates the system once a month when the
rigorous one updates it every day.

Table 5. Parameters for the modeling of attackers and
administrator related activities (NM-S and M-S scenarios)

Activity Distrib. Parameter Value
Attack	Vd	(NM-S)	 Exp. Rate 0.5/day
Attack	Vp	(NM-S)	 Exp. Rate 0.1/day
Attack	V0	(NM-S)	 Exp. Rate 1/day
Attack	Vd	(M-S)	 Exp. Rate 5/day
Attack	Vp	(M-S)	 Exp. Rate 1/day
patchVul	 Normal Mean,

Variance
1/30 days
0.5 days-2

patchExp	 Normal Mean,
Variance

0.5/15 days
0.5 days-2

patchC	 Normal Mean,
Variance

0.1/3 days
0.5 days-2

repair	 3 days
0.5 days-2

1 The choice of the normal distribution is done empirically and any
other type of distribution could be considered in our model and
processed by the Mobius tool.

2 We study two extreme administrator behaviors in order to 2 We study two extreme administrator behaviors in order to
highlight the impact of this external factor. An administrator
may, of course, has an intermediate behavior

7.2. Results
7.2.1. Non-malicious discovery scenario (NM-S)

This section presents the results obtained from the
processing of NM-S model. We focus on the states of the
system which are necessary to quantify the measures. The
first part of this section is dedicated to the study of the
probability for the system to be in the vulnerable, exposed
and patched states before evaluating the measures presented
in Section 4.2. The two different administrator behaviors
(rigorous and lax) are modeled by the three activities
patchVul, patchExp and patchC.

Figure 9 depicts the evolution of the probability for the
system to be in the vulnerable state. It highlights the
influence of the patch existence (through probability p) but
also the difference between the two administrator behaviors.
When the administrator is rigorous, the probability for the
system to be in the vulnerable state decreases quickly
because of the exploit availability (which makes the system
move to the exposed state) but also because the
administrator applies the patch as soon as it is disclosed.
Both events occur around 1 day in average after the
vulnerability disclosure. In the case of a lax administrator,
the probability starts by decreasing because of the exploit
availability (around day 1) that leads the system in the
exposed state. Anyway, it takes a long time for the
administrator to apply the patch, as illustrated by the slow
decreasing curve (starting around day 30).

Vulnerability Life Cycle Evaluation Approach 13

FIGURE 9. Evolution of the probability for the system to be in
vulnerable state in NM-S.

the administrator.1 The higher the threat faced by the system
(considering the states vulnerable, exposed and compromised),
the shorter the meantime between the patch release and the
patch application. The patch application prevents other attacks840

from being successful on the system but it is not sufficient to
make the system secure. The repair of the system corresponds
to the cleaning and recovery task that is necessary to secure the
system. In the model processing, we assume a one day duration
to repair the system. In our study, we analyze two different845

administrator behaviors: lax and rigorous.2 When there is no
exploit and no disclosure of the vulnerability, i.e. in a context
with no real threat, the lax administrator updates the system
once a month when the rigorous one updates it every day.

7.2. Results850

7.2.1. Non-malicious discovery scenario (NM-S)
This section presents the results obtained from the processing
of NM-S model. We focus on the states of the system which
are necessary to quantify the measures. The first part of this
section is dedicated to the study of the probability for the855

system to be in the vulnerable, exposed and patched states
before evaluating the measures presented in Section 4.2. The
two different administrator behaviors (rigorous and lax) are
modeled by the three activities patchVul, patchExp and
patchC.860

Figure 9 depicts the evolution of the probability for the
system to be in the vulnerable state. It highlights the influence
of the patch existence (through probability p) but also the
difference between the two administrator behaviors. When the
administrator is rigorous, the probability for the system to be in865

the vulnerable state decreases quickly because of the exploit
availability (which makes the system move to the exposed
state) but also because the administrator applies the patch as

1The choice of the normal distribution is done empirically and any other
type of distribution could be considered in our model and processed by the
Mobius tool.

2We study two extreme administrator behaviors in order to highlight
the impact of this external factor. An administrator may, of course, has an
intermediate behavior.

FIGURE 10. Evolution of the probability to be in exposed state in
NM-S.

FIGURE 11. Evolution of PCNR(t) in NM-S.

soon as it is disclosed. Both events occur around 1 day in
average after the vulnerability disclosure. In the case of a lax 870

administrator, the probability starts by decreasing because of the
exploit availability (around day 1) that leads the system in the
exposed state. Anyway, it takes a long time for the administrator
to apply the patch, as illustrated by the slow decreasing curve
(starting around day 30). 875

The curves in Fig. 10 depict the evolution of the probability
of having the system exposed. First, the curve exhibits an
increasing trend because of the exploit availability event.
This increase is, however, less important for the rigorous
administrator who has already applied the patch before the 880

occurrence of a successful attack. The decreasing phase may
be caused by two events: the patch application or a successful
attack. In the case considering a low probability of patch
existence (2 and 10%), the event that has the highest impact
is the attack process which has a higher occurrence rate than 885

the patch application rate. On the contrary, for the other cases
(50 and 100%), the decrease of the curve is mainly due to the
patch application and not the vulnerability exploitation.

The evolution of the measure PCNR(t) (cf. Fig. 11) is very
similar to the PPC(t) evolution. Considering a low probability 890

of patch existence (2 or 10%), the curves corresponding to the
lax administrator and the rigorous one are indistinguishable
and increase quickly to the value 34.5%, that is the maximum
probability of exploit availability (cf. Section 6). When we
consider a 100% probability of patch existence, it is noticeable 895

The Computer Journal, 2012

FIGURE 9. Evolution of the probability for the system to

be in vulnerable state in NM-S.

The curves in Fig. 10 depict the evolution of the

probability of having the system exposed. First, the curve
exhibits an increasing trend because of the exploit
availability event. This increase is, however, less important
for the rigorous administrator who has already applied the
patch before the occurrence of a successful attack. The
decreasing phase may be caused by two events: the patch
application or a successful attack. In the case considering a
low probability of patch existence (2 and 10%), the event
that has the highest impact is the attack process which has a
higher occurrence rate than the patch application rate. On
the contrary, for the other cases (50 and 100%), the decrease
of the curve is mainly due to the patch application and not
the vulnerability exploitation.

