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bLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

cDepartment of Industrial Engineering, University of Trento, Trento, Italy

Abstract

This paper deals with the problem of distributedly estimating the state of an LTI plant through an interconnected network of
agents. The proposed approach results in an observer structure that incorporates consensus among the agents and that can
be distributedly designed, achieving a robust solution with a good estimation performance. The developed solution is based
on an iterative decomposition of the plant in the local observable staircase forms. The proposed observer has several positive
features compared to recent results in the literature, which include milder assumptions on the network connectivity and the
ability to set the convergence rate.
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1 Introduction

Nowadays, the increasing number of embedded sensors
dispersedly integrated in complex plants is fostering
the application of distributed estimation and control
schemes. Although centralized strategies may benefit
from information collected throughout a network, dis-
tributed strategies offer interesting advantages such
as scalability, flexibility, fault tolerance, and robust-
ness [21]. Despite the aforementioned advantages, the
complexity associated with distributed observation
problems makes them harder to solve, since additional
difficulties take place.

Under the assumptions of stochastic, independent, and
identically distributed noises and disturbances, the most
well-known approach to this problem is the distributed
Kalman filter (DKF) first presented in [17], sometimes
combined with consensus algorithms [2], or extended
to nonlinear systems [1]. Consensus techniques are also
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used in [10], where the estimates of the neighboring sen-
sors are weighted by the inverse of their covariance error
matrices. Diffusion strategies for distributed Kalman fil-
tering are studied in [3]. A different approach to the same
problem can be found in [22], where the convergence
time of the DKF to the solution provided by the Central-
ized Kalman Filter is studied. [4] presents a subspace-
decomposition-based observer, whose aim is to minimize
the exchange of information during the estimation phase.

Furthermore, there are a number of distributed esti-
mation techniques proposed and analysed for noiseless
models. In [19], [20], and [?], the distributed estimation
problem is tackled as the problem of designing a decen-
tralized stabilizing controller for an LTI system. Differ-
ently from the approach presented in this paper, these
works rely on state augmentations. Another interesting
approach can be found in [11], where the authors rely
on an orthonormal coordinate transformation matrix in
order to tackle the design of the distributed observer.
However, the distributed design of the observer needs
global information about the communication graph, and
the proposed observer lacks of a tuning method to ad-
just the error convergence speed. In [7], a distributed
observer is designed resorting to linear matrix inequali-
ties, and asymptotic decay of the estimation with a pre-
scribed decay rate is guaranteed. Finally, in [15], the au-
thors design a distributed observer assigning observable
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subspaces to each agent, based on its measurements of
the plant and on a random distribution of identification
numbers. However, the design method does not allow to
tune the convergence rate and the distributed design re-
quires a huge amount of information exchange.

This paper proposes a novel approach to this problem
based on a decomposition of the state-space in orthog-
onal subspaces that capture the locally unobservable
modes of each agent involved in the network. This work
extends our preliminary result in [12], where the num-
ber of agents was limited to two. The observers use local
information measured from the plant to correct the lo-
cally observable subspace, whereas the locally unobserv-
able subspace is divided according to the innovations in-
troduced by neighboring agents, which are incorporated
in the observers’ dynamics through a consensus term.
The measurements and network connectivity require-
ments are encapsulated in a single assumption, which
makes it possible to relax the common assumptions of
strongly connected graphs, included for instance in [7],
or strongly connected graph components, in [15] or [?].
A different approach can be found in [5] and [6] where
the authors make use of structural systems theory to
establish conditions for distributed observability. Since
the conditions presented in [5] depend on the particu-
lar estimator structure, they fail to provide necessary
and sufficient conditions, which are instead established
in the present paper by using just the system dynamics,
the measurements and the communication topology.

Unlike the state augmentation approach in [19], [20] and
[?], the proposed method does not require state aug-
mentation or the resolution of linear matrix inequali-
ties, which reduces the computational costs. More im-
portantly, and differently from [11], [13] and [14], the de-
sign of the observers are carried out in a distributed way,
which is crucial for large scale networks or time-varying
topologies. Differently from [11] or [15], the presented
design method provides flexibility to adjust the conver-
gence rate of the estimation dynamics. Other positive
features are that the distributed design can be carried
out with a reasonably low information exchange, and
that, once the estimators have been designed, the com-
munication requirements are even lower, as the agents
only need to communicate certain subspaces. Finally, the
paper demonstrates that the proposed design is always
feasible under necessary assumptions.

