
HAL Id: hal-01912572
https://laas.hal.science/hal-01912572

Submitted on 18 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A META-MODEL FOR CONSISTENT &
AUTOMATIC SIMULATION MODEL SELECTION

Sangeeth Saagar Ponnusamy, Vincent Albert, Patrice Thebault

To cite this version:
Sangeeth Saagar Ponnusamy, Vincent Albert, Patrice Thebault. A META-MODEL FOR CONSIS-
TENT & AUTOMATIC SIMULATION MODEL SELECTION. ESM 29th European Simulation and
Modelling Conference, Oct 2015, Leicester, United Kingdom. �hal-01912572�

https://laas.hal.science/hal-01912572
https://hal.archives-ouvertes.fr

© EUROSIS-ETI

A META-MODEL FOR CONSISTENT & AUTOMATIC
SIMULATION MODEL SELECTION

Sangeeth saagar Ponnusamy

Airbus Operations SAS & CNRS,LAAS
316, Route de Bayonne

Toulouse-31060
sangeeth-saagar.ponnusamy@airbus.com

Vincent Albert
CNRS, LAAS

7 Avenue de Colonel Roche
Toulouse-31400
valbert@laas.fr

Patrice Thebault
Airbus Operations SAS
316, Route de Bayonne

Toulouse-31060
patrice.thebault@airbus.com

KEYWORDS
Modeling, Simulation, Ontology, SysML, Reasoning.

ABSTRACT

A meta-model of modeling abstractions is presented and
discussed in the context of using simulation as a means for
system verification and validation activities. Extending the
classical results of presenting modeling as a relevance
reasoning problem, abstractions are classified to build an
ontology based on the concepts of teleological modeling and
relevance reasoning. The domain model is built in the
standard ontology tool of Protégé to exploit the reasoning
and inference capabilities to build a model abstraction
library. Lattice structures of model instances are formed and
a recursive algorithm is implemented as an activity diagram
in SysML for automated and consistent model selection. The
approach is presented with a battery model example from the
literature. Challenges and future work in implementation of
such a semi-formal approach in model selection is briefly
presented in the context of improving fidelity of simulation
in the industry.

1. INTRODUCTION

 In using Modeling and Simulation (M&S) as a means for
the system Verification & Validation (V&V), often the
difficulty is finding and implementing abstractions of the
system being simulated with respect to the simulation
requirements. Such difficulties gives raise to the problem of
simulation fidelity i.e. the effectiveness of simulation in
reproducing the reality for the System Under Test (SUT)
validation. In the field of artificial intelligence, this model
construction problem is posed as a reasoning problem
(Iwasaki and Levy 1994) i.e. inclusion of relevant
information about the system being modeled and reasoning
about them. However, identification, organization and
further classification of these information i.e. abstractions for
models simulating a phenomenon are often a tedious task.
This is even more so true in modeling complex systems and
it becomes imperative that this identification and
organization of domain knowledge about the model be
(semi)automated in a Model Based System Engineering
(MBSE) context.
 Ontology, which is a formal representation of a set of
concepts within a domain and the relationships between
those concepts, could serve as an answer to this problem of
building a domain model due to its inherent reasoning and
knowledge exploitation capabilities. This domain model,
also called meta-model, serves as a common framework for
better understanding and making domain assumptions

explicit. Since a model can be interpreted as a set of concepts
with some relationship between them, ontologies could be
used in their representation, organization and exploitation by
the practicing engineers with ease in this MBSE framework.
 In this paper, a domain model of modeling abstraction is
proposed and implemented in Protégé tool, (Protégé). This
domain model serves as a standard template for instantiation
by system designers and simulation users. The reasoning and
querying abilities are used by the model developer over these
instances to identify and classify abstraction to build a model
abstraction library. The recursive algorithm (Lickly 1992),
implemented in a SysML activity diagram is then used to
identify a consistent yet simple modeling abstraction to be
implemented by the model developers. A simple example of
a battery model from the literature is taken as a case study.