 12

Vulnerability Life Cycle Evaluation Approach 13

FIGURE 9. Evolution of the probability for the system to be in
vulnerable state in NM-S.

the administrator.1 The higher the threat faced by the system
(considering the states vulnerable, exposed and compromised),
the shorter the meantime between the patch release and the
patch application. The patch application prevents other attacks840

from being successful on the system but it is not sufficient to
make the system secure. The repair of the system corresponds
to the cleaning and recovery task that is necessary to secure the
system. In the model processing, we assume a one day duration
to repair the system. In our study, we analyze two different845

administrator behaviors: lax and rigorous.2 When there is no
exploit and no disclosure of the vulnerability, i.e. in a context
with no real threat, the lax administrator updates the system
once a month when the rigorous one updates it every day.

7.2. Results850

7.2.1. Non-malicious discovery scenario (NM-S)
This section presents the results obtained from the processing
of NM-S model. We focus on the states of the system which
are necessary to quantify the measures. The first part of this
section is dedicated to the study of the probability for the855

system to be in the vulnerable, exposed and patched states
before evaluating the measures presented in Section 4.2. The
two different administrator behaviors (rigorous and lax) are
modeled by the three activities patchVul, patchExp and
patchC.860

Figure 9 depicts the evolution of the probability for the
system to be in the vulnerable state. It highlights the influence
of the patch existence (through probability p) but also the
difference between the two administrator behaviors. When the
administrator is rigorous, the probability for the system to be in865

the vulnerable state decreases quickly because of the exploit
availability (which makes the system move to the exposed
state) but also because the administrator applies the patch as

1The choice of the normal distribution is done empirically and any other
type of distribution could be considered in our model and processed by the
Mobius tool.

2We study two extreme administrator behaviors in order to highlight
the impact of this external factor. An administrator may, of course, has an
intermediate behavior.

FIGURE 10. Evolution of the probability to be in exposed state in
NM-S.

FIGURE 11. Evolution of PCNR(t) in NM-S.

soon as it is disclosed. Both events occur around 1 day in
average after the vulnerability disclosure. In the case of a lax 870

administrator, the probability starts by decreasing because of the
exploit availability (around day 1) that leads the system in the
exposed state. Anyway, it takes a long time for the administrator
to apply the patch, as illustrated by the slow decreasing curve
(starting around day 30). 875

The curves in Fig. 10 depict the evolution of the probability
of having the system exposed. First, the curve exhibits an
increasing trend because of the exploit availability event.
This increase is, however, less important for the rigorous
administrator who has already applied the patch before the 880

occurrence of a successful attack. The decreasing phase may
be caused by two events: the patch application or a successful
attack. In the case considering a low probability of patch
existence (2 and 10%), the event that has the highest impact
is the attack process which has a higher occurrence rate than 885

the patch application rate. On the contrary, for the other cases
(50 and 100%), the decrease of the curve is mainly due to the
patch application and not the vulnerability exploitation.

The evolution of the measure PCNR(t) (cf. Fig. 11) is very
similar to the PPC(t) evolution. Considering a low probability 890

of patch existence (2 or 10%), the curves corresponding to the
lax administrator and the rigorous one are indistinguishable
and increase quickly to the value 34.5%, that is the maximum
probability of exploit availability (cf. Section 6). When we
consider a 100% probability of patch existence, it is noticeable 895

The Computer Journal, 2012

FIGURE 10. Evolution of the probability to be in exposed

state in NM-S

The evolution of the measure PCNR(t) (cf. Fig. 11) is

very similar to the PPC(t) evolution. Considering a low
probability of patch existence (2 or 10%), the curves
corresponding to the lax administrator and the rigorous one
are indistinguishable and increase quickly to the value
34.5%, that is the maximum probability of exploit
availability (cf. Section 6). When we consider a 100%
probability of patch existence, it is noticeable that there is
more difference between the values obtained, due to the
difference between the two administrator behaviors: the lax
administrator has a small PCNR(t) value but significantly
higher than the rigorous one. Moreover, the difference
between the curves is due to the fact that the probability to
reach the patched state, given that the system has been
compromised, is lower in the rigorous case compared with
the lax case is directly related to the fact that the system in
this case has a higher probability to be patched before a
successful attack occurs.

Vulnerability Life Cycle Evaluation Approach 13

FIGURE 9. Evolution of the probability for the system to be in
vulnerable state in NM-S.

the administrator.1 The higher the threat faced by the system
(considering the states vulnerable, exposed and compromised),
the shorter the meantime between the patch release and the
patch application. The patch application prevents other attacks840

from being successful on the system but it is not sufficient to
make the system secure. The repair of the system corresponds
to the cleaning and recovery task that is necessary to secure the
system. In the model processing, we assume a one day duration
to repair the system. In our study, we analyze two different845

administrator behaviors: lax and rigorous.2 When there is no
exploit and no disclosure of the vulnerability, i.e. in a context
with no real threat, the lax administrator updates the system
once a month when the rigorous one updates it every day.

7.2. Results850

7.2.1. Non-malicious discovery scenario (NM-S)
This section presents the results obtained from the processing
of NM-S model. We focus on the states of the system which
are necessary to quantify the measures. The first part of this
section is dedicated to the study of the probability for the855

system to be in the vulnerable, exposed and patched states
before evaluating the measures presented in Section 4.2. The
two different administrator behaviors (rigorous and lax) are
modeled by the three activities patchVul, patchExp and
patchC.860

Figure 9 depicts the evolution of the probability for the
system to be in the vulnerable state. It highlights the influence
of the patch existence (through probability p) but also the
difference between the two administrator behaviors. When the
administrator is rigorous, the probability for the system to be in865

the vulnerable state decreases quickly because of the exploit
availability (which makes the system move to the exposed
state) but also because the administrator applies the patch as

1The choice of the normal distribution is done empirically and any other
type of distribution could be considered in our model and processed by the
Mobius tool.

2We study two extreme administrator behaviors in order to highlight
the impact of this external factor. An administrator may, of course, has an
intermediate behavior.

FIGURE 10. Evolution of the probability to be in exposed state in
NM-S.

