
HAL Id: hal-01912556
https://laas.hal.science/hal-01912556

Submitted on 5 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation Fidelity Distance: A Game-Theoretic
Framework

Sangeeth Saagar Ponnusamy, Vincent Albert, Patrice Thebault

To cite this version:
Sangeeth Saagar Ponnusamy, Vincent Albert, Patrice Thebault. Simulation Fidelity Distance: A
Game-Theoretic Framework. SpringSim Spring Simulation Conference, Apr 2016, Pasadena, United
States. �10.23919/TMS.2016.7918815�. �hal-01912556�

https://laas.hal.science/hal-01912556
https://hal.archives-ouvertes.fr

Simulation Fidelity Distance: A Game-Theoretic
Framework

Sangeeth saagar Ponnusamy

Airbus Operations SAS,

316 Route de Bayonne,

Toulouse-31060, France
sangeeth-saagar.ponnusamy@airbus.com

Vincent Albert

CNRS, LAAS,

7 Avenue du Colonel Roche,

31400, Toulouse, France
valbert@laas.fr

Patrice Thebault

Airbus Operations SAS,

316 Route de Bayonne,

Toulouse-31060, France
patrice.thebault@airbus.com

ABSTRACT

The paper addresses one of the fundamental questions in

using simulation as a means for system verification and

validation, namely, how far the simulation model represents

the real system according to the given test objective.

Extending studies on quantitative approaches in system

refinement based on two player games to the field of system

simulation, distance notions for simulation fidelity are

proposed. This fidelity distance could be quantified through

alternating simulation games between the system model and

the simulation model. This coverage metric initially

proposed in literature, is still an absolute distance measure

and inadequate for the purpose of determining the fitness of

a model for an intended use, since a game relation is

established only between the simulation model i.e.

implementation and system model i.e. specification. In

addition, all strategies of the players must be explored to

quantify this error not only globally but also with respect to

the given test scenario. In this paper, these games between

two untimed transition systems are modeled as DEVS in the

ProDEVS tool and a quantitative reachability graph is

generated using the TINA tool to explore all such player

strategies in the game. Further, a relative-weighted fidelity

distance metric to account for given test objectives is

proposed which penalize cheats on expected simulation

model behavior more than the other behavior. This

quantitative reachability graph is analyzed for consistency

conditions, player strategies, counter examples, distribution

and evolution of cheats to gain further insight into the

simulation model behavior with respect to the system model

and test objectives. These game notions are discussed in the

context of derivability of experimental frame formalism,

where a global test scenario is proposed and then

consistently refined with respect to the model development

cycle. Extending this quantitative approach to timed

systems and interface automata is briefly discussed.

Author Keywords

Simulation, Verification & Validation, Alternating Games,

Quantitative Reachability.

ACM Classification Keywords

I.6.1 Simulation Theory, I.6.4 Model Validation and

Analysis, I.6.5 Model Development.

1. INTRODUCTION

In the Modeling & Simulation (M&S) of complex systems,

especially for the purpose of Verification and Validation

(V&V), one of the fundamental questions in using models

to represent a dynamic system is how closely does the

model simulate i.e. ‘mimic’ the system behavior?.

Simulation or Model Fidelity, also called representativity or

faithfulness, is this ability of a model to do whatever the

system it intends to represent does. In other words, under

similar environmental assumptions i.e. inputs, a model with

higher fidelity reproduces as many behaviors as the system.

This fidelity could be interpreted as a distance to reality and

this paper proposes a mechanism to quantify this distance

with respect to all possible or a subset of behaviors of the

system based on the notions of game theory and formal

verification principles.

The paper is structured as follows, in section 1, M&S for

system V&V is briefly outlined through experimental frame

formalism. In section 2, state of the art quantitative formal

verification notions based on game theory are presented and

discussed in the context of simulation fidelity metric. This

fidelity distance quantification is then presented according

to the given V&V objectives in section 3. A tool to model

an untimed transition system and generate the quantitative

reachability graph is presented in section 4 followed by an

application case in section 6. The paper concludes with a

brief overview of ongoing and future work.

2. M&S IN SYSTEM V&V

M&S has been widely used as a means to perform V&V

activities on the systems. In a classical industrial

environment, a system and its representation i.e. simulation

model are often developed by different stakeholders with

different objectives. These System(s) Under Test (SUT),

along with other systems or their models, are then tested at

different V&V scenarios by a test team. System designers,

who design and develop systems, are often domain experts

but do not necessarily have a multi-system end user

perspective. On the other hand, testers or the simulation

users are not domain experts but know the context under

which such SUT will be used. Then, the challenge for the

SpringSim-TMS/DEVS 2016 April 3-6 Pasadena, CA, USA

Copyright 2016 Society for Modeling & Simulation International (SCS)

