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Abstract—Network anomalies and attacks represent a serious
challenge to ISPs, who need to cope with an increasing number
of unknown events that put their networks’ integrity at risk.
Most of the network anomaly detection systems proposed so
far employ a supervised strategy to accomplish their task, using
either signature-based detection methods or supervised-learning
techniques. The former fails to detect unknown anomalies,
exposing the network to severe consequences; the latter requires
labeled traffic, which is difficult and expensive to produce. In
this paper we introduce a powerful unsupervised approach to
detect and characterize network anomalies in the dark, i.e.,
without relying on signatures or labeled traffic. Unsupervised
detection is accomplished by means of robust clustering tech-
niques, combining sub-space clustering with correlation analysis
to blindly identify anomalies. To alleviate network operator’s
post-processing tasks and to speed-up the deployment of effective
countermeasures, anomaly ranking and characterization are
automatically performed on the detected events. The system is
extensively tested with real traffic from the WIDE backbone
network, spanning six years of flows captured from a trans-
pacific link between Japan and the US, using the MAWILab
framework for ground-truth generation. We additionally evaluate
the proposed approach with synthetic data, consisting of traffic
from an operational network with synthetic attacks. Finally, we
compare the performance of the unsupervised detection against
different previously used unsupervised detection techniques, as
well as against multiple anomaly detectors used in MAWILab.

Index Terms—nsupervised Anomaly Detection & Character-
ization, Clustering, Outliers Detection, Anomaly Correlation,
Filtering Rules, MAWILab.nsupervised Anomaly Detection &
Characterization, Clustering, Outliers Detection, Anomaly Cor-
relation, Filtering Rules, MAWILab.U
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I. INTRODUCTION

Network anomaly detection has become a vital component of
any network in today’s Internet. Ranging from non-malicious
unexpected events such as flash-crowds and failures, to network
attacks and intrusions such as denials-of-service, network scans,
worms propagation, botnets activity, etc., network traffic anoma-
lies can have serious detrimental effects on the performance and
integrity of the network. The principal challenge in automatically
detecting and characterizing traffic anomalies is that these are
moving targets. It is difficult to precisely and continuously define
the set of possible anomalies that may arise, especially in the case
of network attacks, because new attacks as well as new variants
to already known attacks are continuously emerging. A general
anomaly detection system should therefore be able to detect a
wide range of anomalies with diverse structures, without relying
exclusively on previous knowledge and information.

The problem of network anomaly detection has been exten-
sively studied during the last decade. Two different approaches
are by far dominant in current research literature and commer-
cial detection systems: signature-based detection and supervised-
learning-based detection. Both approaches require some kind
of guidance to work, hence they are generally referred to
as supervised-detection approaches. Signature-based detection
systems are highly effective to detect those anomalies which are
programmed to alert on. When a new anomaly is discovered
and clearly described by drilling down on its characteristics, the
associated signature is coded by human experts, which is then
used to detect a new occurrence of the same anomaly. Such a
detection approach is powerful and very easy to understand,
because the operator can directly relate the detected anomaly
to its specific signature. However, these systems cannot defend
the network against new attacks, simply because they cannot
recognize what they do not know. Furthermore, building new
signatures represents an expensive task, as it involves manual
inspection by human experts.

On the other hand, supervised-learning-based detection uses
labeled traffic data to train a baseline model for normal-operation
traffic, detecting anomalies as patterns that deviate from this
model. Such methods can detect new kinds of anomalies and
network attacks not seen before, because they will naturally
deviate from the baseline. Nevertheless, supervised-learning re-
quires training, which is time consuming and depends on the
availability of purely anomaly-free traffic data-sets. Labeling
traffic as anomaly-free is expensive and hard to achieve in
practice, since it is difficult to guarantee that no anomalies are
hidden inside the collected traffic. Additionally, it is not easy
to maintain an accurate and up-to-date model for anomaly-
free traffic, particularly when new services and applications are
constantly emerging.

We think that modern anomaly detection systems should not
rely exclusively on previously acquired knowledge, but shall be
able to autonomously detect and characterize traffic deviating
from normal operation. Autonomous security is a strong re-

quirement in current networks. Indeed, hand made analysis of
anomalies and attacks is slow, inefficient, costly, and generally lets
the network unprotected for several days. This work proposes
an unsupervised approach to detect and characterize network
anomalies without relying on signatures, training, or labeled traf-
fic. The approach uses unsupervised machine learning techniques
to discover anomalous patterns in traffic flows. More precisely, it
combines robust clustering techniques with correlation analysis
to detect and characterize anomalies, reducing the intervention
of a human network operator. The proposed approach permits
to equip routers and security components (e.g., IDS, firewall,
etc.) with analysis capabilities, easing automatic and adaptive
configuration, therefore providing first steps towards autonomous
network security. While the ultimate goal is to come up with a
fully unsupervised system, we do not claim that the proposed
approach can operate without human intervention. Our system
is capable of finding meaningful clusters and deriving a signature
for the corresponding traffic flows based on the absolute values
of selected traffic features, but it still requires the intervention
of a human expert to label these clusters in a consistent way.