2. ONTOLOGIES & REASONING FOR M&S

 Reasoning in general is the process of deriving facts that
are not explicitly stated. In (Iwasaki and Levy 1994)
modeling abstractions were discussed as inclusion of
relevant information about the system being modeled and
reasoning about them. Based on this relevance reasoning,
Levy et al (Levy et al 1997) proposed a recursive procedure
to find the consistent yet simplest model from an existing
model library. This library is assumed to be well formed i.e.
modeling assumptions behind each model is clearly
identified and classified. Unfortunately this is not often the
case especially when system development and model
development are done by different entities who do not
necessarily share the same domain knowledge and its
associated vocabulary. This problem is further compounded
in system V&V activities by simulation when the models of
system need to be developed according to some user defined
scenarios. Thus the problem of fidelity too can be posed as a
reasoning problem i.e. inclusion of the relevant information
according to a given scenario and reasoning about them.
 In order to ensure this view point consistency,
standardization of knowledge exchange and its exploitation,
ontologies are proposed in this paper for developing models
with required fidelity. Originally intended for semantic web,
ontology practices has been increasingly used to improve
semantic interoperability and consistent modeling in a
MBSE framework (Jenkins 2012) (Man et al 2009). Greves
et al (Greves 2009) discussed a reasoning aided MBSE
approach by integrating ontology and SysML, a general
purpose system engineering language. Ontology, as a means
of incremental knowledge addition will help in formalization
of these inclusion relations by domain experts over time with
their validation experiences. The availability of the standard
Web Ontology Language called OWL (OWL) and tools such
as Protégé with its query and reasoning capabilities makes it

© EUROSIS-ETI

an attractive option to perform these activities. In Protégé
complex concepts can be incrementally built up from simpler
concepts using rich set of operators, after which plug-in
reasoners such as Fact++, Hermit (Hermit) are used to draw
inferences and check consistency. Reasoners infer this
relationship by reification, a concept in logic where an
instance of a relation is made the subject of another relation.
The inferred ontology can be queried for specific needs with
SPARQL, a query language which is used to retrieve and
manipulate data stored as Resource Description Framework
(RDF), a standard for the semantic web. Queries are
constructed in triple pattern of subject, predicate and object
with conjunctions, disjunctions and optional patterns such as
to filter, sort etc.
 Broadly the contribution of this paper is twofold, building
a model abstraction library based on ontology reasoning and
exploitation based on SysML implementation of model
selection and automated assembly based on ontology
queries. The paper is structured as follows, the classification
of abstractions are presented

3. A META-MODEL OF MODEL ABSTRACTIONS

 A meta-model for M&S must include different viewpoints
of the system being modeled in a teleological perspective.
Since a model is an abstraction i.e. simplification of a system
and intends to represent a system phenomenon at some
operating condition through some quantities and relationship
between them, the meta-model need to have different classes
of abstraction to represent these aspects. Thus the objective
of such meta-model is to translate system knowledge usually
expressed in natural language to explicit and model based
form for standardized exchange between the stakeholders.

3.1 SBFIO Ontology

 In understanding and design of complex systems,
teleological modeling in the form of Structure, Behavior and
Function (SBF) framework is important. The SBF ontology
was proposed as a set of distinct activities in design science
as a basis for modeling (Garo 2001). This can be extended
with notation of interface (I) and Operating mode (O) to
describe interconnected system with different modes of
operation. The SBFIO ontology is briefly explained below

System is composed of a Structure (S) i.e. architecture in the
form of system-subsystem-equipment-component hierarchy
i.e. a System is composed of subsystem which in turn
composed of equipment and equipment is composed of
component, e.g.: battery is composed of terminals, resistor,
capacitor etc.
System exhibits a Behavior (B), e.g.: battery exhibits voltage
discharge as function of time.
System performs a Function (F), e.g.: battery provides
power.
System communicates via an Interface (I) which are ports of
exchange, energy and data, between physical and cyber
systems respectively. e.g.: battery connected to electrical
circuit via terminal interface.
System operates in an Operating Mode (O), Mode is a
partition of state space of system () and for interconnected
system, Operating Mode refers to causal dependency
between modes of interconnected systems or components.
e.g.: when battery is in mode ‘charging’ the electrical circuit

is in mode ‘off’, when the battery is in mode ‘discharging’

the electrical circuit is in mode ‘on’.
 In general, a model is essentially a representation of any or
all of these system perspectives. In addition, behavior or
consequence is essentially an outcome of relationship
between model quantities which in turn characterizes a
function. Their relationship is briefly illustrated in figure 1
with other relationships and concepts of the domain model
being hidden for the sake of brevity

Figure 1: SBFIO Framework

For example, consider calculate altitude function performed
by the aircraft navigation system at cruise which is
characterized by the quantity, altitude (ft) but from two
different sources namely, radio altitude and GPS height data
for redundancy reasons. This domain model will help in
maintaining design consistency such as: all altitude
quantities has same syntactics e.g.: unit as ft and semantics
e.g.: absolute height not relative height. These ontological
relationships help in top down traceability from high level
functions to low level behavior with corresponding
architectural granularity. These concepts and relationships
are being implemented in the context of a system V&V by
simulation ontology where the entire processes, from fidelity
requirements capture to its implementation vis à vis
consistent modeling abstractions are covered.