The paper is organized as follows. Section 2 introduces
models for the plant, the network of agents, and the
information structure, together with some definitions
needed to understand the rest of the paper. Section
3 presents the proposed observation structure together
with the standing assumptions and the design goal. In
Section 4, the stability analysis of the error dynamics
is presented. Section 5 extends the algorithm to the
continuous-time case. Section 6 presents an algorithm
to build the estimation structure of the agents. Section

7 shows the observer performance. Finally, conclusions
are drawn in Section 8.

Notation. A graph is a pair G = (V, E) comprising a
set V = {1, 2, . . . , p} of vertices or agents, and a set
E ⊂ V × V of edges or links. A directed graph is a graph
in which edges have orientations, so that if (j, i) ∈ E ,
then agent i obtains information from agent j. A di-
rected path from node i1 to node ik is a sequence of
edges such as (i1, i2), (i2, i3), . . ., (ik−1, ik) in a directed

graph. The neighborhood of i, Ni , {j : (j, i) ∈ E}, is
defined as the set of nodes with edges incoming to node
i. Given ρ ∈ Z > 0, the ρ-hop reachable set of i, Ni,ρ, is
defined as the set of nodes with a direct path to i involv-
ing ρ edges. Note that the 1-hop reachable set of i cor-
responds to the neighborhood of i. The operator col(·, ·)
stacks subsequent matrices into a column vector, e.g. for

A ∈ Rm1×n and B ∈ Rm2×n, col(A,B) = [A> B>]> ∈
R(m1+m2)×n. Pair (C,A) is α-detectable if (C,α−1A) is
detectable, namely if the unobservable modes have ex-
ponential convergence at least equal to α. Im(A) de-
notes the image of matrixA, i.e., the subspace generated
by the columns of matrix A. A collection of subspaces
{Im(W1), . . . , Im(Wn)} is independent if no nonzero
column of Wi is a linear combination of some columns
of the rest of matrices Wj , for all j 6= i. The sum of two
subspaces Im(W1) and Im(W2) is denoted by Im(W1)+
Im(W2) = {w1 + w2|w1 ∈ Im(W1), w2 ∈ Im(W2)}.
The sum of Im(W1) and Im(W2) is direct if Im(W1) ∩
Im(W2) = {0} and is denoted by Im(W1)⊕ Im(W2).

2 Preliminaries and multi-hop decomposition

Consider a set of agents V = {1, 2, ..., p} connected ac-
cording to a given graph G = (V, E), and intended to
distributedly estimate the state of the following discrete-
time LTI system:

x+ = Ax, (1)

yi = Cix ∀i ∈ V, (2)

where x is the state vector, A is the system matrix,
yi ∈ Rmi is the output locally measured by each agent
i and Ci ∈ Rmi×n is the output matrix of agent i.

The observation structure proposed in the next section
relies on system transformations to the observability
staircase form (see for instance Theorem 16.2 in [8]).
Prior to introducing this structure, the following defini-
tions are needed.

Definition 1 The ρ-hop output matrix of agent i, Ci,ρ,
is a matrix that stacks the (ρ − 1)-hop output matrix
of agent i and the (ρ − 1)-hop output matrices of its
neighborhood, Ni. That is:
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Ci,ρ :=

[
Ci,ρ−1

col(Cj,ρ−1)j∈Ni

]
, ∀ρ ≥ 1,

where Ci,0 := Ci.

Intuitively speaking, the ρ-hop output matrix of agent
i, Ci,ρ, is composed by its output matrix Ci and the
output matrices of all the agents j with a direct path to
i involving ρ or less edges.

There always exists a coordinate transformation matrix[
V̄i,ρ Vi,ρ

]
∈ Rn×n according to pair (Ci,ρ, A) such that

the change of variable ξi,ρ , [V̄i,ρ Vi,ρ]
>x ∈ Rn trans-

forms the original state-space representation into the ob-

servability staircase form. Note that V̄i,ρ ∈ Rn×n
ō
i,ρ is

composed by nōi,ρ column vectors in Rn that form an
orthogonal basis of the unobservable subspace of pair
(Ci,ρ, A). Correspondingly, Vi,ρ ∈ Rn×n

o
i,ρ is an orthog-

onal basis of its orthogonal complement.

Definition 2 The ρ-hop unobservable subspace from
agent i, denoted Ōi,ρ, is composed of all system modes
that cannot be observed from the output locally measured
by agent i and those measured by all the agents belonging
to the s-hop reachable set of i, ∀s ∈ {0, . . . , ρ}. Equiva-
lently, the ρ-hop unobservable subspace from agent i is
the unobservable subspace related to pair (Ci,ρ, A) using
the above coordinate transformation:

Ōi,ρ := Im(V̄i,ρ).