FIGURE 11. Evolution of PCNR(t) in NM-S.

soon as it is disclosed. Both events occur around 1 day in
average after the vulnerability disclosure. In the case of a lax 870

administrator, the probability starts by decreasing because of the
exploit availability (around day 1) that leads the system in the
exposed state. Anyway, it takes a long time for the administrator
to apply the patch, as illustrated by the slow decreasing curve
(starting around day 30). 875

The curves in Fig. 10 depict the evolution of the probability
of having the system exposed. First, the curve exhibits an
increasing trend because of the exploit availability event.
This increase is, however, less important for the rigorous
administrator who has already applied the patch before the 880

occurrence of a successful attack. The decreasing phase may
be caused by two events: the patch application or a successful
attack. In the case considering a low probability of patch
existence (2 and 10%), the event that has the highest impact
is the attack process which has a higher occurrence rate than 885

the patch application rate. On the contrary, for the other cases
(50 and 100%), the decrease of the curve is mainly due to the
patch application and not the vulnerability exploitation.

The evolution of the measure PCNR(t) (cf. Fig. 11) is very
similar to the PPC(t) evolution. Considering a low probability 890

of patch existence (2 or 10%), the curves corresponding to the
lax administrator and the rigorous one are indistinguishable
and increase quickly to the value 34.5%, that is the maximum
probability of exploit availability (cf. Section 6). When we
consider a 100% probability of patch existence, it is noticeable 895

The Computer Journal, 2012

FIGURE 11. Evolution of PCNR(t) in NM-S.

The probability for the system to be in a patched state

has a direct impact on the probability for the system to reach
the secure state PS(t), plotted in Fig. 12. As expected the
probability of patch existence has a high influence on PS(t)
which exceeds (for a rigorous administrator) 90%, at day 10
in the case of a 100% patch existence probability, compared
with 9% when the probability of patch existence is 10%.
Figure 12 also highlights the difference between the two
administrator behaviors: with the same patch existence
probability, it takes at least 25 days for the lax administrator

to reach the same PS(t) value than the rigorous
administrator, and certainly after the system has been
compromised and repaired.

14 G. Vache Marconato et al.

FIGURE 12. Evolution of PS(t) in NM-S.

that there is more difference between the values obtained, due
to the difference between the two administrator behaviors: the
lax administrator has a small PCNR(t) value but significantly
higher than the rigorous one. Moreover, the difference between
the curves is due to the fact that the probability to reach the900

patched state, given that the system has been compromised,
is lower in the rigorous case compared with the lax case is
directly related to the fact that the system in this case has a higher
probability to be patched before a successful attack occurs.

The probability for the system to be in a patched state has905

a direct impact on the probability for the system to reach the
secure state PS(t), plotted in Fig. 12.As expected the probability
of patch existence has a high influence on PS(t) which exceeds
(for a rigorous administrator) 90%, at day 10 in the case of a
100% patch existence probability, compared with 9% when the910

probability of patch existence is 10%. Figure 12 also highlights
the difference between the two administrator behaviors: with
the same patch existence probability, it takes at least 25 days
for the lax administrator to reach the same PS(t) value than the
rigorous administrator, and certainly after the system has been915

compromised and repaired.
An additional insight is obtained by varying the attack rates:

Rd and Rp, that are associated to the rates of activities attackVd

and attackVp. Figure 13 shows the evolution of the probability
PS(t) assuming that the patch always exists. The probability920

evolution considering different attack rates are very similar

FIGURE 13. Evolution of PS(t) in NM-S considering different attack
rates.

FIGURE 14. Evolution of the probability to be in vulnerable state in
M-S compared with NM-S.

when a rigorous administrator is considered, as the patch is
applied as soon as it is disclosed. The case in which we consider
a lax administrator shows a higher sensitivity to the attack rate.
If we consider a high attack rate, the system becomes secure 925

sooner but this quick patch application is due to the fact that the
system has been compromised and repaired before becoming
secure.

7.2.2. Malicious discovery scenario (M-S)
As has been done for the NM-S, we present the probability 930

for the system to be in one of the states and deduce the
values for the measures defined in Section 4. For each state
or measure considered, we compare the trends for the two
administrator behaviors and the two scenarios. First, Fig. 14
depicts the probability for the system to be in the vulnerable state 935

considering the case when the patch always exists (p = 1). The
two curves corresponding to the two administrator behaviors in
M-S scenario are very similar and decrease more quickly than
in the case of the NM-S. This is due to the fact that the exploit
is available before the patch. Thus, even if the administrator 940

is a rigorous one, the patch cannot be applied and the system
moves to the exposed state. Figure 15 depicts the evolution of
the measure PCNR(t) in the M-S, compared with the NM-S.
The difference between the two administrator behaviors is
important: PCNR(t) has a maximum value of 32% with a lax 945

administrator and 4% with a rigorous one. Figure 16 shows the

FIGURE 15. Evolution of PCNR(t) in M-S compared with NM-S.

The Computer Journal, 2012

FIGURE 12. Evolution of PS(t) in NM-S.

An additional insight is obtained by varying the attack

rates: Rd and Rp, that are associated to the rates of activities
attackVd and attackVp. Figure 13 shows the evolution of
the probability PS(t) assuming that the patch always exists.
The probability evolution considering different attack rates
are very similar when a rigorous administrator is considered,
as the patch is applied as soon as it is disclosed. The case in
which we consider a lax administrator shows a higher
sensitivity to the attack rate.

If we consider a high attack rate, the system becomes
secure sooner but this quick patch application is due to the
fact that the system has been compromised and repaired
before becoming secure.

14 G. Vache Marconato et al.

FIGURE 12. Evolution of PS(t) in NM-S.

that there is more difference between the values obtained, due
to the difference between the two administrator behaviors: the
lax administrator has a small PCNR(t) value but significantly
higher than the rigorous one. Moreover, the difference between
the curves is due to the fact that the probability to reach the900

patched state, given that the system has been compromised,
is lower in the rigorous case compared with the lax case is
directly related to the fact that the system in this case has a higher
probability to be patched before a successful attack occurs.

