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ABSTRACT 
 
A meta-model of modeling abstractions is presented and 
discussed in the context of using simulation as a means for 
system verification and validation activities. Extending the 
classical results of presenting modeling as a relevance 
reasoning problem, abstractions are classified to build an 
ontology based on the concepts of teleological modeling and 
relevance reasoning. The domain model is built in the 
standard ontology tool of Protégé to exploit the reasoning 
and inference capabilities to build a model abstraction 
library. Lattice structures of model instances are formed and 
a recursive algorithm is implemented as an activity diagram 
in SysML for automated and consistent model selection. The 
approach is presented with a battery model example from the 
literature. Challenges and future work in implementation of 
such a semi-formal approach in model selection is briefly 
presented in the context of improving fidelity of simulation 
in the industry. 
 

1. INTRODUCTION 

   In using Modeling and Simulation (M&S) as a means for 
the system Verification & Validation (V&V), often the 
difficulty is finding and implementing abstractions of the 
system being simulated with respect to the simulation 
requirements. Such difficulties gives raise to the problem of 
simulation fidelity i.e. the effectiveness of simulation in 
reproducing the reality for the System Under Test (SUT) 
validation. In the field of artificial intelligence, this model 
construction problem is posed as a reasoning problem 
(Iwasaki and Levy 1994) i.e. inclusion of relevant 
information about the system being modeled and reasoning 
about them. However, identification, organization and 
further classification of these information i.e. abstractions for 
models simulating a phenomenon are often a tedious task. 
This is even more so true in modeling complex systems and 
it becomes imperative that this identification and 
organization of domain knowledge about the model be 
(semi)automated in a Model Based System Engineering 
(MBSE) context.  
  Ontology, which is a formal representation of a set of 
concepts within a domain and the relationships between 
those concepts, could serve as an answer to this problem of 
building a domain model due to its inherent reasoning and 
knowledge exploitation capabilities. This domain model, 
also called meta-model, serves as a common framework for 
better understanding and making domain assumptions 

explicit. Since a model can be interpreted as a set of concepts 
with some relationship between them, ontologies could be 
used in their representation, organization and exploitation by 
the practicing engineers with ease in this MBSE framework. 
   In this paper, a domain model of modeling abstraction is 
proposed and implemented in Protégé tool, (Protégé). This 
domain model serves as a standard template for instantiation 
by system designers and simulation users. The reasoning and 
querying abilities are used by the model developer over these 
instances to identify and classify abstraction to build a model 
abstraction library. The recursive algorithm (Lickly 1992), 
implemented in a SysML activity diagram is then used to 
identify a consistent yet simple modeling abstraction to be 
implemented by the model developers. A simple example of 
a battery model from the literature is taken as a case study.  

2. ONTOLOGIES & REASONING FOR M&S 

   Reasoning in general is the process of deriving facts that 
are not explicitly stated. In (Iwasaki and Levy 1994) 
modeling abstractions were discussed as inclusion of 
relevant information about the system being modeled and 
reasoning about them. Based on this relevance reasoning, 
Levy et al (Levy et al 1997) proposed a recursive procedure 
to find the consistent yet simplest model from an existing 
model library. This library is assumed to be well formed i.e. 
modeling assumptions behind each model is clearly 
identified and classified. Unfortunately this is not often the 
case especially when system development and model 
development are done by different entities who do not 
necessarily share the same domain knowledge and its 
associated vocabulary. This problem is further compounded 
in system V&V activities by simulation when the models of 
system need to be developed according to some user defined 
scenarios. Thus the problem of fidelity too can be posed as a 
reasoning problem i.e. inclusion of the relevant information  
according to a given scenario and reasoning about them. 
   In order to ensure this view point consistency, 
standardization of knowledge exchange and its exploitation, 
ontologies are proposed in this paper for developing models 
with required fidelity. Originally intended for semantic web, 
ontology practices has been increasingly used to improve 
semantic interoperability and consistent modeling in a 
MBSE framework (Jenkins 2012) (Man et al 2009). Greves 
et al (Greves 2009) discussed a reasoning aided MBSE 
approach by integrating ontology and SysML, a general 
purpose system engineering language. Ontology, as a means 
of incremental knowledge addition will help in formalization 
of these inclusion relations by domain experts over time with 
their validation experiences. The availability of the standard 
Web Ontology Language called OWL (OWL) and tools such 
as Protégé with its query and reasoning capabilities makes it 