The orthogonal complement of Ōi,ρ, with some abuse
of notation, is denoted ρ-hop observable subspace from
agent i, Oi,ρ := Im(Vi,ρ). We denote noi,ρ = dim(Oi,ρ).

According to Definition 2, it is clear that:

Oi,ρ−1 ⊆ Oi,ρ, ∀i ∈ V, ρ ≥ 0. (3)

where we consider Oi,−1 = ∅. Then, the vectors of the
“innovation” basis that generates Oi,ρ ∩ (Oi,ρ−1)⊥ can
be stacked into a matrix Wi,ρ ∈ Rn×ni,ρ , where ni,ρ =
noi,ρ − noi,ρ−1, in such a way that:

Im(Wi,ρ) := Oi,ρ ∩ (Oi,ρ−1)⊥, ρ ≥ 0, (4)

Let us, to be selected later, define `i ∈ Z>0 as an arbi-
trary number of hops. From these definitions it is clear
that for all ρ ∈ {0, . . . , `i} and all i ∈ V, it holds that

Im(Vi,ρ) = Im
([
Wi,ρ Vi,ρ−1

])
, (5)

Im(V̄i,ρ−1) = Im
([
Wi,ρ V̄i,ρ

])
, (6)

with V̄i,−1 := In.

It is worth pointing out that Im(Wi,ρ) corresponds to the
innovation introduced by the ρ-hop reachable setNi,ρ of
agent i, that is, the observable modes for agent i at hop
ρ that are not observable at hop ρ− 1. Accordingly, the
transformation matrix Ti, defined as Ti = [V̄i,`i Vi,`i ],
can be divided using the innovations at each hop:

Ti :=
[
︸ ︷︷ ︸

V̄i,ρ

V̄i,`i Wi,`i · · · Wi,ρ+1 ︸ ︷︷ ︸
Vi,ρ

Wi,ρ · · · Wi,0

]
∈ Rn×n,

(7)

for all ρ ∈ {0, . . . , `i}, where it is easy to identify the
observable and unobservable subspaces of the system by
agent i at hop ρ.

The following lemma introduces some important prop-
erties that are central for the subsequent derivations.

Lemma 3 For any agent i ∈ V, the next properties hold,
∀ρ, ρ′ ∈ {1, . . . , `i} such that ρ 6= ρ′:

(i) W>i,ρWi,ρ′ = 0,

(ii) Im(Wj,ρ−1) ⊆ Im(Vi,ρ), ∀j ∈ Ni,
(iii) Im(Wi,ρ) ⊆

⊕
j∈Ni

Im(Wj,ρ−1),

Proof of (i): Take any ρ 6= ρ′ and assume with-
out loss of generality ρ > ρ′. From (4) we have
Im(Wi,ρ) ⊆ (Oi,ρ−1)⊥ and Im(Wi,ρ−1) ⊆ Oi,ρ−1 and
then, W>i,ρWi,ρ−1 = 0. Applying (3) recursively we ob-
tain that Im(Wi,ρ) is orthogonal to Im(Wi,ρ′) for all
ρ′ > ρ, which proves item (i).

Proof of (ii): From Definition 2, we have that pairs
(Ci,ρ, A) and (Cj,ρ−1, A) generate subspaces Oi,ρ and
Oj,ρ−1 respectively. Then, Definition 1 ensures that ma-
trix Cj,ρ−1 is one of the stacked matrices in Ci,ρ, which
clearly implies Oj,ρ−1 ⊆ Oi,ρ. Finally, from (4) we have
Im(Wj,ρ−1) ⊆ Oj,ρ−1 and, consequently, Im(Wj,ρ−1) ⊆
Oi,ρ establishing item (ii).

Proof of (iii): We follow the same reasoning as for
(ii). From Definition 1, we know that matrix Ci,ρ is
composed by matrix Ci,ρ−1 and matrices Cj,ρ−1 for
every neighbor j of agent i. From Definition 2, it is
easy to check that Oi,ρ = Im(Vi,ρ−1)

⊕
j∈Ni

(Im(Vj,ρ−1)).

Moreover, (4) implies that Im(Wi,ρ) ⊆ (Oi,ρ−1)⊥

and Im(Wi,ρ) ⊆ Oi,ρ, and, consequently, Im(Wi,ρ) ⊆⊕
j∈Ni

Im(Vj,ρ−1), which are the subspaces generated

by output matrices Cj,ρ−1. Note that matrices Cj,ρ−2

are a part of Ci,ρ−1 so that Oj,ρ−2 ⊆ Oi,ρ−1. This
implies, using Im(Wi,ρ) ⊆ (Oi,ρ−1)⊥ again, that
Im(Wi,ρ) ⊆ (Oj,ρ−2)⊥ for every neighbor j of i.