3.2 Classification of Abstractions

 A model is built to represent one or more system viewpoint
described in section 3.1 via abstractions. There exist
different taxonomies for abstractions employed in M&S by
(Frantz 1994). In our approach, modeling abstractions are
broadly classified into four classes namely, architecture,
data, computation and time (Albert 2009). For the sake of
brevity, the class definitions are not discussed in detail since
the focus is, for a given a class description, how to reason
and select corresponding modeling abstractions. A part of
this class definition is implemented in Protégé and intuitively
one can see that architectural class corresponds to structural
viewpoint whereas computation class corresponds to
behavioural viewpoint. Only computation, architecture and
data dimension will be discussed henceforth.
 In general, the abstraction classes are identified 𝑐 ∈ 𝔐,
where 𝔐 is the domain model shown in figure 1. Consider a
model M𝑖 defined by an abstraction operation α𝑖 , where α𝑖

𝑐 is
a member of the abstraction class α𝑐 set as described above.
This model definition is valid for a certain condition called
Operating Condition (OC). For example, an aerodynamic

performs

satisfies

exhibits

composedOf

characterises

simulates

presents

hasMode

isMode

communicates

© EUROSIS-ETI

model with abstraction of only laminar flow is valid for a
range of Reynolds number, Re<Relimit.
The hierarchy of abstractions is related by binary relation
forming a partial order (≼) as follows.

M0
α1
1

→ M1
α2
1

→ …MN
(1)

where M0 refers to concrete model and n=1..N are possible
abstractions.
 The model abstraction library lists the models and their
corresponding abstraction and operating conditions as
described in the Table 1 below. The abstractions defined
manually by the developer or user are indicated by the ‘*’

sign and those which are inferred then by reasoning
capabilities of the ontology to complete this table to the
extent possible, are denoted by ‘+’ sign.

Table 1. Model Abstraction Library

Model
Abstraction Operating

Condition α𝑖
𝑐 α𝑖+1

𝑐 α𝑖
𝑐+1 α𝑖+1

𝑐+1
M0 * * OC1

M1 + * OC1
…. OC1

MN + * * OC1
* defined, + inferred

The models described by such a partial relation forms a
lattice. Lattice or Hasse diagram is a mathematical diagram
of this partial order relation. Such models described over
lattices are grouped based on the abstractions. Since a valid
abstraction is an operation from a concrete model to an
abstract model, where, whatever is true about the concrete
model is true in the abstract model but the reverse is not
necessarily true, the properties can be inferred from such
inheritance relations. From Eq. (1) for models M𝑛 and
M𝑛+1 and their requirements φ defined over some temporal
logic such as Linear Temporal Logic (LTL) or Signal
temporal Logic (STL), if

M𝑛+1 ⊨ {φp=1..P} ⇒ M𝑛 ⊨ {φp=1..P} (2)

Thus for an abstraction belonging to the same class α𝑖=1..𝑛
𝑐

arranged over the lattice, implementation of an abstraction
α𝑖+1
𝑐 also mean the implementation of abstraction α𝑖

𝑐 due to
partial order relation α𝑖

𝑐 ≼ α𝑖+1
𝑐 . The model abstraction

library is thus filled based on these inheritances and
dependencies identified by reasoning over the partial order
relations. These inclusion relations are exploited to fill the
modeling abstraction library and this approach is illustrated
with a battery example in next section.

4. APPLICATION CASE

 The application case is a battery system similar to the one
described in (Levy et al 1997). The battery is connected to a
solar panel of a satellite and the function of the battery is to
provide power to the panels when the satellite is at the far
end of earth without the sunlight.
 It is known that a phenomena exhibited by the system can
be modeled in different ways. Thus the battery can be
modeled in different perspectives (e.g.: model voltage
phenomena, charge level or a combination of both) and for
each perspective it can be modeled in varying granularity of
details (e.g.: voltage is independent or dependent of charge
level). Every such model may correspond to different