model developer, who is usually in between these two

stakeholders, is how to develop models of the systems

called simulation model in the context of system V&V. It

may be noted that system designers may develop their own

model of the system called design model or simply a system

model and iteratively refine them before developing a real

system. Our study does not concern the fidelity of this

design model but the simulation model i.e. a subset of

design model for the purpose of V&V. In multi system

V&V such design models may not be used directly even

when available due to practical limitations such as different

modeling formalisms, model complexity, challenges in

integration, test platform requirements etc. This necessitates

a component based design approach for developing a

simpler representation of the constituent systems wherein

each component must be adequately representative enough

to perform V&V on the SUT. However, quantifying fidelity

is often a challenging task since it requires real system

behavior to compare against the model behavior. This post-

priori measurement of fidelity happens often at detrimental

cost due to over or under specification of models. Instead,

this fidelity needs to be measured a priori both globally and

locally i.e. with respect to V&V objectives. In the next

section, Experimental Frame (EF), a lucid formalism to

represent these V&V scenarios is presented and the

problem of quantifying the fidelity of the EF components is

discussed.

2.1. EXPERIMENTAL FRAME

In the context of studying a system through simulation, an

EF describes scenarios under which a model is stimulated,

observed and validated according to the requirements.

Initially proposed by Ziegler [11], an EF is composed of

stimulant (Generator, G), observer (Transducer, T) and

assessor (Acceptor, A) components in addition to the

components simulating the environment (ENV). The EF is

denoted by 𝐸𝐹 = {𝑀𝐺 ∪ 𝑀𝑇 ∪ 𝑀𝑒𝑛𝑣 ∪ 𝑀𝐴}, where M

refers to the model of EF component. An EF is shown

below with some generic interconnection.

Figure 1: Experimental Frame

In [9], consistency conditions between EF components were

discussed. An EF could be composed of real systems or

models or both. In V&V through simulation, a model

replaces the environmental system (G, T) and is composed

with the SUT besides other systems. Then fidelity,

informally, is nothing but the fact that the SUT cannot

differentiate when models replaces the system.

3. SIMULATION FIDELITY DISTANCE

Fidelity, as a distance measure to the reality, could be either

an absolute or a relative metric. An absolute fidelity metric

is the (set of) distance measure(s) over the simulation

model for all possible scenarios of the system. By contrast,

a relative measure is scenario driven i.e. it focusses more on

the trajectories related to a given scenario than the others.

However, prior to quantifying this fidelity vis à vis its test

scenarios, the global measure i.e. for all possible scenarios,

needs to be addressed. This intuitively means, how far the

model ‘mimics’ all the possible transitions of the system?.

The next section explains the theoretical basis of this

measurement based on simulation relations and the two

player game theory.

3.1. SIMULATION RELATIONS

In this paper, we use the classical notion of simulation

preorders and simulation relations [6] which essentially

states two models are (bi)similar if every transition of one

model is matched by the other (and vice versa). In addition,

notions of alternating simulation relations were proposed by

Alur et al in the context of reactive systems [3]. However,

these relations are boolean in nature i.e. either the model is

exactly similar to the other or not and such boolean notions

are too restrictive for practical purposes. It is not possible to

distinguish between a more similar model and less similar

model among the set of non-similar models. Approximate

versions of these similarity relations were proposed in [8]

which quantify this degree of similarity between two

models. This approach has been applied to the design of

safety controllers, formal verification, model reduction etc.

for continuous, discrete and hybrid systems. These

approximate bisimulation relations essentially give a global

error bound i.e. maximum degree of dissimilarity between

two models at a given time instant and this can formally be

verified by geometric over approximation of the

reachability set through zonotopes, ellipsoids etc. In the

field of (discrete) simulation, this global bound is over-

conservative since according to a scenario a model might

still be valid locally despite its global error. This

necessitates finding bounds on each trajectory i.e. a

quantitative reachability through a two player game

between the two models. On the other hand, distance notion

based on this two player game proposed for automata [6]

and interface automata [7] gives a transition-wise or path-

wise distance in the context of implementation, coverage

and robustness. However, to the best of our knowledge, a

mechanism to quantify this distance for all possible inputs

i.e. a superset of test scenarios has not been implemented.

This requires generation of a quantitative reachability graph

where every possible transition of system is evaluated over

a positive real valued distance function.

Let us briefly define some preliminaries before describing

the game. It may be recalled that a Finite State Automata

(FSA) is defined by a tuple, 𝑇 =< 𝛴, 𝑋, 𝑥0, 𝛿, 𝑅 >, where 𝛴 is

a finite non-empty set of alphabets or labels, X is the finite

non-empty set of states, 𝑥0 ⊆ 𝑋 is the initial non-empty state

set, 𝛿: 𝑋 ⨯ 𝛴 → 2𝑋 is the (nondeterministic) transition

function and 𝑅 ⊆ X is the set of accepting states. An

accepting run of T over a finite word ꙍ=𝑤0𝑤1 … 𝑤𝑛 ∈ 𝛴 is

the sequence of states 𝑥0𝑥1 … 𝑥𝑛 ∈ 𝑋 such that 𝑥𝑛 ∈ 𝑅. Then

the language of T, ℒ(𝑇) is the set of words accepted by T.