A first release of this unsupervised anomaly detection tech-
nique was initially presented at [1] and [2]. This initial approach
proved to be highly successful in detecting isolated anomalies,
identified by manual inspection on some limited traffic traces. In
this paper we introduce an extended approach for unsupervised
anomaly detection and characterization; in particular, we include
the following specific novel contributions w.r.t. [1] and [2]: (i)
the new system increases the robustness of the detection by
correlating results from multiple independent analyses of the
monitored traffic flows. In a nutshell, by analyzing flows using
different flow-aggregations (e.g., by source IP address, by destina-
tion subnetwork, etc.), one adds redundancy to the overall traffic
analysis, alleviating the potential misclassification done by a
single snapshot analysis; (ii) we include an anomaly volume-based
ranking approach to the overall system, which allows the operator
to focus on the most important anomalies in case of multiple
consecutive alarms; (iii) the evaluation of the system is extended
to the analysis of a substantial subset spanning six years of the
public MAWI network traffic repository at the WIDE project [3],
using the MAWILab repository [4] as ground-truth. The WIDE
operational network provides interconnection between different
research institutions in Japan, as well as connection to different
commercial ISPs and universities in the US; (iv) the detection
performance is compared to the one obtained by other relevant
state-of-the-art approaches, including four anomaly detectors [5]–
[8] used in MAWILab and three unsupervised anomaly detectors
based on clustering [9]–[11] and Principal Components Analysis
(PCA) [12], [13]. This analysis is done with synthetic data,
consisting of traffic from an operational network with annotated
synthetic attacks added; (v) last but not least, we additionally
provide an evaluation of the computational time of the core
clustering process of the system, demonstrating that unsupervised
traffic analysis can be done online in operational networks
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when appropriate distributed and scalable parallel data analysis
frameworks are employed, such as Apache Hadoop1 or Apache
Spark2 engines.

The remainder of the paper is organized as follows. Sec-
tion II presents the state of the art in the supervised and
unsupervised anomaly detection fields, additionally describing
our main contributions. Section III describes the clustering
techniques and analysis algorithms used by the unsupervised
anomaly detection system. Section IV presents the anomaly post-
processing techniques, designed to improve the robustness of the
detection and to ease the tasks of the network operator.

Section V presents a complete evaluation and validation of
the system, detecting and characterizing different anomalies on
six years of real network traffic traces from the MAWI trace
repository. Evaluations also include a detection performance
comparison to other state-of-the-art proposals, using both MAWI
traffic and traffic traces from the METROSEC project [14].
In addition, we perform a sensitivity analysis of the detection
techniques and an evaluation of the computational time of the
underlying clustering algorithms. Finally, Section VI presents
the concluding remarks of the paper, pointing to future research
directions.

II. RELATED WORK

Traditional approaches for network anomaly detection analyze
statistical variations of traffic volume metrics (e.g., number of
bytes, packets, or flows) and/or other specific traffic features
(e.g. distribution of IP addresses and ports), using either single-
link measurements or network-wide data. A non-exhaustive list
of methods includes the use of signal processing techniques (e.g.,
wavelets) on single-link traffic measurements [15]–[17], PCA [12],
[13] and Kalman filters [18] for network-wide anomaly detection,
Hough Transform [5], sketches [6], [19] or a combination of
PCA, sketches [7] and equilibrium properties [20] on IP-flows, as
well as traffic related distribution analysis [8]. A comprehensive
summary of general anomaly detection techniques is presented
in [21], and a specific survey on anomaly detection and diagnosis
in Internet traffic is available at [22].

Lakhina et al. [13] revisit their PCA-based method [12] but use
several entropy metrics based on source and destination IP ad-
dress distributions and source and destination port distributions.
They propose to reuse these entropy metrics to classify anomalies.
Xu et al. [23] apply clustering to entropy metrics similar to
[13] to build a traffic model and then classify anomalous events.
Fernandes et al. [24] present NADA, a signature-based tool that
classifies anomalies into different categories. Similarly, Silveira
et al. [25] propose URCA, a method to identify the root causes
of anomalous events. URCA follows a hybrid approach which
relies on both signatures and supervised learning. The tool uses
as input the result of any anomaly detection system, and it is
able to classify anomalies by associating them with previously
manually built signatures through hierarchical clustering. Using
their previous work on entropy-based Traffic Entropy Spectrum
(TES) anomaly detection, Tellenbach et al. [26] present the
entropy telescope, which allows both to detect and classify
network anomalies. Their classification scheme uses simulated
anomalies and a support vector machine (SVM) model. Brownlee
[27] and Glatz et al. [28] analyze one-way traffic in the context
of darknet traffic.