Using (6), (Oj,ρ−2)⊥ = Im([Wj,ρ−1 V̄j,ρ−1]) and
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then Im(Wi,ρ) ⊆
⊕
j∈Ni

Im([Wj,ρ−1 V̄j,ρ−1]). Since

Im(Vj,ρ−1) ∩ Im(V̄jρ−1) = ∅ by definition, then item
(iii) is proven. 2

3 Observer structure and design goal

This section presents a novel observer structure that
makes use of the notions previously introduced. In par-
ticular, the proposed observer structure is as follows:

x̂+
i = Ax̂i︸︷︷︸

(a)

+Wi,0Li(yi − ŷi)︸ ︷︷ ︸
(b)

+ (8)

+

`i∑
ρ=1

∑
j∈Ni

Wi,ρNi,j,ρW
>
j,ρ−1(x̂j − x̂i)︸ ︷︷ ︸

(c)

where Li and Ni,j,ρ are, respectively, a local observer
gain and consensus gains to be designed. The observa-
tion structure proposed in (8) decomposes the observer
dynamics in three different terms:

(a) The first one,Ax̂i, is the classical model-based open-
loop prediction.

(b) The second term, containing Li(yi − ŷi), is a local
Luenberger-like output injection term, intended to
correct the previous prediction with the difference
between the local measures and its predicted out-
puts ŷi := Cix̂i. It is worth noting that this term is
pre-multiplied by Wi,0, which implies that the ele-
ments in the correction vector Li(yi− ŷi) are actu-
ally used as weights to perform linear combinations
of the column vectors forming Wi,0. Thus, these
corrections only affect the observable subspace of
agent i. This makes full sense, as the locally avail-
able output yi only contains information about this
subspace.

(c) This last term aims at adjusting the estimates x̂i
with the information received by the neighboring
agents. Thus, the differences between the estimates
of i and j are multiplied by matrix W>j,ρ−1. The
result is multiplied by gain matrixNi,j,ρ and is used
as weights to perform linear combinations of Wi,ρ.
It is worth mentioning that each neighbor j can
compute and exchange Wj,ρ−1x̂j , whose dimension
is smaller than x̂j , reducing in this way the exchange
of information through the network.

The goal of this paper is to design the gain matrices Li
and Ni,j,ρ to solve the following problem:

Problem 4 (Distributedα-estimation) Givenα ∈ (0, 1),
plant (1)-(2), and the interconnection graph G = (V, E),
design the gains Li and Ni,j,ρ in (8) such that all esti-
mates x̂i converge to x exponentially fast with exponen-
tial rate α.

Next, we include a definition and a necessary assumption
for the solvability of Problem 4.

Definition 5 Given α ∈ (0, 1), pair (C,A) is α-
detectable if pair (C,A/α) is detectable (in the sense of
[8, Def 16.1]). Moreover, system (1)-(2) is collectively
α-detectable if for each agent i ∈ V, there exists a finite
number of hops `i ∈ Z > 0 such that pair (Ci,`i , A) is
α-detectable.

By definition, we see that a pair (C,A) is α-detectable if
and only if the unobservable modes of the observable de-
composition have convergence rate of at least α, namely
if and only if there exists an observer ensuring the expo-
nential stabilization of the estimation error with conver-
gence rate α. Similarly, system (1)-(2) is collectively de-
tectable if for each agent, the complete information pro-
vided by the network (that is, the ρ-hop output matrix
with ρ arbitrarily large) is sufficient to build such an ob-
servation law. Due to this fact, collective α-detectability
is necessary to solve Problem 4 and is assumed next.

Assumption 6 Given α ∈ (0, 1), we assume that sys-
tem (1)-(2) is collectively α-detectable. 2

Remark 7 If the communication graph is connected and
pair ([C>1 , . . . , C

>
p ]>, A) is α-detectable (as, for instance,

in [7] and [24]), then Assumption 6 holds true. However,
Assumption 6 is in general less restrictive, as it does not
enforce connectivity of the network (see for instance the
example in Figure 1).

Fig. 1. Assume that pair (C̃, A) with C̃ = [C>
1 , C

>
2 , C

>
3 ]>

is α-detectable. Although strong connectivity does not hold,
Assumption 6 is still met.

4 Design and stability of the distributed ob-
server

This section presents a design method for the distributed
observers that guarantees stability with prescribed con-
vergence rate. First, we need to introduce the following
result, based on Lemma 5.49 in [18] (whose straightfor-
ward proof is omitted), which is necessary to establish
the subsequent proposition.