The probability for the system to be in a patched state has905

a direct impact on the probability for the system to reach the
secure state PS(t), plotted in Fig. 12.As expected the probability
of patch existence has a high influence on PS(t) which exceeds
(for a rigorous administrator) 90%, at day 10 in the case of a
100% patch existence probability, compared with 9% when the910

probability of patch existence is 10%. Figure 12 also highlights
the difference between the two administrator behaviors: with
the same patch existence probability, it takes at least 25 days
for the lax administrator to reach the same PS(t) value than the
rigorous administrator, and certainly after the system has been915

compromised and repaired.
An additional insight is obtained by varying the attack rates:

Rd and Rp, that are associated to the rates of activities attackVd

and attackVp. Figure 13 shows the evolution of the probability
PS(t) assuming that the patch always exists. The probability920

evolution considering different attack rates are very similar

FIGURE 13. Evolution of PS(t) in NM-S considering different attack
rates.

FIGURE 14. Evolution of the probability to be in vulnerable state in
M-S compared with NM-S.

when a rigorous administrator is considered, as the patch is
applied as soon as it is disclosed. The case in which we consider
a lax administrator shows a higher sensitivity to the attack rate.
If we consider a high attack rate, the system becomes secure 925

sooner but this quick patch application is due to the fact that the
system has been compromised and repaired before becoming
secure.

7.2.2. Malicious discovery scenario (M-S)
As has been done for the NM-S, we present the probability 930

for the system to be in one of the states and deduce the
values for the measures defined in Section 4. For each state
or measure considered, we compare the trends for the two
administrator behaviors and the two scenarios. First, Fig. 14
depicts the probability for the system to be in the vulnerable state 935

considering the case when the patch always exists (p = 1). The
two curves corresponding to the two administrator behaviors in
M-S scenario are very similar and decrease more quickly than
in the case of the NM-S. This is due to the fact that the exploit
is available before the patch. Thus, even if the administrator 940

is a rigorous one, the patch cannot be applied and the system
moves to the exposed state. Figure 15 depicts the evolution of
the measure PCNR(t) in the M-S, compared with the NM-S.
The difference between the two administrator behaviors is
important: PCNR(t) has a maximum value of 32% with a lax 945

administrator and 4% with a rigorous one. Figure 16 shows the

FIGURE 15. Evolution of PCNR(t) in M-S compared with NM-S.

The Computer Journal, 2012

FIGURE 13. Evolution of PS(t)in NM-S considering

different attack rates.

7.2.2. Malicious discovery scenario (M-S)
As has been done for the NM-S, we present the

probability for the system to be in one of the states and
deduce the values for the measures defined in Section 4. For
each state or measure considered, we compare the trends for
the two administrator behaviors and the two scenarios. First,
Fig. 14 depicts the probability for the system to be in the
vulnerable state considering the case when the patch always
exists (p = 1). The two curves corresponding to the two
administrator behaviors in M-S scenario are very similar
and decrease more quickly than in the case of the NM-S.

 13

This is due to the fact that the exploit is available before the
patch. Thus, even if the administrator is a rigorous one, the
patch cannot be applied and the system moves to the
exposed state. Figure 15 depicts the evolution of the
measure PCNR(t) in the M-S, compared with the NM-S.

14 G. Vache Marconato et al.

FIGURE 12. Evolution of PS(t) in NM-S.

that there is more difference between the values obtained, due
to the difference between the two administrator behaviors: the
lax administrator has a small PCNR(t) value but significantly
higher than the rigorous one. Moreover, the difference between
the curves is due to the fact that the probability to reach the900

patched state, given that the system has been compromised,
is lower in the rigorous case compared with the lax case is
directly related to the fact that the system in this case has a higher
probability to be patched before a successful attack occurs.

The probability for the system to be in a patched state has905

a direct impact on the probability for the system to reach the
secure state PS(t), plotted in Fig. 12.As expected the probability
of patch existence has a high influence on PS(t) which exceeds
(for a rigorous administrator) 90%, at day 10 in the case of a
100% patch existence probability, compared with 9% when the910

probability of patch existence is 10%. Figure 12 also highlights
the difference between the two administrator behaviors: with
the same patch existence probability, it takes at least 25 days
for the lax administrator to reach the same PS(t) value than the
rigorous administrator, and certainly after the system has been915

compromised and repaired.
An additional insight is obtained by varying the attack rates:

Rd and Rp, that are associated to the rates of activities attackVd

and attackVp. Figure 13 shows the evolution of the probability
PS(t) assuming that the patch always exists. The probability920

evolution considering different attack rates are very similar

FIGURE 13. Evolution of PS(t) in NM-S considering different attack
rates.

FIGURE 14. Evolution of the probability to be in vulnerable state in
M-S compared with NM-S.

when a rigorous administrator is considered, as the patch is
applied as soon as it is disclosed. The case in which we consider
a lax administrator shows a higher sensitivity to the attack rate.
If we consider a high attack rate, the system becomes secure 925

sooner but this quick patch application is due to the fact that the
system has been compromised and repaired before becoming
secure.

7.2.2. Malicious discovery scenario (M-S)
As has been done for the NM-S, we present the probability 930

for the system to be in one of the states and deduce the
values for the measures defined in Section 4. For each state
or measure considered, we compare the trends for the two
administrator behaviors and the two scenarios. First, Fig. 14
depicts the probability for the system to be in the vulnerable state 935

considering the case when the patch always exists (p = 1). The
two curves corresponding to the two administrator behaviors in
M-S scenario are very similar and decrease more quickly than
in the case of the NM-S. This is due to the fact that the exploit
is available before the patch. Thus, even if the administrator 940

is a rigorous one, the patch cannot be applied and the system
moves to the exposed state. Figure 15 depicts the evolution of
the measure PCNR(t) in the M-S, compared with the NM-S.
The difference between the two administrator behaviors is
important: PCNR(t) has a maximum value of 32% with a lax 945

administrator and 4% with a rigorous one. Figure 16 shows the

FIGURE 15. Evolution of PCNR(t) in M-S compared with NM-S.

The Computer Journal, 2012

FIGURE 14. Evolution of the probability to be in

vulnerable state in M-S compared with NM-S.

14 G. Vache Marconato et al.

FIGURE 12. Evolution of PS(t) in NM-S.

that there is more difference between the values obtained, due
to the difference between the two administrator behaviors: the
lax administrator has a small PCNR(t) value but significantly
higher than the rigorous one. Moreover, the difference between
the curves is due to the fact that the probability to reach the900

patched state, given that the system has been compromised,
is lower in the rigorous case compared with the lax case is
directly related to the fact that the system in this case has a higher
probability to be patched before a successful attack occurs.