While the majority of the main contributions to the anomaly
detection field date back to almost a decade, some newer
references address the detection of anomalies in Content Delivery
Networks (CDN) [29], the application of empirical and estimated
feature probability distribution to detect anomalies [30], the
collaborative detection of network attacks [31], as well as the

1http://hadoop.apache.org/
2https://spark.apache.org/

usage of SDN-based technology to simplify traffic processing for
anomaly detection [32].

Besides detection and classification of network anomalies,
there have also been several papers proposing taxonomies for
network attacks. Mirkovic et al. [33] propose a classification
of DDoS attacks according to several criteria (e.g., IP address
spoofing, exploited weakness, etc.). Barnett et al. [34] present a
taxonomy of scanning events, while Plonka et al. [35] present a
taxonomy that covers a wide range of attacks. In addition, few
works have been published on longitudinal studies of anomalies,
meaning the analysis of long-in-time traffic traces. Borgnat et
al. [36] study seven years of WIDE traffic and analyze its long
range dependency (LRD). They provide an embryonic analysis
of anomalies in the MAWI dataset. Allman et al. [37] study 13
years of scanning activity.

Other network anomaly detection proposals use machine
learning techniques. Shon et al. [38] apply Self-Organizing
Feature Map, Genetic Algorithm and Support Vector Machines
(SVM) to build a profile of normal traffic and then detect
anomalies as events deviating from this profile. Duffield et al.
[39] demonstrate that a system using flow features and trained
with Snort alarms can be as efficient as Snort itself without the
expensive payload inspection. These approaches are supervised,
i.e. they rely on training to build a profile, either normal [38] or
abnormal [39] that is then used to find anomalies.

Our proposal falls within the unsupervised machine learning-
based anomaly detection domain. Most work has been devoted to
the Intrusion Detection field, focused on the well known KDD’99
data-set. The vast majority of the unsupervised detection schemes
proposed in the literature are based on clustering and outliers
detection, being [9]–[11] some relevant examples. In [9], authors
use a single-linkage hierarchical clustering method to cluster
data from the KDD’99 data-set, based on the standard Euclidean
distance for inter-pattern similarity. Clusters are considered as
normal-operation activity, and patterns lying outside a cluster
are flagged as anomalies. Based on the same ideas, [10] reports
improved results in the same data-set, using three different clus-
tering algorithms: Fixed-Width clustering, an optimized version
of k-Nearest Neighbors, and one class SVM. Finally, [11] presents
a combined density-grid-based clustering algorithm to improve
computational complexity, obtaining similar detection results.
Some newer references include a nice overview on the usage
of clustering for the unsupervised detection of anomalies [40],
as well as more complex techniques based on hybrid approaches
[41].

Our unsupervised algorithm presents several advantages w.r.t.
current state of the art. First and most important, it works
in a completely unsupervised fashion, which means that it can
be directly plugged-in to any monitoring system and start to
detect anomalies from scratch, without any kind of calibration.
Secondly, it avoids the lack of robustness of general clustering
techniques used in current unsupervised anomaly detection algo-
rithms; in particular, it is immune to general clustering problems
such as sensitivity to initialization, specification of number of
clusters, or structure-masking by irrelevant features. Thirdly,
it uses a new technique to correlate results from the unsuper-
vised anomaly detection and improve its reliability, performing
anomaly detection based not only on outliers detection, but also
by identifying connected relevant clusters. This is achieved by
exploring different levels of traffic aggregation, both at the source
and destination of the traffic. Finally, it includes an anomaly post-
processing step which automatically builds compact and easy-
to-interpret signatures to isolate attacks, which can be directly
integrated into any traditional security device.

III. UNSUPERVISED ANOMALY DETECTION

The proposed unsupervised anomaly detection system consists
of three consecutive traffic analysis steps, working on top of
small-time scale contiguous batches of data. Figure 1 depicts a

http://hadoop.apache.org/
https://spark.apache.org/
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Fig. 1: High-level description of the unsupervised anomaly
detection approach.

high-level diagram of the complete approach. In the first step, a
batch of traffic measurements is aggregated into multi-resolution
flows (e.g., all packets coming from the same IP address, from
the same /24 subnet, etc.) to construct different views of the
traffic. Several simple metrics such as number of bytes, packets
or flows per batch are computed on top of the captured traffic,
and a time series based abrupt change detection algorithm is
applied on these metrics to detect an abrupt change, flagging an
anomalous batch.

The second step consists of the unsupervised detection algo-
rithm. It uses as input the set of flows captured in the batch
flagged as anomalous by the abrupt change detector. Sub-Space
Clustering (SSC) [42] techniques are applied to a set of features
describing this set of flows, and results are then combined through
multiple Evidence Accumulation (EA) [43] or Inter-Clustering
Results Association (ICRA) to blindly identify the suspicious
traffic flows that compose the anomaly responsible for the abrupt
change.