© EUROSIS-ETI 

an attractive option to perform these activities. In Protégé 
complex concepts can be incrementally built up from simpler 
concepts using rich set of operators, after which plug-in 
reasoners such as Fact++, Hermit (Hermit) are used to draw 
inferences and check consistency. Reasoners infer this 
relationship by reification, a concept in logic where an 
instance of a relation is made the subject of another relation. 
The inferred ontology can be queried for specific needs with 
SPARQL, a query language which is used to retrieve and 
manipulate data stored as Resource Description Framework 
(RDF), a standard for the semantic web. Queries are 
constructed in triple pattern of subject, predicate and object 
with conjunctions, disjunctions and optional patterns such as 
to filter, sort etc.  
   Broadly the contribution of this paper is twofold, building 
a model abstraction library based on ontology reasoning and 
exploitation based on SysML implementation of model 
selection and automated assembly based on ontology 
queries. The paper is structured as follows, the classification 
of abstractions are presented  

3. A META-MODEL OF MODEL ABSTRACTIONS 

   A meta-model for M&S must include different viewpoints 
of the system being modeled in a teleological perspective. 
Since a model is an abstraction i.e. simplification of a system 
and intends to represent a system phenomenon at some 
operating condition through some quantities and relationship 
between them, the meta-model need to have different classes 
of abstraction to represent these aspects. Thus the objective 
of such meta-model is to translate system knowledge usually 
expressed in natural language to explicit and model based 
form for standardized exchange between the stakeholders.  

3.1 SBFIO Ontology 

   In understanding and design of complex systems, 
teleological modeling in the form of Structure, Behavior and 
Function (SBF) framework is important. The SBF ontology 
was proposed as a set of distinct activities in design science 
as a basis for modeling (Garo 2001). This can be extended 
with notation of interface (I) and Operating mode (O) to 
describe interconnected system with different modes of 
operation. The SBFIO ontology is briefly explained below  

System is composed of a Structure (S) i.e. architecture in the 
form of system-subsystem-equipment-component hierarchy 
i.e. a System is composed of subsystem which in turn 
composed of equipment and equipment is composed of 
component, e.g.: battery is composed of terminals, resistor, 
capacitor etc. 
System exhibits a Behavior (B), e.g.: battery exhibits voltage 
discharge as function of time. 
System performs a Function (F), e.g.: battery provides 
power. 
System communicates via an Interface (I) which are ports of 
exchange, energy and data, between physical and cyber 
systems respectively. e.g.: battery connected to electrical 
circuit via terminal interface. 
System operates in an Operating Mode (O), Mode is a 
partition of state space of system () and for interconnected 
system, Operating Mode refers to causal dependency 
between modes of interconnected systems or components. 
e.g.: when battery is in mode ‘charging’ the electrical circuit 

is in mode ‘off’, when the battery is in mode ‘discharging’ 

the electrical circuit is in mode ‘on’. 
   In general, a model is essentially a representation of any or 
all of these system perspectives. In addition, behavior or 
consequence is essentially an outcome of relationship 
between model quantities which in turn characterizes a 
function. Their relationship is briefly illustrated in figure 1 
with other relationships and concepts of the domain model 
being hidden for the sake of brevity 

  
 

Figure 1: SBFIO Framework 

For example, consider calculate altitude function performed 
by the aircraft navigation system at cruise which is 
characterized by the quantity, altitude (ft) but from two 
different sources namely, radio altitude and GPS height data 
for redundancy reasons. This domain model will help in 
maintaining design consistency such as: all altitude 
quantities has same syntactics e.g.: unit as ft and semantics 
e.g.: absolute height not relative height. These ontological 
relationships help in top down traceability from high level 
functions to low level behavior with corresponding 
architectural granularity. These concepts and relationships 
are being implemented in the context of a system V&V by 
simulation ontology where the entire processes, from fidelity 
requirements capture to its implementation vis à vis 
consistent modeling abstractions are covered. 

3.2 Classification of Abstractions 

   A model is built to represent one or more system viewpoint 
described in section 3.1 via abstractions. There exist 
different taxonomies for abstractions employed in M&S by 
(Frantz 1994). In our approach, modeling abstractions are 
broadly classified into four classes namely, architecture, 
data, computation and time (Albert 2009). For the sake of 
brevity, the class definitions are not discussed in detail since 
the focus is, for a given a class description, how to reason 
and select corresponding modeling abstractions. A part of 
this class definition is implemented in Protégé and intuitively 
one can see that architectural class corresponds to structural 
viewpoint whereas computation class corresponds to 
behavioural viewpoint. Only computation, architecture and 
data dimension will be discussed henceforth. 
   In general, the abstraction classes are identified 𝑐 ∈ 𝔐, 
where 𝔐 is the domain model shown in figure 1. Consider a 
model M𝑖 defined by an abstraction operation α𝑖 , where α𝑖

𝑐 is 
a member of the abstraction class α𝑐 set as described above. 
This model definition is valid for a certain condition called 
Operating Condition (OC). For example, an aerodynamic 
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model with abstraction of only laminar flow is valid for a 
range of Reynolds number, Re<Relimit. 
The hierarchy of abstractions is related by binary relation 
forming a partial order (≼) as follows. 