The probability for the system to be in a patched state has905

a direct impact on the probability for the system to reach the
secure state PS(t), plotted in Fig. 12.As expected the probability
of patch existence has a high influence on PS(t) which exceeds
(for a rigorous administrator) 90%, at day 10 in the case of a
100% patch existence probability, compared with 9% when the910

probability of patch existence is 10%. Figure 12 also highlights
the difference between the two administrator behaviors: with
the same patch existence probability, it takes at least 25 days
for the lax administrator to reach the same PS(t) value than the
rigorous administrator, and certainly after the system has been915

compromised and repaired.
An additional insight is obtained by varying the attack rates:

Rd and Rp, that are associated to the rates of activities attackVd

and attackVp. Figure 13 shows the evolution of the probability
PS(t) assuming that the patch always exists. The probability920

evolution considering different attack rates are very similar

FIGURE 13. Evolution of PS(t) in NM-S considering different attack
rates.

FIGURE 14. Evolution of the probability to be in vulnerable state in
M-S compared with NM-S.

when a rigorous administrator is considered, as the patch is
applied as soon as it is disclosed. The case in which we consider
a lax administrator shows a higher sensitivity to the attack rate.
If we consider a high attack rate, the system becomes secure 925

sooner but this quick patch application is due to the fact that the
system has been compromised and repaired before becoming
secure.

7.2.2. Malicious discovery scenario (M-S)
As has been done for the NM-S, we present the probability 930

for the system to be in one of the states and deduce the
values for the measures defined in Section 4. For each state
or measure considered, we compare the trends for the two
administrator behaviors and the two scenarios. First, Fig. 14
depicts the probability for the system to be in the vulnerable state 935

considering the case when the patch always exists (p = 1). The
two curves corresponding to the two administrator behaviors in
M-S scenario are very similar and decrease more quickly than
in the case of the NM-S. This is due to the fact that the exploit
is available before the patch. Thus, even if the administrator 940

is a rigorous one, the patch cannot be applied and the system
moves to the exposed state. Figure 15 depicts the evolution of
the measure PCNR(t) in the M-S, compared with the NM-S.
The difference between the two administrator behaviors is
important: PCNR(t) has a maximum value of 32% with a lax 945

administrator and 4% with a rigorous one. Figure 16 shows the

FIGURE 15. Evolution of PCNR(t) in M-S compared with NM-S.

The Computer Journal, 2012

FIGURE 15. Evolution of PCNR(t) in M-S compared with

NM-S

The difference between the two administrator behaviors

is important: PCNR(t) has a maximum value of 32% with a
lax administrator and 4% with a rigorous one. Figure 16
shows the evolution of the measure PC(t). This measure
enables to know if the system is or has been in danger
considering the vulnerability. Considering the same
administrator behavior, PC(t) reaches lower values in the
case of the NM-S as the administrator can apply the patch
before the exploit is available. The difference between the
two administrator behaviors is also important as the
probability of the system to have been compromised reaches
60.6% at day 10 in the case of a lax administrator and only
10.2% in the case of a rigorous administrator, considering
the M-S. Finally, Fig. 17 depicts the evolution of PS(t),
which measures the probability for the system to be in a
secure state, even if it has been compromised. The secure
state is an absorbing state in the model, so, the curve on the
graph increases and reaches asymptotically the value 1. It is
interesting to note that the two curves considering rigorous
administrators follow the same trend. In the case of the lax
administrator, the patch is applied sooner in the M-S
scenario because of the higher probability of successful
attack.

Vulnerability Life Cycle Evaluation Approach 15

FIGURE 16. Evolution of PC(t) in M-S compared with NM-S.

FIGURE 17. Evolution of PS(t) in M-S compared with NM-S.

evolution of the measure PC(t). This measure enables to know if
the system is or has been in danger considering the vulnerability.
Considering the same administrator behavior, PC(t) reaches
lower values in the case of the NM-S as the administrator can950

apply the patch before the exploit is available. The difference
between the two administrator behaviors is also important as
the probability of the system to have been compromised reaches
60.6% at day 10 in the case of a lax administrator and only 10.2%
in the case of a rigorous administrator, considering the M-S.955

Finally, Fig. 17 depicts the evolution of PS(t), which measures
the probability for the system to be in a secure state, even if it
has been compromised. The secure state is an absorbing state in
the model, so, the curve on the graph increases and reaches
asymptotically the value 1. It is interesting to note that the960

two curves considering rigorous administrators follow the same
trend. In the case of the lax administrator, the patch is applied
sooner in the M-S scenario because of the higher probability of
successful attack.

8. DISCUSSION ON PRACTICAL APPLICABILITY
AND LIMITS OF THE MODEL

The modeling approach presented in this paper is a first step965

towards an ‘automated process’ for quantitatively evaluating
the security of information systems. As for now, the proposed
models are useful and adapted to understand, represent and
analyze the influence of some factors on the security level

of information systems. The proposed set of four security 970

measures enables us to have a global vision of the security
risks for the system resulting from the combined effect of three
different factors: the vulnerability life cycle events, the attacker
behavior and the administrator behavior. They enable a system
administrator to answer the following questions: (i) ‘what is the 975

probability for my system to be compromised by a successful
attack?’, (ii) ‘what is the probability for my system to be secure
considering a specific vulnerability?’, (iii) ‘how the time to
patch a given vulnerability affects the probability of the system
to be secure’, etc. These measures should be assessed and 980

updated at a regular basis using recent information reported
in public vulnerability databases. By providing this global view
of the security risks, these measures are aimed at enabling the
security administrators to have a better awareness of the levels
of risks induced by the considered factors and providing them 985

useful hints to mitigate these risks by taking some strategic
decisions such as: patching some particular software as soon as
possible, de-installing some vulnerable component, etc.