In the third step, the identified flows go through a post-
processing analysis to improve the robustness of the detection
and to characterize the detected anomalies. Anomalous flows
identified in different features are firstly correlated and merged
into single sets representing the same anomalies. Then, detected
anomalies are ranked according to their relevance, using different
criteria to assess their potential impacts on the network. Finally,
the evidence of traffic structure obtained in the clustering step
is further used to produce filtering rules that characterize the
most relevant detected anomalies, which are ultimately combined
into a new anomaly signature. The final output of the complete
post-processing analysis is a list of ranked anomalies with their
corresponding signatures that provide a simple and easy-to-
interpret description of the problem. This eases network operator
tasks in terms of time prioritization and speed of diagnosis. The
following paragraphs provide further details on each of these
steps.

A. First Step: Traffic Aggregation and Abrupt Change Detec-
tion

The anomaly detection system works on single-link packet-
level traffic captured in consecutive batches or time slots of fixed
length ∆T . At each time slot, packets are aggregated in 9 different

Anomaly Nature Aggregation Clustering type Impact on traffic features

DoS (ICMP ∨ SYN) 1-to-1 IPsrc/∗ Outlier nSrcs = nDsts = 1, nPkts/sec > λ1 , avgPktsSize < λ2 ,
IPdst/∗ Outlier (nICMP/nPkts > λ3 ∨nSYN/nPkts > λ4 ).

DDoS (ICMP ∨ SYN) N-to-1
IPsrc/24 (l3 ) Cluster

nDsts = 1, nSrcs > α1 , nPkts/sec > α2 , avgPktsSize < α3 ,
to several @IP/24 IPsrc/16 (l4 ) Outlier (nICMP/nPkts > α4 ∨ nSYN/nPkts > α5 ).

IPdst/∗ Outlier

Port scan 1-to-1 IPsrc/∗ Outlier nSrcs = nDsts = 1, nDstPorts > β1 , avgPktsSize < β2 ,
IPdst/∗ Outlier nSYN/nPkts > β3 .

Network scan 1-to-N
IPsrc/∗ Outlier

nSrcs = 1, nDsts > δ1 , nDstPorts > δ2 , avgPktsSize < δ3 ,
to several @IP/24 IPdst/24 (l6 ) Cluster

nSYN/nPkts > δ4 .
IPdst/16 (l7 ) Outlier

Spreading worms 1-to-N
IPsrc/∗ Outlier

nSrcs = 1, nDsts > η1 , nDstPorts < η2 , avgPktsSize < η3 ,
to several @IP/24 IPdst/24 (l6 ) Cluster

nSYN/nPkts > η4 .
IPdst/16 (l7 ) Outlier

TABLE I: Features used for the detection of DoS, DDoS,
network/port scans, and spreading worms. Anomalies of dis-
tributed nature 1-to-N or N-to-1 involve several /24 (source or
destinations) addresses contained in a single /16 address.

flow levels li. These include (from finer to coarser-grained
resolution): source IPs (l1: IPsrc), destination IPs (l2: IPdst),
source Network Prefixes (l3,4,5: IPsrc/24, /16, /8), destination
Network Prefixes (l6,7,8: IPdst/24, /16, /8), and traffic per Time
Slot (l9: tpTS). For example, a flow aggregates all the packets
targeting the same destination IP address when flow level l2
is considered. Time series Zli

t are built for basic traffic metrics
such as number of bytes, packets, and 5-tuple flows per time slot,
using the 9 flow resolutions l1...9. Any generic anomaly-detection
algorithm F(.) based on time series analysis [15], [16], [18], [19],
[44] is then used on Zli

t to identify an anomalous slot. In our
case and for the sake of simplicity, we use the absolute deltoids
approach [44] (i.e., basically a change-detector based on mean
and variance of a time series), based on volume metric time series
(#packets, #bytes and #syn – number of SYN packets). Time
slot tj is flagged as anomalous if F(Zli

tj
) triggers an alarm for any

of the li flow aggregation levels. Tracking anomalies at multiple
aggregation levels provides additional reliability to the anomaly
detector, and permits to detect both single source-destination and
distributed attacks of very different intensities.