M0
α1
1

→ M1
α2
1

→ …MN 
(1) 

where M0 refers to concrete model and n=1..N are possible 
abstractions. 
   The model abstraction library lists the models and their 
corresponding abstraction and operating conditions as 
described in the Table 1 below. The abstractions defined 
manually by the developer or user are indicated by the ‘*’ 

sign and those which are inferred then by reasoning 
capabilities of the ontology to complete this table to the 
extent possible, are denoted by ‘+’ sign.  

Table 1. Model Abstraction Library 

Model 
Abstraction Operating 

Condition α𝑖
𝑐 α𝑖+1

𝑐  α𝑖
𝑐+1 α𝑖+1

𝑐+1 
M0 *   * OC1 

M1   + * OC1 
….     OC1 

MN + * *  OC1 
* defined, + inferred 

The models described by such a partial relation forms a 
lattice. Lattice or Hasse diagram is a mathematical diagram 
of this partial order relation. Such models described over 
lattices are grouped based on the abstractions. Since a valid 
abstraction is an operation from a concrete model to an 
abstract model, where, whatever is true about the concrete 
model is true in the abstract model but the reverse is not 
necessarily true, the properties can be inferred from such 
inheritance relations. From Eq. (1) for models M𝑛 and 
M𝑛+1 and their requirements φ defined over some temporal 
logic such as Linear Temporal Logic (LTL) or Signal 
temporal Logic (STL), if 

M𝑛+1  ⊨  {φp=1..P}  ⇒ M𝑛  ⊨  {φp=1..P} (2) 

Thus for an abstraction belonging to the same class α𝑖=1..𝑛
𝑐  

arranged over the lattice, implementation of an abstraction 
α𝑖+1
𝑐  also mean the implementation of abstraction α𝑖

𝑐  due to 
partial order relation α𝑖

𝑐 ≼ α𝑖+1
𝑐 . The model abstraction 

library is thus filled based on these inheritances and 
dependencies identified by reasoning over the partial order 
relations. These inclusion relations are exploited to fill the 
modeling abstraction library and this approach is illustrated 
with a battery example in next section. 

4. APPLICATION CASE  

   The application case is a battery system similar to the one 
described in (Levy et al 1997). The battery is connected to a 
solar panel of a satellite and the function of the battery is to 
provide power to the panels when the satellite is at the far 
end of earth without the sunlight. 
   It is known that a phenomena exhibited by the system can 
be modeled in different ways. Thus the battery can be 
modeled in different perspectives (e.g.: model voltage 
phenomena, charge level or a combination of both) and for 
each perspective it can be modeled in varying granularity of 
details (e.g.: voltage is independent or dependent of charge 
level). Every such model may correspond to different 

operating condition and the challenge is to find an 
abstraction consistent with the required operating conditions 
and phenomena.  
      The model abstraction library based on table 1 for this 
application case has models with Voltage (V) as output with 
different abstractions on ChargeLevel (CL), time (t), 
Temperature (T). The model ids are given by the following 
set, Mi=1..6 = {Constant Voltage, Binary Voltage, Normal 
Degrading-1, Normal Degrading-2, Charge Sensitive, 
Temperature Sensitive}. The Operating Condition (OC) 
corresponds to state of  damage and rechargeable 
conditions. For this case, there are only two conditions 
namely {not damaged} and {not damaged, rechargeable} 
denoted by OC1 and OC2 respectively.  
Let us denote a class and its instance by a notation Class: 
Instance. Consider a sample model M5, Model:ChargeLevel 
which describes the evolution of voltage as function of 
charge level and time under a condition not damaged. The 
Quantity: ChargeLevel and Quantity:Time is defined to 
characterize the battery function, Function:Recharge. An 
instance could be defined or inferred and the objective is to 
minimally define these instances and infer the rest. For 
example, a model with OperatingCondition: rechargeable 
upon inference becomes not damaged too. This rule is 
encoded in ontology through a subsumes relation such that if 
OC𝑖  subsumes OC𝑗  then OC1 = OC1⋃OC2. Similarly other 
domain specific rules could be implemented by domain 
experts and such template will be useful for other 
stakeholders to find the dependencies through inference. 
In addition, queries can be made on the instances to extract 
required data or match related data. For example, models 
could be grouped under an assumption classes based on the 
output quantity, Voltage (V) in this case. Then, using 
SPARQL queries, all models having same outputs can be 
extracted and grouped. Similarly, instances of a class 
ParameterDependancy defining the quantities characterizing 
the function under an operating condition can be queried to 
answer teleological questions such as listing functions which 
depends on same parameters etc.  
   In the following section, only a few abstractions for each 
class are explained and this method can be extended for 
others too, provided a hierarchy can be built with binary 
relationship between them as described by Eq.1. 