Let us consider two transition systems, 𝑇1 =< 𝛴1, 𝑋1, 𝑥1
0, 𝛿1 >

and 𝑇2 =< 𝛴2, 𝑋2, 𝑥2
0, 𝛿2 >, with 𝜏1 ∈ 𝛿1, 𝜏2 ∈ 𝛿2, then

𝑇1 simulates 𝑇2 is denoted by 𝑇1 ≼𝑆 𝑇2 and it holds if there

exists a binary relation 𝑓 ⊆ 𝑋1 × 𝑋2 such that if (𝑥1, 𝑥2) ∈ 𝑓

then

- ∀ (𝑥1, 𝜏1, 𝑥1
′) ∃ (𝑥2, 𝜏2, 𝑥2

′) such that (𝑥1
′ , 𝑥2

′) ∈ 𝑓 (1)

and it becomes bisimulation, 𝑇1 ≈𝐵𝑆 𝑇2 when

- ∀ (𝑥2, 𝜏2, 𝑥2
′) ∃ (𝑥1, 𝜏1, 𝑥1

′) such that (𝑥1
′ , 𝑥2

′) ∈ 𝑓 (2)

These simulation relations, and in addition alternating

simulation relations were extended to quantitative game

graphs and this notion is used in the next section to quantify

the distance between system and simulation model

behavior.

3.2. SYSTEM vs SIMULATION GAME

Game theoretic notions have been used in verification as

well as synthesis perspectives in the formal modeling and

analysis of systems [3],[7]. In this section, a two player

game is briefly introduced followed by the game between

the system and simulation model in the context of

quantifying its degree of similarity i.e. fidelity.

A game graph is a tuple, 𝔤 = < 𝑋, 𝑋1, 𝑋2, 𝐸, 𝑥0> where 𝑋 a

finite set of states is partitioned as 𝑋1 and 𝑋2 for the first

and second player respectively, 𝐸 ⊆ 𝑋 ⨯ 𝑋 is the set of

edges, 𝑥0 is the initial state of the play [6]. The dynamics of

the transition system described by its states and transitions

are interpreted as nodes i.e. states and edges of this game.

Then, formally, in the game between system, Msys and

simulation model, Msim denoted by 𝔤(Msys, Msim) with state

space Xsys ⨯ Xsim

Player 1 move : (𝑥𝑠𝑦𝑠 , 𝜏𝑠𝑦𝑠 , 𝑥𝑠𝑖𝑚) ⟶ (𝑥𝑠𝑦𝑠
′ , 𝜏𝑠𝑦𝑠 , 𝑥𝑠𝑖𝑚)

Player 2 move : (𝑥𝑠𝑦𝑠 , 𝜏𝑠𝑖𝑚 , 𝑥𝑠𝑖𝑚) ⟶ (𝑥𝑠𝑦𝑠 , 𝜏𝑠𝑦𝑠 , 𝑥𝑠𝑖𝑚
′)

(3)

The game starts with a move from one state of the system

model to the next by the first player followed by the second

player on simulation model and this continues until one

wins. In particular, simulation relation exists if player 2

always has the winning strategy. The strategy of the player

to choose each move may or may not depend on the history

of previous moves and in this paper we employ the

memory-less strategy. The set of visited states in the game

is called a play which is denoted by 𝜌 = 𝜌1𝜌2 … and this is

akin to the path of a transition system or trace if there is a

propositional evaluation at each such state. Then the degree

of accuracy can be measured by a weighted error function,

𝜀 such as limited average for number of play, 𝑛𝑝. It is

defined as follows

𝜀(𝜌) = lim inf
𝑛𝑝→∞

1

𝑛𝑝
∑ 𝑒(𝜌𝑖 , 𝜌𝑖+1)

𝑛𝑝−1

𝑖=0

 (4)

For example an error of 0.3 means 30% of transitions are

‘cheated’ or alternatively the model is 70% representative.

The error function satisfies the reflexivity and triangular

inequality i.e. for all 𝛿1,2,3 ∊ 𝛿, 𝜀(𝛿1, 𝛿1)=0 and 𝜀(𝛿1, 𝛿3) ≤

𝜀(𝛿1, 𝛿2) + 𝜀(𝛿2 , 𝛿3) respectively [2]. The games discussed

henceforth, are only in the context of untimed transition

systems modeled as FSA and section 6 briefly outlines the

current work on timed quantitative games.