B. Second Step: Clustering for Unsupervised Anomaly Iden-
tification

The unsupervised anomaly detection step takes as input all the
flows in the time slot flagged as anomalous, aggregated according
to one of the different levels used in the first stage. An anomaly
will generally be detected in different aggregation levels, and
there are many ways to select a particular aggregation to use in
the unsupervised step; for the sake of simplicity, we shall skip this
issue, and use any of the aggregation levels in which the anomaly
was detected. Without loss of generality, let Y = {y1, ..,yF } be
the set of F flows in the flagged time slot, referred to as patterns
in more general terms. Each flow yf ∈ Y is described by a
set of A traffic attributes or features. We use a list of traffic
features widely used in literature, which includes A = 9 traffic
features: number of source/destination IP addresses and ports,
ratio of number of sources to number of destinations, packet
rate, ratio of packets to number of destinations, and fraction
of ICMP and SYN packets. According to our previous work
on signature-based anomaly analysis [24], such simple traffic
descriptors permit to characterize general traffic anomalies in
easy-to-interpret terms. The list is by no means exhaustive, and
more features can be easily plugged-in to improve results. Let
xf = (xf (1), .., xf (A)) ∈ RA be the corresponding vector of
traffic features describing flow yf , and X = (x1, ..,xF ) the
complete matrix of features, referred to as the feature space.

The reader should note that, even if many of the considered
features could potentially yield no useful information (at the
expense of higher processing costs), it is not possible to apply
standard feature selection algorithms to identify the smallest
necessary set, as we are considering an unsupervised classification
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problem, where labels are not available. Feature selection in
unsupervised analysis is an open and very challenging problem.

The unsupervised detection algorithm is based on clustering
techniques applied to X. The objective of clustering is to partition
a set of unlabeled patterns into homogeneous groups of similar
characteristics, based on some measure of similarity. Table I
explains the characteristics of different classes of anomalies in
terms of distributed nature, aggregation type, clustering nature
and impact on traffic features. For example, a SYN DDoS
which targets one machine from a high number of hosts located
in several /24 addresses will consist of a cluster if flows are
aggregated in l3 (cf., Section III-A). In fact, each of these /24
addresses will have traffic attributes values different from the
ones of normal traffic: a high packet rate, a single destination
and many SYN packets. The complete set of these flows will
most probably create a cluster. However, if flows are aggregated
in l6, the single destination address will be represented as an
outlier, characterized by many sources and a high fraction of
SYN packets.

Our particular goal is to identify and to isolate the different
flows that compose the anomaly flagged in the first stage, both
in a robust way. Unfortunately, even if hundreds of clustering
algorithms exist [45], it is very difficult to find a single one that
can handle all types of cluster shapes and sizes, or even decide
which algorithm would be the best to our particular problem.
Different clustering algorithms produce different partitions of
data, and even the same clustering algorithm provides different
results when using different initializations and/or different algo-
rithm parameters. This is in fact one of the major drawbacks in
current cluster analysis techniques: the lack of robustness.

To avoid such a limitation, we have developed a divide and
conquer clustering approach, using the notions of clustering
ensemble [46] and multiple clusterings combination. A clustering
ensemble P consists of a set of N partitions Pn,n=1,..,N produced
for the same data. Each of these partitions provides a different
and independent evidence of data structure, which can be com-
bined to construct a global clustering result for the whole feature
space. There are different ways to produce a clustering ensemble.
We use Sub-Space Clustering (SSC) [42] to produce multiple data
partitions, applying the same clustering algorithm to N different
sub-spaces Xn ⊂ X of the original space. In particular, we
use the well-known DBSCAN density-based clustering approach
[47]. DBSCAN is a powerful clustering algorithm that discovers
clusters of arbitrary shapes and sizes, relying on a density-based
notion of clusters: clusters are high-density regions of the space,
separated by low-density areas. This algorithm perfectly fits our
unsupervised traffic analysis, because it is not necessary to specify
a-priori difficult to set parameters such as the number of clusters
to identify, which is the case in other clustering algorithms such
as k-means.

1) Clustering Ensemble and Sub-Space Clustering: Each
of the N sub-spaces Xn ⊂ X is obtained by selecting R features
from the complete set of A attributes. The number of sub-spaces
N is therefore equal to R-combinations-obtained-from-A. To
set the sub-space dimension R, we take a very useful property
of monotonicity in clustering sets, known as the downward
closure property: “if a collection of points is a cluster in a
d-dimensional space, then it is also part of a cluster in any
(d − 1) projections of this space” [48]. This directly implies
that, if there exists any evidence of density in X, it will
certainly be present in its lowest-dimensional sub-spaces. Using
small values for R provides several advantages: firstly, doing
clustering in low-dimensional spaces is more efficient and faster
than clustering in bigger dimensions. Secondly, density-based
clustering algorithms such as DBSCAN provide better results
in low-dimensional spaces [48], because high-dimensional spaces
are usually sparse, making it difficult to distinguish between
high and low density regions. We shall therefore use R = 2 in
our SSC algorithm, which gives N = CA

R = A(A − 1)/2 data

partitions, each of them obtained from each of the resulting
sub-spaces.

Having produced the N partitions, we now explore different
methods to combine these partitions in order to build a sin-
gle partition where anomalous flows are easily distinguishable
from normal-operation traffic: the Evidence Accumulation (EA)
approach and the Inter-Clustering Result Association (ICRA)
approach.