4.1 Architectural Abstractions  

   Architecture relations such as system-subsystem-
equipment-component are expressed through 
Structure_Composed_of relationship. For example the 
battery system is composed of component such as terminals, 
switches etc. An instance Model:Binary_voltage_Model with 
the relation Structure_Composed_of to another instance 
Structure_part:  Binary_voltage_Model_Terminal which in 
turn related to other instance such as port etc. Intuitively, a 
simulation user requirement of simulating a battery port 
implies simulation of its parent system.  

4.2 Data Abstractions  

   Similar to previous example, a hierarchy of data types 
could be created using data_part property. A simulation 
model data type abstraction is deemed valid if the data type 
is at least less abstract than required by the user. For 
example, describe data types (DT) as Float ≼ Int ≼Boolean, 
and the simulation user required data type DT𝑢𝑠𝑒𝑟  as Int and 
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that of model developer, DT𝑑𝑒𝑣  as float. It is inferred that Int 
is also a float and hence the data type abstraction is deemed 
valid. These lattice declarations could be extended to other 
concepts in the context of static model analysis for 
mitigating model composition errors (Lickly et al 2011).   

4.3 Computation Abstractions  

   Consider a type of computation abstraction such as 
accuracy which is the difference between exact solution and 
approximate solution due to modeling abstractions of the 
behavior. One such abstraction is the Model order which 
refers to the degree of freedom or in other words the ability 
of model to capture the rate of change of the dynamics. The 
model dynamics defined with same input quantities could be 
related with Model_Order_part relationship with the 
dimension of its space i.e. the complexity of the model. Let 
the order be defined as, 𝕆:M→𝒩, where 𝒩 is set of natural 
numbers. If (M2)≼(M1), M2 is more capable than M1 and it 
intuitively implies the former model captures the dynamics 
of the later as well. Hence the model abstraction at higher 
order infers the model simulates lower order dynamics too.  
   Consider, battery example which models the output 
voltage as function of different parameters based on their 
Input-Output (IO) relations. The abstraction hierarchy 
α𝑖
IO corresponds to the number of inputs for the function, fm 

where m ∈ 𝒩 is the order of function. As described in 
section 3.2.1, for the models of same IO inputs, the hierarchy 
can be further decomposed on the model order. In the 
Normal Degrading-1 & 2 case, the second order model, M4 

also simulates first order  behavior given by the model M3. 
   Similar such reifications i.e. information enrichment can be 
done for members of other classes such as architecture etc. 
as described in sections 3.2. Upon completion of the model 
abstraction library, the next task is to select the model 
consistent with requirements which necessitates the 
construction of the lattice which will be explored by the 
recursive algorithm. The lattice structure can be generated by 
a lattice plug-in or Formal Concept Analysis (FCA) tools 
such as Lattice Miner where the abstraction library is given 
as input in the form of objects and attributes. Similar to the 
lattice described in (Levy et al 1997), the generated lattice 
for models with Voltage as output is shown in the figure 2. 
The objects i.e. models are noted in red and attributes are 
noted in blue and the inclusion hierarchy can be seen. For 
example, the Model:Temperature Sensitive is modeled by 
temperature, CL and time whereas the Model: 
ChargeSensitive does not model temperature effect. In other 
words the latter model is an abstraction of the former or 
lower the lattice element higher is the complexity. 

 
Figure 2: Lattice for Voltage Assumption Class 

Similar lattice can be generated for other consequence 
quantities or any other assumption classes. 