In this game, player 1, also called as attacker, plays on the

system model and player 2, also called as defender, plays

on the simulation model. For every move of the attacker,

the defender matches the move or cheats over the move and

incurs a penalty. This game is repeatedly played until one

player wins. The attacker wins if the defender is not able to

match his move and the defender wins if it matches every

move of the attacker or attacker has no more moves. In the

context of fidelity where the game is played between the

system model and the simulation model, the latter is

deemed representative if the defender wins. However this

necessitates all the moves i.e. transitions of the attacker

must be matched. This is too restrictive and infeasible at

times and hence the notion of ‘cheating’ similar to the one

introduced in [6] is used. It is easy to see that lesser the

propensity of the simulation model to cheat, the higher the

fidelity will be i.e. cheating is opposite of fidelity.

Informally, the game is played as follows,

1. Player 1 plays on system model and hands back the

token to player 2.

2. Player 2 plays on the simulation model, matches if the

same label exists or cheats with the existing label and

hands back the token to player 2

3. The play is over and the error is calculated, for

example using Eq.4.

The next play begins and this continues until any one player

wins or the play itself is terminated. The game is a perfect

information game i.e. the defender has full visibility on the

attacker’s move. This game is played in such a way that, the

defender plays only the attacker’s label if it is available and

if not, it plays all the possible choices. This helps in not

only avoiding spurious plays by the defender but also in

exhaustively estimating the error.

3.2.1. Quantitative Reachability

In playing the game, the players are often confronted with

different choices and hence there exists different strategies

at each play. One of the challenges in playing this game is

the choice of the strategy. Though different types of

strategies have been discussed in literature [6],[7], they are

mostly discussed in the context of playing a game on the

system vs environment to reach a specific objective such as

safety. However, in our case, the objective is to capture

how close the game between simulation and system is, such

that, they both allow same conclusion to be drawn for an

evaluation against a specific V&V objective. In other

words, a system may or may not satisfy a particular V&V

objective, but, the objective of the simulation model is to

faithfully reproduce whatever the system may choose to do.

Hence it is important to evaluate all possible strategies i.e. a

reachability graph. In addition, such an exhaustive

exploration needs to quantify the degree of fidelity in every

possible path i.e. a quantitative reachability graph,

ℛ𝜀(Msys, Msim). This would not only give a path-wise

fidelity measure for all possible paths but also help in

analyzing the global fidelity as well. This global fidelity

could be interpreted as a mean fidelity measure. From Eq.1

which gives a path or trajectory wise fidelity measure, the

mean fidelity for all possible such trajectories whose size is

𝑁𝑏, at the end of a play, 𝑛𝑝 is given by

𝜀𝑛𝑝

𝑎𝑣𝑔
=

1

𝑛𝑝
∑ 𝜀(𝜌𝑖)

𝑁𝑏−1

𝑗=0

 (5)

Let us illustrate this game by a simple example. Consider a

system, 𝑀𝑠𝑦𝑠 and some (legacy) simulation models, 𝑀𝑠𝑖𝑚
1,2 as

shown in Fig 2.a and 2.b,c respectively.

a. 𝑀𝑠𝑦𝑠 b. 𝑀𝑠𝑖𝑚
1 c. 𝑀𝑠𝑖𝑚

2

Figure 2: System and Simulation Models

In general, problems of behavioral fidelity come from two

sources, namely, unmodeled dynamics and incorrectly

modeled dynamics of the system. The former refers to the

missing transitions whereas the latter refers to the incorrect

transitions. For example, the transition e is unmodeled in

simulation model (Fig 2.b) and the transition b is incorrect

in model (Fig 2.c) i.e. it is modeled as label g. Such

information can be quantified via these games. Now, let us

play this game informally with player 1 choosing label a in

the system model. This label is matched by player 2 playing

on the simulation model and the error is 0 for both 𝑀𝑠𝑖𝑚
1 and

𝑀𝑠𝑖𝑚
2 . Now the player 1 chooses b, then player 2 does not

cheat in the case of the first simulation model, 𝑀𝑠𝑖𝑚
1 . But in

the case of the second, it cheats by playing on transitions g,

h or c and the error is 1 (or ½ in case total transition

weighted as in Eq. 3). This continues and in fourth play,

when player 1 chooses e, player 2 playing on first

simulation model has no more moves and the game is lost.

On the other hand, the other path i.e. {a,c,f} of player 1 can

be matched exactly by both the simulation models. For the

sake of illustration, errors associated in the quantitative

reachability is given in the table below for the first four

plays. Thus it can be seen clearly that exploring all the

paths of models in this turn base game gives significant

insight into the fidelity characteristics of the simulation

model.

Table 1: Quantitative Reachability Graph

Play 𝜀(𝑀𝑠𝑦𝑠 , 𝑀𝑠𝑖𝑚
1) 𝜀(𝑀𝑠𝑦𝑠, 𝑀𝑠𝑖𝑚

2)

1 0 0

2 {0,0} {0.5,0.5,0.5,0}

3 {0,0} {0.67,∞,0.67,0}

4 {∞} {0.67, ∞}

In generating such a quantitative reachability graph, how

the error is measured could be different depending on the

user requirement. As remarked in [6], an error could be

measured transition wise or moving average etc. and in this

paper the error is calculated as weighted sum with respect

to transition. In the future, it is intended to measure such

different types of error with respect to the test scenario

domain.