Lemma 8 If Im(V̄i,ρ) ⊆ Ōi,ρ, then Im(AV̄i,ρ) ⊆ Ōi,ρ,
i.e., the unobservable subspace Ōi,ρ is an A-invariant
subspace.
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Proposition 9 For each agent i, the orthogonal simi-
larity transformation given by Ti in (7) transforms the
system matrix A into a block upper-triangular matrix in
the form:

T>
i ATi = (9)

V̄ >
i,`i
AV̄i,`i V̄ >

i,`i
AWi,`i · · · V̄ >

i,`i
AWi,1 V̄ >

i,`i
AWi,0

0 W>
i,`i
AWi,`i · · · W>

i,`i
AWi,1 W

>
i,`i
AWi,0

...
...

. . .
...

...

0 0 · · · W>
i,1AWi,1 W>

i,1AWi,0

0 0 · · · 0 W>
i,0AWi,0


.

PROOF. The transformation matrix defined in (7) is
composed of the vectors that form a basis of the inno-
vations Wi,ρ, introduced by the neighbors of agent i at
each hop ρ, and of those that form the basis of the un-
observable subspace at hop `i, which, according to As-
sumption 6, must be α-detectable by the network. Note
that from Lemma 3 (i), all the innovation terms are mu-
tually orthogonal and therefore Ti is a full rank trans-
formation matrix.

Applying transformation Ti to the dynamics matrix of
the system focusing on the partition related to hop ρ in
(7), the next expression is obtained for (9):

T>i ATi =

[
V̄ >i,ρAV̄i,ρ V̄

>
i,ρAVi,ρ

V >i,ρAV̄i,ρ V
>
i,ρAVi,ρ

]
.

Then, according to Lemma 8, Im(AV̄i,ρ) ⊆ Im(V̄i,ρ)
which clearly implies Vi,ρ

>AV̄i,ρ = 0, and therefore:

T>i ATi =

 V̄ >i,ρAV̄i,ρ V̄ >i,ρAVi,ρ
0 V >i,ρAVi,ρ

 .
which is valid for every considered hop ρ. Applying this
procedure recursively from ρ = 0 to ρ = `i, it is clear that
the diagonal elements correspond to W>i,ρAWi,ρ whereas
each term below the diagonal is zero, which establishes
(9). 2

Note that the first block row of matrix (9) corresponds
to those modes that are unobservable but α-detectable.

Let us define the estimation error of any agent i as:

ei := x− x̂i, i ∈ V. (10)

Similarly, it is possible to define the transformed estima-
tion error as εi := T>i ei. More specifically, the estima-
tion error of agent i ∈ V, at hop ρ, is defined as:

εi,ρ := W>i,ρei, ∀ρ = 0, . . . , `i + 1, (11)

where we denote Wi,`i+1 = V̄i,`i corresponding to the
collectively unobservable but detectable system modes.
The following lemma will be useful later on.

Lemma 10 Under Assumption 6, the next equation
holds for any i ∈ V, any j ∈ Ni, and any ρ ∈ {0, . . . , `i}

W>j,ρ−1(x̂j − x̂i)

= W>j,ρ−1

(
ρ∑
r=0

Wi,rεi,r −Wj,ρ−1εj,ρ−1

)
. (12)

PROOF. First, let us rewrite expression (12) in terms
of the estimation error defined in (10):

W>j,ρ−1(x̂j − x̂i) =W>j,ρ−1(x̂j − x+ x− x̂i)
=W>j,ρ−1(ei − ej).

Now, consider the transformed estimation error defined
in (11) and let us write the estimation error of agents i
and j in the εi,ρ, εj,ρ coordinates, which yields that:

W>j,ρ−1(ei−ej) = W>j,ρ−1

`i+1∑
r=0

Wi,rεi,r −
`j+1∑
r=0

Wj,rεj,r

 .

According to Lemma 3 (i), we have W>j,ρ−1Wj,r =
0, ∀r ≥ 0, r 6= ρ − 1, and from Lemma 3 (ii) we know
that Im(Wj,ρ−1) ⊆ Im(Vi,ρ) which clearly implies
W>j,ρ−1Wi,r = 0, ∀r > ρ, establishing the result. 2

The following property introduces the method to de-
sign the distributed observer gains. After that, it will be
shown that this design guarantees exponential conver-
gence of the estimation errors, as well as it is feasible as
long as Assumption 6 is satisfied.

Property 11 (Design of the distributed observer) For
every agent i, the local observation gain Li and the con-
sensus gains Ni,j,ρ are designed in such a way that for
all ρ ∈ {1, . . . , `i} matrices:

Di,(0,0) = W>i,0AWi,0 − LiCiWi,0, (13)

Di,(ρ,ρ) = W>i,ρAWi,ρ −
∑
j∈Ni

Ni,j,ρW
>
j,ρ−1Wi,ρ, (14)

have spectral radius smaller than α.