The proposed models identify a set of parameters that need
to be estimated based either on data already available from 990

vulnerability databases or based on security experts judgements
(when some of such data are missing). The problem of data
availability is common to all model-based studies and usually
it is sufficient to indicate the order of magnitude of some
parameters to perform sensitivity analyses and derive some 995

general trends about the computed measures.As indicated in the
paper, the information recorded in the vulnerability databases
are heterogenous and sometimes incomplete and some research
studies are needed to improve the content of such databases or
to correlate the information contained in different databases 1000

in order to obtain a more complete dateset compared with
information derived from a single database. On the other hand,
we believe that our work also contributes to identify relevant
information that it would be useful and interesting to record in
the future in the vulnerability databases. 1005

Finally, it is important to note that the models developed
at this stage analyze the system at a macroscopic abstraction
level adopting a black box approach. Further extensions are
needed in order to perform analyses at a finer granularity
taking into account, in addition to the considered factors, the 1010

system architecture and the interactions between the system
components. The development of such a model will require the
analysis of the vulnerabilities at the component level rather than
globally leading to a more detailed description of the system
states. Also, besides patch application, more details could be 1015

included to describe system administrators behavior and the
activities that can be used to manage and resolve software and
system-related vulnerabilities.

Clearly, the complexity of the models increases with the level
of detail included. Such a complexity can be mastered thanks to 1020

the significant progress achieved in the last decade in the area
of SANs and more generally in the context of other state-based
modeling formalisms.

The Computer Journal, 2012

FIGURE 16. Evolution of PC(t) in M-S compared with

NM-S

Vulnerability Life Cycle Evaluation Approach 15

FIGURE 16. Evolution of PC(t) in M-S compared with NM-S.

FIGURE 17. Evolution of PS(t) in M-S compared with NM-S.

evolution of the measure PC(t). This measure enables to know if
the system is or has been in danger considering the vulnerability.
Considering the same administrator behavior, PC(t) reaches
lower values in the case of the NM-S as the administrator can950

apply the patch before the exploit is available. The difference
between the two administrator behaviors is also important as
the probability of the system to have been compromised reaches
60.6% at day 10 in the case of a lax administrator and only 10.2%
in the case of a rigorous administrator, considering the M-S.955

Finally, Fig. 17 depicts the evolution of PS(t), which measures
the probability for the system to be in a secure state, even if it
has been compromised. The secure state is an absorbing state in
the model, so, the curve on the graph increases and reaches
asymptotically the value 1. It is interesting to note that the960

two curves considering rigorous administrators follow the same
trend. In the case of the lax administrator, the patch is applied
sooner in the M-S scenario because of the higher probability of
successful attack.

8. DISCUSSION ON PRACTICAL APPLICABILITY
AND LIMITS OF THE MODEL

The modeling approach presented in this paper is a first step965

towards an ‘automated process’ for quantitatively evaluating
the security of information systems. As for now, the proposed
models are useful and adapted to understand, represent and
analyze the influence of some factors on the security level

of information systems. The proposed set of four security 970

measures enables us to have a global vision of the security
risks for the system resulting from the combined effect of three
different factors: the vulnerability life cycle events, the attacker
behavior and the administrator behavior. They enable a system
administrator to answer the following questions: (i) ‘what is the 975

probability for my system to be compromised by a successful
attack?’, (ii) ‘what is the probability for my system to be secure
considering a specific vulnerability?’, (iii) ‘how the time to
patch a given vulnerability affects the probability of the system
to be secure’, etc. These measures should be assessed and 980

updated at a regular basis using recent information reported
in public vulnerability databases. By providing this global view
of the security risks, these measures are aimed at enabling the
security administrators to have a better awareness of the levels
of risks induced by the considered factors and providing them 985

useful hints to mitigate these risks by taking some strategic
decisions such as: patching some particular software as soon as
possible, de-installing some vulnerable component, etc.

The proposed models identify a set of parameters that need
to be estimated based either on data already available from 990

vulnerability databases or based on security experts judgements
(when some of such data are missing). The problem of data
availability is common to all model-based studies and usually
it is sufficient to indicate the order of magnitude of some
parameters to perform sensitivity analyses and derive some 995

general trends about the computed measures.As indicated in the
paper, the information recorded in the vulnerability databases
are heterogenous and sometimes incomplete and some research
studies are needed to improve the content of such databases or
to correlate the information contained in different databases 1000

in order to obtain a more complete dateset compared with
information derived from a single database. On the other hand,
we believe that our work also contributes to identify relevant
information that it would be useful and interesting to record in
the future in the vulnerability databases. 1005

Finally, it is important to note that the models developed
at this stage analyze the system at a macroscopic abstraction
level adopting a black box approach. Further extensions are
needed in order to perform analyses at a finer granularity
taking into account, in addition to the considered factors, the 1010

system architecture and the interactions between the system
components. The development of such a model will require the
analysis of the vulnerabilities at the component level rather than
globally leading to a more detailed description of the system
states. Also, besides patch application, more details could be 1015

included to describe system administrators behavior and the
activities that can be used to manage and resolve software and
system-related vulnerabilities.

Clearly, the complexity of the models increases with the level
of detail included. Such a complexity can be mastered thanks to 1020

the significant progress achieved in the last decade in the area
of SANs and more generally in the context of other state-based
modeling formalisms.

The Computer Journal, 2012

FIGURE 17. Evolution of PS(t) in M-S compared with

NM-S

8. Discussion on Practical Applicability and Limits of
the Model

The modeling approach presented in this paper is a first
step towards an ‘automated process’ for quantitatively
evaluating the security of information systems. As for now,
the proposed models are useful and adapted to understand,
represent and analyze the influence of some factors on the
security level of information systems. The proposed set of
four security measures enables us to have a global vision of
the security risks for the system resulting from the
combined effect of three different factors: the vulnerability
life cycle events, the attacker behavior and the administrator
behavior. They enable a system administrator to answer the
following questions: (i) ‘what is the probability for my
system to be compromised by a successful attack?’, (ii)
‘what is the probability for my system to be secure
considering a specific vulnerability?’, (iii) ‘how the time to
patch a given vulnerability affects the probability of the
system to be secure’, etc. These measures should be
assessed and updated at a regular basis using recent
information reported in public vulnerability databases. By
providing this global view of the security risks, these
measures are aimed at enabling the security administrators
to have a better awareness of the levels of risks induced by
the considered factors and providing them useful hints to
mitigate these risks by taking some strategic decisions such
as: patching some particular software as soon as possible,
de-installing some vulnerable component, etc.