3.2.2. IMPLEMENTATION

The game semantics described in previous sections has

been implemented in ProDEVS, a DEVS simulation

platform [10]. ProDEVS is a Discrete EVent Simulation

(DEVS) platform and amongst other features such as FMI

co-simulation, it can also be used to do formal verification

with TINA toolbox [4]. DEVS is a more general case of the

FSA formalism with embedded time and differentiation

between input and output labels i.e. akin to interface

automata. Since we intend to extend the current quantitative

approach to timed automata, and then further to DEVS

formalism, we construct our models in ProDEVS. On the

other hand, the game semantics are modeled in petri-net

formalism. These games are modeled in petri-net using the

graphical editor of the TINA toolbox. Petri-nets, with their

token based formalism, is amenable to modeling such turn

based games between two FSA. In addition, using the

TINA reachability generator along with the data encoding

in guards and actions of the underlying petri-net transitions

the quantitative reachability graph could be generated. This

graph is then parsed to perform some analytics for better

understanding of the model fidelity.

The DEVS definitions can be found in [1] [10] [11] and in

this section we define only the petri-nets. Though petri-nets

per se is a richer formalism to model transition systems due

to its ability to model parallel processes, we will restrict our

petri-net models to FSA where the states are finite and have

no parallelism. Formally, a petri-net is a tuple

𝑀 =< 𝑃, 𝜏, 𝐴, 𝑤, 𝑝0 > (6)

where

- P is a finite set of symbols called places

- 𝜏 is a finite set of symbols called transitions with P∩𝜏 = ∅

- 𝐴 ⊆ (𝜏×P) ∪ (P×𝜏) is the set of arcs defining the flow

relation

- 𝑤: 𝐴 → N is the function defining the respective weights of

the arcs

- 𝑝0 : P → N is the initial marking

It can be easily seen that a petri-net with neither weights

nor parallelism is a classical automaton and with time, it

becomes a timed automaton. For the sake of brevity, let us

denote places as states and markings denote the current

state. In [1], Albert et al discusses the mapping between

classic and parallel DEVS semantics to petri-net formalism

using which the models are converted and the game is

constructed in a single petri-net file and could be run

directly from the ProDEVS. Since petri-net simulator per se

does not handle data, these are encoded as guards and

actions on the transitions through associated c files to

generate dll files. The generated reachability graph is in text

form and the data needs to be parsed for better

understanding and visualization. The parser, written in

JAVA and integrated in ProDEVS has many functions such

as plotting the evolution of cheats along the play,

distribution of cheats etc. In particular, it constructs a

reachability tree which can then be visualized. The replay

feature allows to choose a particular cheat from the cheat

distribution plot to see the associated path to better

understand when and where the simulation model behavior

differs with respect to the system. The methodology is

briefly given in the following figure.

Figure 3: Implementation

It can be seen that the modeling and parsing are done in

ProDEVS with rest being in TINA. Alternatively, the

modeling and game can be done in TINA-ND graphical

editor tool as well and the reachability is generated by

TINA later. It may be seen that, given a system design

model and a simulation model, the game is constructed

automatically and the resulting output is exhaustive error

quantification over all possible transitions. The simulation

user or the developer may then decide to improve the

simulation model or relax the V&V requirements. This

approach, apart from quantifying the global fidelity

independent of V&V objectives, is also useful in iteratively

refining the design with respect to V&V scenarios

especially in the early system development when the design

is not frozen.

4. RELATIVE SIMULATION FIDELITY DISTANCE

Similar to quantifying the global fidelity, games can be

extended to quantify the relative fidelity as well. Let us

consider the example in Fig 2 and consider a V&V scenario

informally (or formally via some temporal logic) stating

whenever the user gives the label a and then c, f should

always be the output with no error. This scenario is satisfied

by both the simulation models. On the other hand, consider

another scenario, stating whenever a user gives the label a

and then b, d should always be the immediate output. In this

case 𝑀𝑠𝑖𝑚
1 does better with error 0 than 𝑀𝑠𝑖𝑚

2 with error 0.5.

If the scenario is, given the label a and then b, eventually

the user must observes e, then 𝑀𝑠𝑖𝑚
2 is better than

𝑀𝑠𝑖𝑚
1 where the game has been lost. Thus, such a local

notion helps in replacing system models with simulation

models locally or ‘relative’ to the objectives. In other

words, globally a simulation model could be far from

representing the system but it may be adequate to represent

the system for a particular V&V scenario. This relativeness

vis à vis scenarios could be taken into account through

relative weighting i.e. penalizing more the cheats on labels

associated to the scenarios and less the cheats on other

labels.

Let us denote the actions of interest on system model, 𝑀𝑠𝑦𝑠

by 𝜏𝜑 ⊆ 𝜏𝑠𝑦𝑠 ∈ 𝛿𝑠𝑦𝑠 and whenever the defender cheats on

these actions it incurs higher penalty than when it does not.