2) Combining Multiple Partitions using Evidence Accumu-
lation: A possible answer is provided in [43], where authors
introduced the idea of multiple-clusterings Evidence Accumula-
tion (EA). By simple definition of what it is, an anomaly may
consist of either outliers or small-size clusters, depending on the
aggregation level of flows in Y (cf Table I). We use EA on top
of P to build two inter-pattern similarity measures between the
flows in Y: a similarity matrix S to detect small clusters and
a vector D to rank outliers. S(p, q) represents the similarity
between flows p and q. This value increases when the flows p
and q are located in the same cluster in multiple partitions, and
when the sizes of the resulting clusters are small. The rationale
of these two conditions is to spot out very similar flows which
are different from the majority. D(o) represents the abnormality
of the outlier o. This value increases when the outlier has been
classified as such in several partitions and when the separation
between the outlier and the normal traffic is bigger. As we are
only interested in finding the smallest-size clusters and the most
dissimilar outliers, the detection consists in finding the flows with
the biggest similarity in S and the biggest dissimilarity in D. Any
clustering algorithm can then be applied on the similarity matrix
S to obtain a final partition of X that isolates small-size clusters
of high intra-similarity values. Concerning the most dissimilar
outliers, they can be isolated through a threshold applied to the
values of D.

3) Combining Multiple Partitions using Inter-Clustering
Result Association: A more robust approach to identify relevant
clusters and outliers is provided by the ICRA approach. The
idea of ICRA is to consider inter-cluster similarity rather than
inter-pattern similarity, reducing the chances of merging together
anomalous and normal flows. The ICRA aggregation shifts the
similarity measure from the patterns to the clustering results,
adding an additional analysis level. The problem solved by ICRA
is split in two sub-problems: clusters’ correlation through Inter-
CLuster Association (ICLA), and outliers’ correlation through
Inter-Outlier Association (IOA).

In each case, a graph is used to express the similarity between
either clusters or outliers. Each vertex is a cluster/outlier from
any sub-space Xn (i.e., the complete set of clusters and outliers
∈ P) and each edge represents the fact that two connected
vertices are similar. The underlying idea is straightforward:
identify clusters or outliers present in different sub-spaces that
contain the same flows. To do so, we first define a Clus-
ter Similarity measure CS between two clusters Cr and Cs:
CS(Cr, Cs) = card(Cr∩Cs)

max(card(Cr),card(Cs))
, card being the function

that associates a cluster with its cardinality, and Cr ∩ Cs the
intersection of Cr and Cs. Each edge in the cluster similarity
graph between two clusters Cr and Cs means CS(Cr, Cs) > 0.9,
being this an empirically chosen value3. IOA uses an outlier
similarity graph built by linking outliers in different sub-spaces
which represent the same pattern – aggregated flow (note that the
same aggregated flow can result in multiple different outliers in
P, depending on the specific sub-spaces where those outliers are
identified). Once these graphs are built, we need to find cluster
sets where every cluster contains the same flows. In terms of
vertices, we need to find vertex sets where every vertex is linked
to every other vertex. In graph theory, such vertex set is called

3The value 0.9 guarantees that the vast majority of patterns are located in
both clusters with a small margin of error.
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a clique. The clique search problem is a NP-hard problem. Most
existing solutions use exhaustive search inside the vertex set which
is too slow for our application. We then make the hypothesis that
a vertex can only be part of a single clique. A greedy algorithm
is then used to build each clique. Relevant flow sets are finally
identified as the intersection of all the aggregated flows present
in the clusters or outliers within each clique. We thus yield a
global partition of every aggregated flow.

4) Identification of Anomalies: Once the global partition
over aggregated flows is built, we need to determine what is
the nature of each of these flows. In other words, what is the
nature of each cluster or outlier from the global partition. To do
so, we make the hypothesis that a large proportion of the traffic
in the analyzed time slot is normal. The normal traffic will thus
be identified as a single big cluster which shall contain more than
50% of the aggregated traffic flows. This fraction comes from our
operational experience when analyzing MAWI traffic, but is also
related to the fact that outliers are, by definition, less numerous
than clustered patterns [21]. If such cluster does not exist in the
partition built upon the considered time slot, we consider that the
approach is not able to reliably separate anomalous and normal
traffic. We then discard the current time slot and restart the
process at step 1 on Figure 1. When the condition is actually
met, the time slot is valid, and every aggregated flow outside the
normal traffic is considered as anomalous.

IV. ANOMALY POST-PROCESSING

The unsupervised clustering step presented in Section III
allows to extract anomalies from a feature space X describing F
aggregated flows according to an aggregation level li. However
the potential number of detected anomalies can be high and
thus overwhelm the operator. A post-processing step is thus
crucial to help the operator to prioritize its own work towards
the most dangerous anomalies. A more general help shall also
be provided to the operator concerning tedious tasks such as
characterization of the anomaly nature. We thus propose a
three steps post-processing technique that reduces the amount
of work required from the operator and increases the robustness
of the overall approach, by successively correlating and reducing
the overall number of found anomalies, ranking anomalies by
dangerousness, and building anomaly signatures. This post-
processing step corresponds to the last part of the unsupervised
system.