The proposed models identify a set of parameters that
need to be estimated based either on data already available

 14

from vulnerability databases or based on security experts
judgments (when some of such data are missing). The
problem of data availability is common to all model-based
studies and usually it is sufficient to indicate the order of
magnitude of some parameters to perform sensitivity
analyses and derive some general trends about the computed
measures. As indicated in the paper, the information
recorded in the vulnerability databases are heterogeneous
and sometimes incomplete and some research studies are
needed to improve the content of such databases or to
correlate the information contained in different databases in
order to obtain a more complete dataset compared with
information derived from a single database. On the other
hand, we believe that our work also contributes to identify
relevant information that it would be useful and interesting
to record in the future in the vulnerability databases.

Finally, it is important to note that the models developed
at this stage analyze the system at a macroscopic abstraction
level adopting a black box approach. Further extensions are
needed in order to perform analyses at a finer granularity
taking into account, in addition to the considered factors, the
system architecture and the interactions between the system
components. The development of such a model will require
the analysis of the vulnerabilities at the component level
rather than globally leading to a more detailed description of
the system states. Also, besides patch application, more
details could be included to describe system administrators’
behavior and the activities that can be used to manage and
resolve software and system-related vulnerabilities.

Clearly, the complexity of the models increases with the
level of detail included. Such a complexity can be mastered
thanks to the significant progress achieved in the last decade
in the area of SANs and more generally in the context of
other state-based modeling formalisms.

9. Conclusion and Perspectives
This paper presented a modeling approach for

quantitative security evaluation. Our objective is to
elaborate an evaluation process that can provide measures
quantifying the risks for the system to be compromised by a
successful attack exploiting a vulnerability. Our study
focuses on the characterization and the modeling of the
vulnerability exploitation process and its impact on the state
of the system. The first step of this approach is the
identification and the characterization of the external factors
that could have an impact on the vulnerability exploitation
process. This study highlights three factors that have an
impact on security: the vulnerability life cycle and two
environmental factors, the attacker behavior and the
administrator behavior with respect to the application of
vulnerability patches. The dependencies between these
factors led us to distinguish two scenarios based on whether
the vulnerability is discovered by a malicious or a non-
malicious user. Taking into account these factors, we
identified the different states of the system and defined four

References
[1] Open Security Foundation, Open source vulnerability database.

http://osvdb.org.
[2] U.S. Department of Defense. (1985) Trusted computer security

evaluation criteria.
[3] European Communities.(1991) Information technology security

evaluation criteria
[4] ISO/CEI 15408. (1996) Common criteria for information

technology security evaluation.
[5] Nicol, D., Sanders, W. and Trivedi, K. (2004) Model- based

evaluation: from dependability to security. IEEE Trans.
Dependable Secure Comput., 1, 48–65.

[6] Ortalo, R., Deswarte, Y. and Kaâniche, M. (1999)
Experimenting with quantitative evaluation tools for
monitoring operational security. IEEE Trans. Softw. Eng.,
25, 633–650.

[7] Vache, G. (2009) Environment Characterization and System
Modeling Approach for the Quantitative Evaluation of
Security. Proc. 28th Int. Conf. on Computer Safety,
Reliability and Security, pp. 89–102.

[8] Vache, G. (2009) Vulnerability Analysis for a Quantitative
Security Evaluation. Proc. Int. Symp. on Empirical Software
Engineering and Measurement, pp. 526–534. IEEE
Computer Society.

[9] Jonsson, E. and Olovsson, T. (1997) A quantitative model of
the security intrusion process based on attacker behavior.
IEEE Trans. Softw. Eng., 23, 235–245.

[10] Dacier, M. (1994) Vers une évaluation quantitative de la
sécurité informatique. PhD Thesis, Institut National
Polytechnique, Toulouse.

[11] Dacier, M., Deswarte, Y. and Kaâniche, M. (1996) Models
and Tools for Quantitative Assessment of Operational
Security. Information Systems Security: Facing the
Information Society of the 21st Century, pp. 177–186.

 [12] Sheyner, O. (2004) Scenario graphs and attack graphs. PhD
Thesis, Carnegie Mallon University, Pittsburgh, PA.

[13] Jha, S., Sheyner, O. and Wing, J. (2002) Two Formal
Analyses of Attack Graphs. Proc. 15th IEEE Computer
Security Foundations Workshop, pp. 49–63.

[14] Swiler, L., Phillips, C., Ellis, D. and Chakerian, S. (2001)
Computer-Attack Graph Generation Tool. Proc. DARPA
Information Survivability Conf. & Exposition II, 2001.
DISCEX’01, pp. 307–321.

[15] Wang, L., Islam, T., Long, T., Singhal, A. and Jajodia, S.
(2008) An Attack Graph-Based Probabilistic Security Metric.
Proc. 22nd annual IFIP WG 11.3 Working Conf. on & Data
and Applications Security, pp. 283–296. Springer, Berlin
Heidelberg.

[16] Idika, N. and Bhargava, B. (2010) Extending Attack Graph-
Based Security Metrics and Aggregating Their Applica- tion.
IEEE Transactions on Dependable and Secure Com- puting,
Vol. 99. ISSN: 1545-5971 (Pre-prints).
http://doi.ieeecomputersociety.org/10.1109/TDSC.2010.61.

[17] Noel, S., Jajodia, S. and Singhal, A., (2010) Measuring
Security Risk of Networks Using Attack Graphs. Int. J. Next-
Gener. Comput., 1, 135–147.

[18] Mauw, S. and Oostdijk, M. (2005) Foundations of Attack
Trees. Information Security and Cryptology-ICISC 2005,
Lecture Notes in Computer Science, Vol. 3935, pp. 186–198.

[19] Jurgenson, A.and Willemson,J.,(2010) On Fasta nd
Approximate Attack Tree Computations. Proc. 6th Int. Conf.
on Information Security Practice and Experience, ISPEC

 15

2010, Seoul, Korea, Lecture Notes in Computer Science,
Vol. 6047, pp. 56–66.

[20] Schneier, B. (1999) Modeling security threats. Dr Dobb’s
Journal, December 1999.