The error weighting function is given by 𝑒: 𝛿 ⨯ 𝑁 → ℝ0
+

where 𝛿 = 𝛿1⋃ 𝛿2 and N refers to number of transition. In

the two player game with turns m=1,2 the distance is

calculated at the end of every defender move i.e.∀2n where

n ∊ 𝑁 is the number of transitions. The two different

weights are denoted by 𝑤1 and 𝑤2 respectively which could

either be a simple positive number or a function of

transition 𝑤1,2(𝑛). Let the label and state of a transition τ be

ω and x such that ω ∈ X, 𝑥 ∈ 𝛴, then

∀𝜏𝑠𝑖𝑚∊ 𝛿𝑠𝑖𝑚, {ω𝑠𝑖𝑚≠ω𝑠𝑦𝑠 ⋀ ω𝑠𝑦𝑠 ∈ 𝜏𝜑} ⇒ 𝜀𝜑 = 𝑤1(ℰ)

 {ω𝑠𝑖𝑚≠ω𝑠𝑦𝑠 ⋀ ω𝑠𝑦𝑠 ∉ 𝜏𝜑} ⇒ 𝜀𝜑 = 𝑤2(ℰ)

 else 𝜀𝜑 = 0

(7)

In assigning weights to the ‘cheating’ transition, more

weight 𝑤1 is given to transitions related to V&V

requirements called ‘primary’ transitions and less weight,

𝑤2 is given to other transitions called ‘secondary’

transitions. This relies on the discounting principle that

models cheating on primary transitions are penalized more

and the earlier the cheat, more will be the penalty. In

contrary, secondary cheats are penalized more with

increasing time. Intuitively, models erring earlier on

primary transition are viewed pessimistically whereas

models erring earlier on secondary transitions are viewed

optimistically on the assumption that they will eventually

correct themselves.

For the sake of illustration, consider for every cheating

move, 𝑛𝑐 ≤ 𝑛𝑝, let the weight varies in steps of -0.1 for

primary weight i.e. 𝑤1 = (1 − 0.01𝑛𝑐) and +0.1 for

secondary weight with each transition i.e. 𝑤2 = 0.1𝑛𝑐 such

that |𝑤1 + 𝑤2|<1. Consider the figure below whose system

model is 𝑀𝑠𝑦𝑠 shown in the figure 4. Let the scenario be,

whenever a (or a and then b) is given there is possibility to

get at least four e’s at the end of ten transitions.

In general, a scenario independent error quantification will

yield a global value of 0.4 at the end of tenth play for both

the models. Instead, the labels in scenario ‘a’, ‘e’ are given

more weightage during cheating and intuitively one can see

that, 𝑀𝑠𝑖𝑚
3 is better than 𝑀𝑠𝑖𝑚

4 . At the end of tenth play, 𝑛𝑐 is

4 for both the models and the relative error becomes
𝜀(𝑀𝑠𝑦𝑠, 𝑀𝑠𝑖𝑚

3)=0.16 and 𝜀(𝑀𝑠𝑦𝑠, 𝑀𝑠𝑖𝑚
4) = 0.384. Such relative

weighting can be integrated in the quantitative reachability

graph generation similar to the one shown in section 3.2.

b. 𝑀𝑠𝑖𝑚
3 c. 𝑀𝑠𝑖𝑚

4

Figure 4 : Simulation Models Relative Fidelity

However, the weighting needs to be chosen carefully, a too

stringent weighting may not show much difference with

absolute error calculation and a too lenient weighting leads

to spurious results. Further work is needed in this direction

and it is also worth noting that alternatively this relative

error perspective needs to be studied as compatibility

between the EF components such as generator and acceptor.

In the next section, a brief discussion on this distance

approach in the context of morphism relations and

derivability of EF is presented.

5. EF HOMOMORPHISM & DERIVABILITY

The fidelity distance described in section 3 and 4 could be

discussed through EF homomorphism [11]. It is known that

a morphism relation establishes correspondence between a

concrete model i.e. system specification and an abstract

model i.e. simulation model. This relation between two

models becomes a homomorphism when the transition and

output function has been preserved i.e. behavioral

equivalence. This fidelity distance notion is then an

approximate behavioral equivalence similar to the

approximate language equivalence discussed in [8]. The

relation between EF abstraction, applicability and

derivability through hierarchy and orthogonality is

discussed by Ponnusamy et al in [9]. These distance notions

are not only useful in hierarchically ordering of details i.e.

abstractions but also useful in ordering of scenarios through

the concept of derivability. Derivability is the ability to

form i.e. derive an EF from another EF. In general, for a

given set of V&V scenarios different EF can be formed and

it would be useful to build a more general i.e. more capable

EF from which other EF can be derived. In other words, it

relates two V&V scenarios and naturally, for the purpose of

optimizing the test bench usage, a scenario having the

widest possible coverage is chosen first and refined further

based on the need or criticality. In addition, this helps in

optimal development and reuse of models for different

scenarios. Formally, derivability, β is defined as

β
k
 : EFk

j
 → EFk+1

j
 (8)

where j, k are the abstraction and derivability i.e. scenario

ordering. Intuitively, EFk+1

j
 derivable from EFk

j
 means the

former scenario is a subset of the latter i.e. scenario

inclusion, at the same level of EF abstraction denoted by j.