Based on this property, we can now state the main result
of this paper.

Theorem 12 Consider plant (1) observed by a set of
agents that can measure the local outputs (2), and that
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implement the observer structure defined in (8). If the
observer gains satisfy Property 11, then the estimates of
all the agents tend exponentially to the actual plant state
with convergence rate α.

PROOF. Let us write the transformed estimation error
dynamics for agent i at hop 0:

ε+
i,0 = W>i,0x

+−W>i,0x̂+
i =

[
W>i,0AWi,0 − LiCiWi,0

]
εi,0.

Thus, since gain Li is designed in such a way that matrix
(13) has spectral radius smaller than α, then the esti-
mation error of the locally observable modes of agent i
tends exponentially to zero with the decay rate α. Note
that the locally observable states of each agent are com-
pletely decoupled from the unobservable ones.

The second part of the proof consists in proving that,
if (14) have spectral radius smaller than α, then also
the estimation error of the rest of the modes converges
to zero exponentially fast with rate α. Let us write the
transformed estimation error dynamics for an agent i at
hop ρ, with ρ ≥ 1, using the orthogonality in Lemma 3
(i):

ε+
i,ρ =W>i,ρ

Aei −Wi,ρ

∑
j∈Ni

Ni,j,ρW
>
j,ρ−1(x̂j − x̂i)


=W>i,ρA

ρ∑
r=0

Wi,rεi,r −
∑
j∈Ni

Ni,j,ρW
>
j,ρ−1 (x̂j − x̂i) ,

where W>i,ρWi,ρ = I and Lemma 8 has been used

to obtain W>i,ρA
∑`i+1
r=ρ+1Wi,r = 0. Next, thanks to

Lemma 10, after some manipulations it is possible to
rewrite the equation above as:

ε+
i,ρ =

ρ∑
r=0

Di,(ρ,r)εi,r +
∑
j∈Ni

Ni,j,ρεj,ρ−1, (15)

with

Di,(ρ,r) :=

W>i,ρA− ∑
j∈Nj

Ni,j,ρW
>
j,ρ−1

Wi,r, (16)

which extends and completes the equations (13) and
(14). From (15), it can be seen that the evolution of the
estimation error of agent i at hop ρ depends on the es-
timation error of that agent at the previous hops and
the estimation error of the neighbors at hop ρ− 1, thus
revealing a cascade structure.

We are now in the position to create a vector that stacks
the estimation errors of all the agents involved in the

network at each hop ρ:

ερ := col(εi,ρ)i∈V:`i+1≥ρ, ∀ρ ∈ {0, . . . , ¯̀}, (17)

where ¯̀= 1 + max
i∈V

`i.

Combining (15) and (17), we generate an expression of
the estimation error evolution of all the agents of the
network at every hop ρ. This leads to:


ε¯̀

...

ε1

ε0



+

=


4¯̀ · · · ? ?
...

. . .
...

...

0 · · · 41 ?

0 · · · 0 40




ε¯̀

...

ε1

ε0

 , (18)

where ? represents some possibly nonzero terms given
by (15). It is worth pointing out that according to (15)
the diagonal terms of (18) for ρ ≥ 0 are block diagonal
terms with the next structure:

4ρ =


D1,(ρ,ρ) · · · 0

...
. . .

...

0 · · · Dp,(ρ,ρ)

 , (19)

where {1, . . . , p} ∈ V, and Di,(ρ,ρ) for ρ = {1, . . . , `i}
are defined in (13)-(14) (see also (16)), that is,
Di,(`i+1,`i+1) = V̄ >i,`iAV̄i,`i and Di,(ρ,ρ) is the empty

matrix for all ρ ∈ {`i + 2, . . . , ¯̀}.

Thus, the eigenvalues of the upper triangular matrix in
(18) are the eigenvalues of the corresponding matrices
placed in its diagonal, which are defined in (19). Finally,
it is clear that, if matrices (13) and (14) have spectral
radius smaller thanα for every agent and hop considered,
then the matrix exposed in (18) also has a spectral radius
smaller than α, and consequently the estimation error
of every agent tends exponentially to zero with speed of
convergence α. 2

Remark 13 The distributed observer design in this pa-
per has the advantage of inducing linear error dynamics
for which we may obtain quadratic Lyapunov certificates.
Then we may consider robust extensions of the nominal
exponential stability established in Theorem 12 by rely-
ing on the intrinsic robustness of Lyapunov-based results.
Among other things, this may comprise taking into ac-
count sufficiently rare packet losses and their Lyapunov
characterization as in [9], which would clearly not de-
stroy the established exponential convergence. Addition-
ally, we may consider partially desynchronized nodes or
sufficiently small delays in a sampled-data context where
plant (1) is the sampled version of a continuous-time dy-
namics. Such extensions are left as future work.
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Other non-immediate extensions concern the resilience
of the observer to time-varying graphs [25] or switching
networks [23], and cyber-attacks on sensors [16].