[21] Kordy, B., Mauw, S., Radomorovic, S. and Schweitzer, P.
(2011) Foundations of Attack-Defense Trees. Proc. Formal
Aspects of Security and Trust (FAST 2010), Lecture Notes
in Computer Science, Vol. 6561, pp. 80–95.

[22] Balzarotti, D., Monga, M. and Sicari, S. (2006) Assessing the
Risk of Using Vulnerable Components. Quality of
Protection, pp. 65–77. Springer, USA.

[23] Mell, P., Scarfone, K. and Romanosky, S. A complete guide
to the Common Vulnerability Scoring System Version 2.0.
http://www.first.org/cvss/cvss-guide.html.

[24] Arbaugh, W., Fithen, W. and McHugh, J. (2000) Windows of
vulnerability: a case study analysis. Computer, 33, 52–59.

[25] Rescorla, E. (2005) Is finding security holes a good idea?
IEEE Secur. Priv., 3, 14–19.

[26] Frei, S. (2009) Security Econometrics—The Dynamics of
(In)Security. Eth zurich, PhD dissertation, ETH Zurich.

[27] Frigault, M. and Wang, L., (2008) Measuring Network
Security Using Bayesian Network-Based Attack Graphs.
Proc. 32nd Annual IEEE Int. Computer Software and
Applications (COMPSAC’08), pp. 698–703.

[28] Xie, P., Li, J.H., Ou, X., Liu, P. and Levy, R., (2010) Using
Bayesian Networks for Cyber Security Analysis. Proc 2010
IEEE/IFIP Int. Conf. on Dependable Systems and Networks
(DSN-2010), Chicago, IL, USA, pp. 211–220.

[29] Lu, G.-M., Chen, Z.-H.,He, X.-Z.and Li,J.-P.,(2008) A
Method of Security Evaluation based on Fuzzy Mathematics.
Proc. Int. Conf. on Apperceiving Computing and Intelligence
Analysis (ICACIA 2008), pp. 106–109.

[30] Zonouz, S.A., Khurana, H., Sanders, W.H. and Yardley, T.M.
(2009) RRE: A Game-Theoretic Intrusion Response and
Recovery Engine. Proc. 2009 IEEE/IFIP Int. Conf. on
Dependable Systems and Networks (DSN-2009), Lisbon,
Portugal, pp. 439–448.

[31] Gelenbe, E. (2007) Dealing with software viruses: a biological
paradigm. Inf. Sec. Tech. Rep., 12, 242–250.

[32] Zou, C.C. and Towsley, D. (2007) Modeling and simulation
study of the propagation and defense of Internet E-mail
Worms. IEEE Trans. Dependable Secure Comput., 4, 105–
118.

[33] CERIAS. (2005) The Development of Meaningful Hacker
Taxonomy: A Two Dimensional Approach. Technical Report
2005-43. CERIAS. 1195

[34] Rogers, M.K.(2006) A two-dimensional circumplex approach
to the development of a hacker taxonomy. Digital Invest., 3,
97–102.

[35] Alata, E., Nicomette, V., Kaaniche, M., Dacier, M. and Herrb,
M. (2006) Lessons Learned from the Deployment of a High-
Interaction Honeypot. EDCC’06: Proc. 6th European 1200
Dependable Computing Conf., pp. 39–46. IEEE Computer
Society.

[36] Sanders, W.H. and Meyer, J.F. (2002) Stochastic Activity
Networks: Formal Definitions and Concepts. Lectures on
Formal Methods and Performance Analysis: First EEF/Euro
Summer School on Trends in Computer Science, pp. 315–
343.

[37] Deavours, D.D., Clark, G., Courtney, T., Daly, D., Derisavi,
S., Doyle, J.M., Sanders, W.H. and Webster, P.G. (2002)
The Möbius framework and its implementation. IEEE Trans.
Softw. Eng., 28, 956–969.

[38] Arora, A., Krishnan, R.,Telang, R. and Yang, Y.(2004)
Impact of Vulnerability Disclosure and Patch Availability—
an Empirical Analysis. 3rd Workshop on the Economics of
Information Security.

[39] Frei, S., May, M., Fiedler, U. and Plattner, B. (2006) Large-
1215 Scale Vulnerability Analysis. LSAD’06: Proc. 2006
SIGCOMM Workshop on Large-Scale Attack Defense, pp.
131–138.

[40] Ozment, A., Schechter and Stuart, E.(2006) Milkor Wine:
Does Software Security Improve with Age? USENIX-SS’06:
Proc. 15th Conf. on USENIX Security Symp., Berkeley, CA,
USA. USENIX Association.

[41] Symantec Enterprise Security. (2012) Symantec global
internet security threat report—Volume 17—2011 trends.

[42] IBM. X-force trends reports. http://www935.ibm.com/
services/ us /iss/xforce/ trendreports/.

[43] IBM Global Technology Services. (2009) Ibm internet
security systems x-force 2008 trend & risk report.

[44] National Institute of Standards and Technology. National
vulnerability database. http://nvd.nist.gov.

[45] Security Focus. Security focus vulnerability database.
http://www.securityfocus.com.

[46] Secunia. Secunia vulnerability database. http://secunia.com/.
[47] Jumratjaroenvanit, A. and Teng-amnuay, Y. (2008)

Probability of Attack Based on System Vulnerability Life
Cycle. ISECS’08: Proc. 2008 Int. Symp. on Electronic
Commerce and Security, Washington, DC, USA, pp. 531–
535. IEEE Computer Society.

[48] Sturges, H.A. (1926) The choice of a class interval. J. Am.
Stat. Assoc., 21, 65–66.

[49] Mathwave. The easyfit tool. http://www.mathwave.com.
[50] Kuhl, M.E., Kistner, J., Cotantini, K. and Sudit, M. (2007)

Cyber Attack Modeling and Simulation for Network Security
Analysis. WSC’07: Proc. 39th Conf. on Winter Simulation,
Piscataway, NJ, USA, pp. 1180–1188. IEEE Press.

[51] McQueen, M., Boyer, W., Flynn, M. and Beitel, G. (2006)
Time-to-Compromise Model for Cyber Risk Reduction
Estimation, Quality of Protection, pp. 49-64, Springer, USA

[52] ISO/IEC 27001. (2005) Requirements for information security
management systems.

[53] ISO/IEC 27002 (2005) Code of practice for information
security management.

.