5. AUTOMATED MODEL SELECTION 

   In this section, a SysML implementation of the recursive 
algorithm to identify a necessary and sufficient simulation 
model is presented. This implementation consists of block 
diagrams to define the domain model and activity diagrams 
for the description of the algorithm. The algorithm is 
executed over the instantiated domain model i.e. model 
abstraction library previously constructed in section 3.3. The 
resulting output is a selection of consistent model with 
necessary and sufficient abstraction which is built in the 
form of parametric diagram to be directly simulated. The 
modeling tool used is MagicDraw SysML (NoMagic) with 
its Cameo Simulation Toolkit plugin for the execution of 
built models, in our case execution of activity diagram over 
the instantiated domain model. Also it could be possible to 
transform ontology models to SysML using OWL2UML 
plugin in Protégé 4.1 and then initiating the algorithm. It 
may be noted that the domain model built is same as 
described in section 3.2, except for the SBF class of 
functions and the abstraction taxonomy.  
   The model selection problem is to find a necessary and 
sufficient consistent model called scenario model i.e. model 
attribute of ModelSelection class, from the given input of 
domain theory, i.e. a set of model abstraction from the 
library, called assumption classes, and a query. A query is 
characterized as follows 
 a list of quantities, quantity whose value to be predicted 

by simulating the system, 
 a list of exogenous quantities, Einput whose elements are 

assumed to be given and to be outside the scope of the 
simulation for which scenario model is constructed. 

   A domain theory is characterized by a set of assumption 
classes. An assumption class is a set of models which 
describe the same phenomenon, i.e. having the same output 
quantity in their consequence based on different and often 
contradictory modeling conditions. Quantity, as described in 
section 3.1, is an atomic expression denoting time dependent 
attributes associated with the participants in a model 
instance. On the other hand, Consequences are statements 
that are true whenever the phenomenon represented by the 
models takes place. Consequences can also be any other 
logical assertions that are true in a state in which an instance 
of the model exists.  
Activation conditions are statements that indicate when the 
phenomenon represented by the model takes place by 
specifying constraints on the participants of the model and 
on its quantities. The conditions include both structural 
constraints on the participants as well as constraints on the 
ranges of quantity values. 
  Models are related to each other by a 
refinement/generalization relationship Rel. A model can be 
related to zero or many other models which are simpler i.e. 
more abstract or complicated i.e. less abstract.  It is assumed 
that every assumption class has a single most complicated 
model and a single simplest model. In other words the lattice 
is finite with a minimum and maximum.  
   These concepts were implemented in SysML and lattice 
structures are instantiated according to this SysML 
implementation. The selection algorithm implemented as 
activity diagram, which is not shown here due to lack of 
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space, is then used to recursively find the consistent yet 
simplest model. It may be noted that an activity diagram 
specifies input to output transformation through controlled 
sequence of actions and the model selection algorithm is 
formalized in it and executed. We have used iterative 
expansion region for list iterations,"readStructuralFeature" 
and "addStructuralFeature Value" actions for attributes' 
getters and setters of classes, call behavior actions for 
modularity and reusability of functions, merge and decision 
nodes for choices and conditions. The results for the models 
which correspond to the query Voltage for conditions not 
damaged is given below in the figure 3. Informally, the 
algorithm starts with simplest model and progressively adds 
the assumption according to the requirement until all the 
neceassry assumption classes are added out of which a 
simplest model is chosen. In this case, the final scenario 
model is {battery-damaged, charge-sensitive, accumulation-
with-ageing} and each selection is highlighted in grey at the 
end of each iteration in the figure 3. 

 
Figure 3 : Model Selection Results 

   Though the results differ in CL assumption class at the 
third iteration (Fig 11, Levy et al), the objective is not the 
algorithm implemented as an activity diagram and its results 
per se but a description of model library and further model 
selection in graphical system engineering notion such as 
SysML for better standardization and understanding of the 
underlying semantics of the process coupled with ontologies. 

6. FUTURE WORK & CONCLUSION 

   A possible drawback of our approach is the 
implementation of class definition in Protégé and model 
selection in SysML. This is done in order to leverage the 
flexibility, scalability, query and reasoning powers of 
ontology with the control flow execution, graphical interface 
capabilities of SysML. However this approach has 
limitations in terms of effort and at times redundant. This 
necessitates an integration of SysML and OWL as remarked 
by (Greves 2009) and (Wagner et al 2012). Such a mutual 
transformation between SysML and ontology will help 
practising engineers to capitalise on their graphical syntax 
and reasoning capabilities respectively and thereby ensuring 
seamless design and product V&V activities. In addition, 
studies are being carried out (Ponnusamy et al 2014, 2015) 
to extend this apparoach in the established M&S framework 
of Experimental Frames proposed by Zeigler (Zeigler 2000).  

  This domain model approach based on ontologies & 
SysML could be integrated in the standard M&S process 
(Thebault et al 2015). Such ontology aided simulation design 
process will enable different stakeholders in simulation to 
define, solicit and manage knowledge usable for M&S in a 
consistent way. Realization of such an objective will help 
improve the level of confidence in simulation results for the 
system V&V and help better utilization of simulation 
resources by selecting the best available resource according 
to the test objectives. 
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