It is important to note that, according to the transforma-
tion made to the system, the proposed structure for the
estimators decomposes the influence of the observation
gains, Li, which only affects the locally observable sub-
space, from the influence of the consensus gains, Ni,j,ρ,
which has an effect on the locally unobservable subspace.

It is well-known that there always exists a gain Li able to
stabilize pair

(
CiWi,0,W

>
i,0AWi,0

)
with arbitrary spec-

tral radius. However, it is necessary to prove the exis-
tence of matrices Ni,j,ρ that induce the same properties
on matrices (14). This is proved below.

Theorem 14 (Design feasibility) It is always possible,
under Assumption 6, to find a set of matrices Li and
Ni,j,ρ that satisfy Property 11.

PROOF. The existence of Li is a well-known conse-
quence of observability of pair (CiWi,0,W

>
i,0AWi,0) (see,

e.g., the dual statement in [8, Th 12.7]). In what regards
(14), let us fix an arbitrary i and ρ ≤ `i and rewrite the
matrix in (14) in the following compact form:

W>i,ρAWi,ρ − N̄i,ρΛi,ρ, (20)

where

N̄i,ρ = col(N>i,j,ρ)
>
j∈Ni ,

Λi,ρ = col(W>j,ρ−1)j∈NiWi,ρ.

To complete the proof it is enough to show that pair(
Λi,ρ,W

>
i,ρAWi,ρ

)
is observable and apply the same rea-

soning used for (13).

From the Popov-Belevitch-Hautus test (see, e.g., [8, Th
15.9]) pair (Λi,ρ, A

o
i,ρ) := (Λi,ρ,W

>
i,ρAWi,ρ) is observable

if and only if:

rank

[
Aoi,ρ − λI

Λi,ρ

]
= ni,ρ, ∀λ ∈ σ(Aoi,ρ). (21)

This condition can be guaranteed if:

rank [Λi,ρ] = ni,ρ, (22)

which clearly implies (21). From Lemma 3, we know that:

Im(Wi,ρ) ⊆
⊕
j∈Ni

Im(Wj,ρ−1),

which implies that rank(Wi,ρ) ≤ rank(col(W>j,ρ−1)j∈Ni).
Finally, using the fact that Wi,ρ is a full rank ma-
trix with rank(Wi,ρ) = ni,ρ it is a simple matter to
check that rank(col(W>j,ρ−1)j∈NiWi,ρ) = rank(Λi,ρ) =
rank(Wi,ρ) = ni,p, which establishes (22) and completes
the proof. 2

5 Continuous-time construction

The design technique proposed in this paper can be eas-
ily extended to the continuous-time case. This section
summarizes its adaptation to this case.

The state-space representation for the continuous-time
linear time invariant system is defined as follows:

ẋ = Ax,

yi = Cix ∀i ∈ V.

The subspaces definition as well as Assumption 6 in Sec-
tion 2 are valid also for the continuous-time case. Re-
garding the observer structure described in Section 3,
the continuous-time expression is given by:

˙̂xi =Ax̂i +Wi,0Li(yi − ŷi) +

+

`i∑
ρ=1

∑
j∈Ni

Wi,ρNi,j,ρWj,ρ−1
>(x̂j − x̂i).

The lemmas and propositions introduced in Section 4
also apply to this case. Nevertheless, Property 11 must
be redefined to design local and consensus gains ensuring
convergence abscissa equal to α for the matrices (13)
and (14) with α ∈ (−∞, 0). Finally, Theorems 12 and 14
apply in both cases.

6 Distributed design and operation

This section presents an algorithm to build the esti-
mation structure of each agent i. This structure de-
pends on integer and matrices Wi,ρ, ρ = 1, . . . , `i, which
should be determined before designing the observer gains
(Li, Ni,j,ρ) according to the previous section. Finally, in
the running phase, the agents estimate online (distribut-
edly) the plant state x. These three phases are clarified
below.