operating condition and the challenge is to find an
abstraction consistent with the required operating conditions
and phenomena.
 The model abstraction library based on table 1 for this
application case has models with Voltage (V) as output with
different abstractions on ChargeLevel (CL), time (t),
Temperature (T). The model ids are given by the following
set, Mi=1..6 = {Constant Voltage, Binary Voltage, Normal
Degrading-1, Normal Degrading-2, Charge Sensitive,
Temperature Sensitive}. The Operating Condition (OC)
corresponds to state of damage and rechargeable
conditions. For this case, there are only two conditions
namely {not damaged} and {not damaged, rechargeable}
denoted by OC1 and OC2 respectively.
Let us denote a class and its instance by a notation Class:
Instance. Consider a sample model M5, Model:ChargeLevel
which describes the evolution of voltage as function of
charge level and time under a condition not damaged. The
Quantity: ChargeLevel and Quantity:Time is defined to
characterize the battery function, Function:Recharge. An
instance could be defined or inferred and the objective is to
minimally define these instances and infer the rest. For
example, a model with OperatingCondition: rechargeable
upon inference becomes not damaged too. This rule is
encoded in ontology through a subsumes relation such that if
OC𝑖 subsumes OC𝑗 then OC1 = OC1⋃OC2. Similarly other
domain specific rules could be implemented by domain
experts and such template will be useful for other
stakeholders to find the dependencies through inference.
In addition, queries can be made on the instances to extract
required data or match related data. For example, models
could be grouped under an assumption classes based on the
output quantity, Voltage (V) in this case. Then, using
SPARQL queries, all models having same outputs can be
extracted and grouped. Similarly, instances of a class
ParameterDependancy defining the quantities characterizing
the function under an operating condition can be queried to
answer teleological questions such as listing functions which
depends on same parameters etc.
 In the following section, only a few abstractions for each
class are explained and this method can be extended for
others too, provided a hierarchy can be built with binary
relationship between them as described by Eq.1.

4.1 Architectural Abstractions

 Architecture relations such as system-subsystem-
equipment-component are expressed through
Structure_Composed_of relationship. For example the
battery system is composed of component such as terminals,
switches etc. An instance Model:Binary_voltage_Model with
the relation Structure_Composed_of to another instance
Structure_part: Binary_voltage_Model_Terminal which in
turn related to other instance such as port etc. Intuitively, a
simulation user requirement of simulating a battery port
implies simulation of its parent system.

4.2 Data Abstractions

 Similar to previous example, a hierarchy of data types
could be created using data_part property. A simulation
model data type abstraction is deemed valid if the data type
is at least less abstract than required by the user. For
example, describe data types (DT) as Float ≼ Int ≼Boolean,
and the simulation user required data type DT𝑢𝑠𝑒𝑟 as Int and

© EUROSIS-ETI

that of model developer, DT𝑑𝑒𝑣 as float. It is inferred that Int
is also a float and hence the data type abstraction is deemed
valid. These lattice declarations could be extended to other
concepts in the context of static model analysis for
mitigating model composition errors (Lickly et al 2011).

4.3 Computation Abstractions

 Consider a type of computation abstraction such as
accuracy which is the difference between exact solution and
approximate solution due to modeling abstractions of the
behavior. One such abstraction is the Model order which
refers to the degree of freedom or in other words the ability
of model to capture the rate of change of the dynamics. The
model dynamics defined with same input quantities could be
related with Model_Order_part relationship with the
dimension of its space i.e. the complexity of the model. Let
the order be defined as, 𝕆:M→𝒩, where 𝒩 is set of natural
numbers. If (M2)≼(M1), M2 is more capable than M1 and it
intuitively implies the former model captures the dynamics
of the later as well. Hence the model abstraction at higher
order infers the model simulates lower order dynamics too.
 Consider, battery example which models the output
voltage as function of different parameters based on their
Input-Output (IO) relations. The abstraction hierarchy
α𝑖
IO corresponds to the number of inputs for the function, fm

where m ∈ 𝒩 is the order of function. As described in
section 3.2.1, for the models of same IO inputs, the hierarchy
can be further decomposed on the model order. In the
Normal Degrading-1 & 2 case, the second order model, M4

also simulates first order behavior given by the model M3.
 Similar such reifications i.e. information enrichment can be
done for members of other classes such as architecture etc.
as described in sections 3.2. Upon completion of the model
abstraction library, the next task is to select the model
consistent with requirements which necessitates the
construction of the lattice which will be explored by the
recursive algorithm. The lattice structure can be generated by
a lattice plug-in or Formal Concept Analysis (FCA) tools
such as Lattice Miner where the abstraction library is given
as input in the form of objects and attributes. Similar to the
lattice described in (Levy et al 1997), the generated lattice
for models with Voltage as output is shown in the figure 2.
The objects i.e. models are noted in red and attributes are
noted in blue and the inclusion hierarchy can be seen. For
example, the Model:Temperature Sensitive is modeled by
temperature, CL and time whereas the Model:
ChargeSensitive does not model temperature effect. In other
words the latter model is an abstraction of the former or
lower the lattice element higher is the complexity.