For example, in fig 2.a, the scenario a followed by b gives d

could be derived from a gives d i.e. {𝑎 → 𝑏 →. . → 𝑑}⊆

{𝑎 →. . → 𝑑}. Thus in practice, model having closest

distance with respect to the lowest order EF is bound to be

closest to the higher order EF derived from this EF as well.

This leads to EF components i.e. models satisfying an EF

property, 𝜑𝑝 , also satisfies the same property of other EF

derived from it. Let a component model of EF be Mi, with

error ℰ, then,

𝑀𝑖
𝜀 ⊨ 𝜑1(𝐸𝐹𝑘)⇒ 𝑀𝑖

𝜀 ⊨ 𝜑1(𝐸𝐹𝑘+1) ∣𝐸𝐹𝑘+1 = β
k
(𝐸𝐹𝑘) (9)

This inclusion relation is due to the transitivity of the

derivability as follows,

(EFk+1
j

⊑ EFk
j
) ⋀ (EFk+2

j
 ⊑ EFk+1

j
) ⇒ (EFk+2

j
 ⊑ EFk

j
) (10)

where k ∈ {1. . K} gives the limit of such operation. Besides

building a ordered database of scenarios, it helps in

identifying a scenario not present in the V&V plan that

could not be derived from the defined scenarios.

It may be noted that the game theoretic approach assumes

formalization of the knowledge about the labels i.e

transitions of the system and simulation model. In other

words, the homomorphism relation is established between

the labels i.e. equivalence of labels. This assumption is

reasonable since the two models being developed by

different stakeholders needs to have coherency in labels

(ex: labels job and j refers to the same input event i.e. an

incoming job) before establishing the simulation relation

and quantifying the error between them.

6. APPLICATION CASE

The buffer [1] is a simple FIFO which receives jobs from

the job generator and sends them to the processor whenever

the processor is free. Whenever the job is received the

queue, q is incremented and decremented when the job is

sent to the processor. The received and sent jobs are

denoted by label e0 and s0 respectively, processor status by

e1. Let us imagine the processor to be the SUT and the

requirement is to model the buffer with sufficient fidelity

such that some scenarios, 𝜑𝑖=1
𝑁 on the processor can be

tested. This experimentation is illustrated as an EF below

Figure 5: Processor Experimental Frame

It can be seen that in addition to the generator and buffer,

the experimentation may involve a Transducer to interpret

the processed and generated jobs and an Acceptor which

compares the jobs generated vs processed to ascertain the

validity of the processor.

The system specification of buffer, 𝐵𝑢𝑓𝑠𝑦𝑠 , is supplied by

the designer and the scenarios by the test team. The model

developer who intends to build an abstraction i.e. a model

of this buffer, 𝐵𝑢𝑓𝑠𝑖𝑚 , needs to quantify his model with

respect to the system both globally and with respect to 𝜑𝑖=1
𝑁 .

Consider an un-timed automaton modeling buffer behavior

in ProDEVS and let us ignore the input/output actions and

consider them simply as labels i.e. ?e0 is simply e0 and !s0

as simple s0. The system model, 𝐵𝑢𝑓𝑠𝑦𝑠 , is shown below,

Figure 6: Buffer System Model

Let us specify four candidate models, 𝐵𝑢𝑓𝑠𝑖𝑚
1..4 as below,

(a) 𝐵𝑢𝑓𝑠𝑖𝑚

1 (b) 𝐵𝑢𝑓𝑠𝑖𝑚
3

(c) 𝐵𝑢𝑓𝑠𝑖𝑚

2 (d) 𝐵𝑢𝑓𝑠𝑖𝑚
4

Figure 7: Buffer Simulation Models

For example, the game between the two models, system

model and simulation model 1 (c) is informally described as

follows,

𝑛𝑝 = 1: From initial state, S0, player 1 chooses transition e0

and moves to S1. Player 2 does the same.

𝑛𝑝 = 2: From S1 the player 1 chooses e0. The player 2

cannot match and thus cheats with s0.

This continues forever and one can see the error is simply

(𝑛𝑝 − 1)/𝑛𝑝. Similar games can be played between other

models. The following figure illustrates the distribution of

trajectories based on the fidelity i.e. (1 − ℰ) and it can be

seen that higher the number of trajectories close to 100% or

required fidelity, the higher the simulation model fidelity.

For the sake of illustration only trajectories up to the third

play from a total of 10
3
 plays are shown.