A. Correlating Anomalies from Multiple Aggregations
Using the clustering and analysis algorithms previously in-

troduced on single flow aggregation levels would generally (and
naturally) generate false alarms. A standard approach to reduce
the number of such false alarms is to combine and correlate the
anomalies detected by analyzing flows at different aggregation
levels li. In a nutshell, instead of relying on a single snapshot
analysis of the data, why not combining multiple outlooks of
the same dataset, using different flow aggregations? We actually
follow this rationale to correlate anomalies extracted from the
clustering results obtained for different flow aggregation levels.

To do so, we define two unique characteristics of an anomaly:
its source IP address (source IP address set) and its destination IP
address (destination IP address set). We then define the similarity
between two IP address sets as the ratio between the sets’
intersection cardinality and the maximum cardinality of each
IP address set (cf., Section III-B3). If the similarity of the two IP
address sets (source and destination) for two different anomalies
are over a specific threshold, it guarantees that these anomalies
have a very similar source and destination IP address sets. In
this work, we chose to only correlate anomalies detected from
aggregation levels source and destination (i.e., l1 and l2), in order
to avoid correlating anomalies located in the same aggregation
level type (e.g. l3 and l4), that would be potentially contained

in each other. Finally, correlated anomalies are then built from
each couple of similar anomalies.

B. Anomaly ranking
To increase its own efficiency, a network operator analyzing

anomalies needs to prioritize its work towards the most dan-
gerous anomalies. In the field of network anomaly detection, the
more an anomaly is dangerous, the more its mitigation is critical.
Thus, task prioritization shall be realized by ranking anomalies
according to their dangerousness. In this paper, we adopted the
operator point of view, i.e. we mainly care about the network
performance and try to detect any unexpected traffic variation
which could impact the throughput or the delay of the Internet
service provided to customers. Among the anomalies which are
dangerous for the network performance are the flooding based
attacks and the flash crowd like sudden increases of the traffic.
From this point of view, we define a ranking formula based
on the amount of traffic to be transmitted at any time in the
network. We introduce two anomaly characteristics to rank
anomalies: its number of packets and its number of bytes. We
build a dangerousness index that uses these two characteristics.
We actually do not use the absolute number of packets and bytes
but the fraction of the traffic belonging to this anomaly in terms
of number of packets and bytes. Let DI be the Dangerousness
Index built according to the two aforementioned criteria: fraction
of number of packets and fraction of number of bytes:

DI(anomaly) = P (#pkts) + P (#bytes) (1)

where :

{
P (#pkts) = #pkts in anomaly

#pkts in timeslot

P (#bytes) = #bytes in anomaly
#bytes in timeslot

(2)

This formula defines the dangerousness criterion as the mean
between the proportion of traffic belonging to the considered
anomaly in terms of number of packets and the proportion
of traffic belonging to the considered anomaly in terms of
number of bytes. This step is designed to reflect the potential
of dangerousness of an anomaly for the normal behavior of the
network. From a general point of view, the bigger DI(anomaly),
the more dangerous the anomaly anomaly is. The Th threshold in
Figure 1 is a threshold applied on the DI value for the considered
anomaly. This dangerousness index is then used for flagging the
most urgent anomalies to the network administrator.

C. Automatic Characterization of Anomalies
At this point, the unsupervised algorithm has identified anoma-

lies containing a set of aggregated traffic flows ∈ Y far from
the rest of the traffic (far in the sense of the used clustering
algorithms, i.e., identifying outliers). Some of these anomalies are
correlated and they are all ranked in terms of dangerousness.
The following and final post-processing step is to produce filtering
rules to correctly isolate and characterize each of these anomalies.
Such a signature could eventually be compared against well-
known signatures to automatically classify the anomaly, or be
integrated into a list of new signatures when no matches are found
(e.g., in the case of detecting a 0-day anomaly, i.e., a previously
unknown one).