Figure 2: Lattice for Voltage Assumption Class

Similar lattice can be generated for other consequence
quantities or any other assumption classes.

5. AUTOMATED MODEL SELECTION

 In this section, a SysML implementation of the recursive
algorithm to identify a necessary and sufficient simulation
model is presented. This implementation consists of block
diagrams to define the domain model and activity diagrams
for the description of the algorithm. The algorithm is
executed over the instantiated domain model i.e. model
abstraction library previously constructed in section 3.3. The
resulting output is a selection of consistent model with
necessary and sufficient abstraction which is built in the
form of parametric diagram to be directly simulated. The
modeling tool used is MagicDraw SysML (NoMagic) with
its Cameo Simulation Toolkit plugin for the execution of
built models, in our case execution of activity diagram over
the instantiated domain model. Also it could be possible to
transform ontology models to SysML using OWL2UML
plugin in Protégé 4.1 and then initiating the algorithm. It
may be noted that the domain model built is same as
described in section 3.2, except for the SBF class of
functions and the abstraction taxonomy.
 The model selection problem is to find a necessary and
sufficient consistent model called scenario model i.e. model
attribute of ModelSelection class, from the given input of
domain theory, i.e. a set of model abstraction from the
library, called assumption classes, and a query. A query is
characterized as follows
 a list of quantities, quantity whose value to be predicted

by simulating the system,
 a list of exogenous quantities, Einput whose elements are

assumed to be given and to be outside the scope of the
simulation for which scenario model is constructed.

 A domain theory is characterized by a set of assumption
classes. An assumption class is a set of models which
describe the same phenomenon, i.e. having the same output
quantity in their consequence based on different and often
contradictory modeling conditions. Quantity, as described in
section 3.1, is an atomic expression denoting time dependent
attributes associated with the participants in a model
instance. On the other hand, Consequences are statements
that are true whenever the phenomenon represented by the
models takes place. Consequences can also be any other
logical assertions that are true in a state in which an instance
of the model exists.
Activation conditions are statements that indicate when the
phenomenon represented by the model takes place by
specifying constraints on the participants of the model and
on its quantities. The conditions include both structural
constraints on the participants as well as constraints on the
ranges of quantity values.
 Models are related to each other by a
refinement/generalization relationship Rel. A model can be
related to zero or many other models which are simpler i.e.
more abstract or complicated i.e. less abstract. It is assumed
that every assumption class has a single most complicated
model and a single simplest model. In other words the lattice
is finite with a minimum and maximum.
 These concepts were implemented in SysML and lattice
structures are instantiated according to this SysML
implementation. The selection algorithm implemented as
activity diagram, which is not shown here due to lack of

© EUROSIS-ETI

space, is then used to recursively find the consistent yet
simplest model. It may be noted that an activity diagram
specifies input to output transformation through controlled
sequence of actions and the model selection algorithm is
formalized in it and executed. We have used iterative
expansion region for list iterations,"readStructuralFeature"
and "addStructuralFeature Value" actions for attributes'
getters and setters of classes, call behavior actions for
modularity and reusability of functions, merge and decision
nodes for choices and conditions. The results for the models
which correspond to the query Voltage for conditions not
damaged is given below in the figure 3. Informally, the
algorithm starts with simplest model and progressively adds
the assumption according to the requirement until all the
neceassry assumption classes are added out of which a
simplest model is chosen. In this case, the final scenario
model is {battery-damaged, charge-sensitive, accumulation-
with-ageing} and each selection is highlighted in grey at the
end of each iteration in the figure 3.

Figure 3 : Model Selection Results

 Though the results differ in CL assumption class at the
third iteration (Fig 11, Levy et al), the objective is not the
algorithm implemented as an activity diagram and its results
per se but a description of model library and further model
selection in graphical system engineering notion such as
SysML for better standardization and understanding of the
underlying semantics of the process coupled with ontologies.