Figure 8: Trajectories Fidelity Distribution

From this graph, one can see that out of four trajectories

generated at the end of the third play by the system, only

one is matched by the simulation model exactly and the

second trajectory (in rose and green) cheats twice out of

three transition i.e. 33% representative, whereas the fidelity

of the other (in blue) is 67%. A particular trajectory can be

picked up for visualization by clicking on the graph as

shown in the upper left box inside the figure and in

addition, the mean fidelity, in this case ~67% is also shown.

This reachability can also be analyzed as a measure of total

number of cheats per turn with respect to the total number

of trajectories at that turn. For example in the above

example out of four trajectories two are cheating at the third

play and in general, lower this ratio, the worse will be the

fidelity. This is illustrated for all the four models in Fig 9.

In addition, the number of trajectories cheated (in black)

and the total number of trajectories (in red) at each play is

also given.

In the case of relative cheating, let us consider a scenario,

𝜑1stating the processor must process all the jobs generated

or in other words, no job is lost by the buffer. For this

particular scenario, weighting is more on e0 and less on

other labels similar to example in section 4. Similar such

weightings can be done for other scenarios and analysis is

done as in Figs 8,9. In addition, sensitivity of weights to the

error for a given scenario can be studied as well to ascertain

a viable tradeoff between model abstraction i.e. complexity

and fidelity.

7. OUTLOOK & CONCLUSION

In this paper, only untimed games are presented and this is

being extended to timed games [8]. Informally, in these

timed games between system and simulation model, the

defender plays a non-blocking game where the simulation

model can cheat on the timing of transitions for the same

labels. In addition, this game based quantitative approach is

also being extended to open systems modeled as untimed

interface automata based on the work of Cerny et al [5].

(a) 𝐵𝑢𝑓𝑠𝑦𝑠 vs 𝐵𝑢𝑓𝑠𝑖𝑚
1 (c) 𝐵𝑢𝑓𝑠𝑦𝑠 vs 𝐵𝑢𝑓𝑠𝑖𝑚

3

(b) 𝐵𝑢𝑓𝑠𝑦𝑠 vs 𝐵𝑢𝑓𝑠𝑖𝑚
2 (d) 𝐵𝑢𝑓𝑠𝑦𝑠 vs 𝐵𝑢𝑓𝑠𝑖𝑚

4

Figure 9: Cheating Trajectories Distribution

This approach needs to be studied in the context of some

efficient reachability representations such as Binary

Decision Diagrams (BDD) and symbolic approximations

for systems to mitigate the problem of state space explosion

in higher dimensional systems. In addition, a key point in

fidelity quantification is the origin of this distance i.e. how

a model is built since there exist different ways of modeling

[9]. In the current study, the abstractions are structural i.e.

omission of a particular transition [8]. Future works include

the extension of our approach to other classes of widely

used abstractions such as state aggregation.

REFERENCES

1. Albert, V., Ponnusamy, S.S., Encoding CDEVS and

PDEVS into Timed Petri Net: theory and application,

(2016), Journées DEVS Francophones, Submitted.

2. Alfaro, L., Faella, M., Stoelinga, M., Linear and

Branching System Metrics, IEEE Trans. Software Eng

(2009). Vol 35(2), 258–273.

3. Alur, R., Henzinger, T., Kupferman, O., Vardi; M.

Alternating refinement relations. Lecture Notes in

Computer Science (1998), Vol 1466, 163-178.

4. Berthomieu, B., Diaz, M., Modeling and verification of

time dependent systems using time Petri nets, IEEE

Trans, on Software Engineering (1991), Vol. 17, no. 3,

pp. 259-273.

5. Cerny,P., Henzinger, T. & Radhakrishna, A., Interface

simulation distances. Theoretical Computer Science

(2014), Vol 560: 348-363.

6. Cerny,P., Henzinger, T. & Radhakrishna, A., Simulation

Distances. Lecture Notes in Computer Science (2010),

Vol 6269, 253–268.

7. Chatterjee, K., Prabhu ,V.S., (2015), Quantitative

Temporal Simulation and Refinement Distances for

Timed Systems, IEEE Transactions on Automatic

Control, Vol 60, Issue 9, 2291-2306.

8. Girard, A., Pappas, G.J., Approximation Metrics for

Discrete and Continuous Systems. IEEE Transactions

on Automatic Control (2007), Vol 52, Issue 5, 782-798.

9. Ponnusamy, S.S., Thebault P., Albert V., , Consistent

Behavioral Abstractions of Experimental Frame (2015),

AIAA Modeling and Simulation Technologies

Conference, US, Accepted.

10. Vu, L.H., Foures, D., Albert, V., (2015), ProDEVS: an

event-driven modeling and simulation tool for hybrid

systems using state diagrams, Proceedings of the 8th

International Conference on Simulation Tools and

Techniques, 29-37, Greece.

11. Zeigler, B.P., Praehofer, H., Tag, G.K. Theory of

modeling and simulation, San Diego, California, USA

 Academic Press, 2000.