Distributed observer setup. In this phase, we design
`i and matrices Wi,ρ. First, each agent identifies its lo-
cally observable subspace through its output matrix and
the plant dynamics, and constructs matrices Vi,0 = Wi,0.
Secondly, each agent exchange its Wi,0 matrix with its
neighbors. These matrices are used to define the 1-hop
observable subspace and to construct matricesWi,1. The
algorithm is repeated until hop ρ = `i is reached. Note
that whenever `i is not known, it can be assessed locally

7



by computing an observable decomposition and check-
ing whether the ρ-hop unobservable modes have speed
of convergence faster than α. The pseudocode of the de-
sign algorithm is given next:

- For every agent i do:

a. ComputeOi,0 and construct matrixWi,0. Set ρ = 0.
b. Perform the two steps:

· Exchange Wi,ρ with the neighbors.
· ConstructOi,ρ+1 and construct matrixWi,ρ+1.

c. If the ρ-hop unobservable modes have speed α, then
stop and set `i = ρ. Otherwise increment ρ and go
to (b).

d. Exchange `i with the neighborhood Ni.

Summarizing, in the firs phase each agent i exchanges
with its neighbors matrices Wi,ρ for ρ = {0, . . . , `i}. Due
to the fact that, from (7), the set of all these matrices,
together with V̄i,`i forms the transformation matrix Ti,
it is clear that the exchange of information, in terms of
transmitted scalars, is at most n2.

Gain selection phase. In this phase each agent selects
gains (Li, Ni,j,ρ) in such a way that Property 11 holds.
This selection does not require any information exchange
because for each agent i, matrices Wi,ρ and matrices
Wj,ρ of all the neighbors j ∈ Ni have been selected and
stored in the previous phase.

Running phase. This is the online phase where the
distributed observer estimates state x. Here, according
to the observer structure (8), each agent i will exchange
with each neighbor j ∈ Ni a portion of the state de-
fined by W>i,ρ−1x̂i for every ρ ∈ {1, . . . , `j}, whose size,
according to (7), is at most equal to n.

7 Simulations

In this section a simulation example is presented in order
to show the effectiveness of the proposed observer.

Example 1. The algorithm presented will be compared
with the observer structure introduced in [11]. Consider
the following continuous-time system:

ẋ =


0 1 0 0

−1 0 0 0

0 0 0 2

0 0 −2 0

x,

which is being observed by four agents in such a way
that y1 = x1, y2 = x2, y3 = x3 and y4 = x4. A cyclic
topology for the connection of the agents is considered,
namely the graph is composed by edges (1, 2), (2, 3),

(3, 4), (4, 1).To carry out the observer design, the system
has been discretized with a sampling time of 1s.

Figure 2 shows the evolution of the plant state modes
and the agent 1 estimates for the proposed distributed
observer. Note that for this agent, a local design is made
to estimate x1 while the rest of the states are estimated
thought the information provided by its neighborhood.
The design has been carried out placing the local and
consensus poles around −3.

0 1 2 3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 2. State of the plant in solid lines and estimates of agent
1 in dashed lines.

To provide a comparison between the estimation perfor-
mance of the proposed observer and that corresponding
to [11], the simulation parameters are set as in the sim-
ulation examples provided in that work. Figure 3 shows
the evolution of the total error for both structures, which
is defined as the average of the 2-norm of the estimation
error of each agent:

ē(t) =
1

4

4∑
i=1

‖x(t)− x̂i(t)‖2 . (23)

Different simulations have been provided regarding the
convergence rate fixed by α. The observer parameters
for the other algorithm has been selected from the sim-
ulation example in [11]. Finally, the initial value for the
estimations of every state and agent is zero.

It is worth pointing out that the design method proposed
in Property 11 makes it easy to place conveniently the
estimation error dynamics eigenvalues, taking into ac-
count the observable modes at its corresponding hops,
in such a way that the convergence can be accelerated,
as shown in Figure 3.

8 Conclusions

The observer structure presented in this paper intro-
duces a novel method to design and analyze the dis-
tributed estimation problem. By decomposing the state-
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0 2 4 6 8 10

1.5

1

0.5

0

Fig. 3. Evolution of the total error defined in (23) for the
algorithm presented in this paper and the observer presented
in [11].

space of each agent in locally observable and unobserv-
able subspaces, the last one composed by the innovation
introduced by each neighbor at each hop, a distributed
design method for the observers has been developed.
This design can be carried out through using simple pole
placement algorithms, and allows one to adjust the con-
vergence rate. Stability of the presented observer struc-
ture has been proven, together with a feasibility condi-
tion requiring only necessary conditions for distributed
detectability.

Future work will include the design and performance
analysis of this observer when communication delays or
packet losses are taken into account, as well as the study
of optimal and robust designs for noisy measurements
and disturbance rejection.
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