6. FUTURE WORK & CONCLUSION

 A possible drawback of our approach is the
implementation of class definition in Protégé and model
selection in SysML. This is done in order to leverage the
flexibility, scalability, query and reasoning powers of
ontology with the control flow execution, graphical interface
capabilities of SysML. However this approach has
limitations in terms of effort and at times redundant. This
necessitates an integration of SysML and OWL as remarked
by (Greves 2009) and (Wagner et al 2012). Such a mutual
transformation between SysML and ontology will help
practising engineers to capitalise on their graphical syntax
and reasoning capabilities respectively and thereby ensuring
seamless design and product V&V activities. In addition,
studies are being carried out (Ponnusamy et al 2014, 2015)
to extend this apparoach in the established M&S framework
of Experimental Frames proposed by Zeigler (Zeigler 2000).

 This domain model approach based on ontologies &
SysML could be integrated in the standard M&S process
(Thebault et al 2015). Such ontology aided simulation design
process will enable different stakeholders in simulation to
define, solicit and manage knowledge usable for M&S in a
consistent way. Realization of such an objective will help
improve the level of confidence in simulation results for the
system V&V and help better utilization of simulation
resources by selecting the best available resource according
to the test objectives.

REFERENCES

Albert, V. 2009. Simulation validity assessment in the context of
embedded system design. PhD Thesis. University of Toulouse,
CNRS, LAAS, Toulouse, Unpublished.

Frantz, F K. 1994. “A taxonomy of model abstraction techniques”,
 Proceedings of the 27th conference on winter simulation,
 Arlington, Virginia, United States, 1413-1420.
Gero, J.S., Kannengiesser, U. 2004. “The situated function-

behaviour-structure framework”, Design Studies, 25(4), 373-91.
Greves, H. 2009. “Integrating SysML & OWL”, Proceedings of

OWL:Experiences and Directions, 2009.
Iwasaki, Y., Levy, A. 1994. “Automated Model Selection for

Simulation”. Proceedings of the Twelfth National Conference
on Artificial Intelligence, 108-116.

Jenkins, S., Rouqette, N. 2012. “Semantically-rigorous systems
engineering using SysML and OWL”, International Workshop
on System & Concurrent Engineering for Space Applications,
(Lisbon, Portugal, October 17-19, 2012).

Levy, A., Iwasaki, Y., Fikes, R. 1997. “Automated model selection

for simulation based on relevance reasoning”, Artificial
Intelligence, (Nov 1997), Vol 96, Issue 2, 351–394.

Lickly, B., Shelton, C., Latronico, E., Lee, E. 2011. “A Practical

Ontology Framework for Static Model Analysis”, Proceedings
of the Ninth ACM international conference on Embedded
software, NY, USA, 23-32.

Man-Kit-Leung J., Mandl T., Lee E., Latronico E., Shelton C.,
Tripakis S., Lickly B., 2009. “Scalable semantic annotation

using lattice based ontologies”. Lecture Notes in Computer
Science, Vol 5795, pages 393-407.

Ponnusamy, S. S., Albert, V., Thebault, P. 2014. “A simulation

fidelity assessment framework”, International Conference on
Simulation and Modeling Methodologies, Technologies and
Applications 2014, (Aug 2014, Vienne, Austria), 463-471

Ponnusamy, S. S., Albert, V., Thebault, P. 2015. “Consistent

behavioral abstractions of experimental frame”, AIAA Modeling
& Simulation Technologies Conference, Accepted.

Thebault, P., Ponnusamy, S. S., Albert, V. 2015. “A Multimodal

Approach to Simulaton Fidelity”, The 12th International
Multidisciplinary Modeling & Simulation Multiconference,
Accepted.

Wagner, D.A., Bennett, M.B., Karban, R., Rouquette, N., Jenkins,
S., Ingham, M. 2012. “An ontology for State Analysis:

Formalizing the mapping to SysML”, IEEE Aerospace
Conference, (Mar 3-10, 2012, Montana, USA), 1-16.

Zeigler B.P., Praehofer H., Tag G.K., 2000. Theory of modeling
and simulation, San Diego, California, USA: Academic Press.

WEB REFERENCES

http://hermit-reasoner.com/
http://www.nomagic.com/
http://owl.man.ac.uk/factplusplus/
http://protege.stanford.edu/
www.w3.org/TR/rdf-sparql-query/

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6187335
http://owl.man.ac.uk/factplusplus/