To produce such filtering rules, the algorithm selects those sub-
spaces Xn where the separation between the considered anoma-
lous flows and the rest of the traffic is the biggest. We define
two different classes of filtering rule: absolute rules FRA(Y)
and relative rules FRR(Y). Absolute rules do not depend on
the separation between flows, and correspond to the presence of
dominant features in the considered flows. An absolute rule for
a certain feature j characterizing a certain flow set Yg has the
form FRA(Yg, j) = {∀yf ∈ Yg ⊂ Y : xf (j) == λ}, where λ is
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in this case the value of the dominant feature, obtained directly
from the data. For example, in the case of an ICMP flooding
attack, the vast majority of the associated flows use only ICMP
packets, hence the absolute filtering rule {nICMP/nPkts == 1}
makes sense (i.e., λ == 1). On the contrary, relative filtering
rules depend on the relative separation between anomalous and
normal-operation flows. Basically, if the anomalous flows are
well separated from the normal cluster in a certain partition
Pn, then the features of the corresponding sub-space Xn are
good candidates to define a relative filtering rule. A relative
rule for feature j has the form FRR(Yg, j) = {∀yf ∈ Yg ⊂
Y : xf (j) < λ ∨ xf (j) > λ}. Here λ represents a separation
threshold, obtained once again from the data, as explained in
Figure 4. We also define a covering relation between filtering
rules: we say that rule F1 covers rule F2 ⇔ F2(Y) ⊂ F1(Y). If
two or more rules overlap (i.e., they are associated to the same
feature), the algorithm keeps the one that covers the rest.

In order to construct a compact signature of the anomaly,
we have to devise a procedure to select the most discriminant
filtering rules. Absolute rules are important, because they define
inherent characteristics of the anomaly. As regards relative rules,
their relevance is directly tied to the degree of separation between
anomalous and normal flows. In the case of outliers, we select the
K features for which the Mahalanobis distance to the normal-
operation traffic is among the top-K biggest distances. We use
the Mahalanobis distance to consider the variance of the different
features within the distance computation. In the case of small-
size clusters, we rank relative rules according to the degree
of separation to the normal traffic (represented by the biggest
cluster) using the well-known Fisher Score (FS), which also
uses the intra-distance variance within each cluster (normal and
anomalous). To finally construct the signature, the absolute rules
and the top-K relative rules are combined into a single inclusive
predicate, using the covering relation in case of overlapping rules.

V. EXPERIMENTAL EVALUATION IN REAL TRAFFIC

We focus now on the evaluation of the unsupervised detection
algorithm’s ability to detect anomalies located in real traffic trace
from the public MAWI repository of the WIDE project [3]. The
WIDE operational network provides interconnection between
different research institutions in Japan, as well as connections to
different commercial ISPs and universities in the US. The traffic
repository consists of 15 minutes-long raw packet traces collected
daily since 1999. These traces were not originally labeled, but
during the past years, the MAWILab initiative led by Prof.
Kensuke Fukuda4 has been working on the anomaly-related
documentation of these traces. MAWILab [4] uses four anomaly
detectors to analyze the MAWI traffic: a PCA and sketch-based
detector [7], a detector relying on sketching and multi-resolution
gamma modeling [6], a Hough Transform-based detector [5] and
a detector relying on traffic feature distribution changes [8].
Anomaly labels are obtained by combining detection results from
the previously presented approaches. The evaluation is performed
in three steps: firstly, we provide a characterization of the types of
attacks which are present at the MAWI data repository, using the
labels provided at the MAWILab dataset [4]. Then, we present
an example of the execution of the complete system over a single
batch of measurements to help the reader get a better feeling
of the rationales and principles of our technique. Finally, we
perform a more thorough analysis on a subset of the MAWI
repository covering six consecutive years of traffic traces, going
from January 2001 to December 2006. While we acknowledge
that these traces are rather old, we decided to use them because
the associated ground truth is already mature and stable, which
is paramount to conduct a proper evaluation. In any case, the
rationale behind this evaluation is to test the capabilities of our

4www.fukuda-lab.org/mawilab/

system with real traffic, rather than discovering new types of
anomalies in todays’ Internet traffic. This long-term analysis
considers also an evaluation of the sensitivity of the detection
approach to the clustering parameters, as well as an assessment
of the computational time of the analysis.

A. Attacks in the MAWI Dataset
Figure 2 depicts the occurrence of anomalies and attacks over

six years of MAWI traces, from January 2001 to December 2006.
Figure 2a classifies the traffic in terms of attack events, i.e., all the
traffic related to the occurrence of a specific attack or anomaly,
whereas Figure 2b complements the picture in terms of packet
counts. Events are classified in the following macro-categories:
scans, Denial of Service (DoS), normal, and unknown.

The largest majority of the attacking events correspond to
scans. A very well known backdoor worm called Sasser has a
very active period from May 2004 to June 2005, characterized
as a surge of TCP network scans. It is interesting to note
that a very small number of distributed scans account for a
significant quantity of probing packets at the end of 2004:
27% in August, 29% in September, 13% in November, and
25% in December. There is also a surge of ping-based ICMP
network scans that starts in September 2003 and lasts until
December 2003. Anomalous yet no attacking events are also
present in the traces, including (in decreasing proportion): point-
multipoint events, heavy hitter and other events (which, in fact,
are mainly “light hitters”, i.e., point-to-point traffic of less than
1000 packets). The number of unknown events is always bounded
to less than 20%, but these represent a large share of the overall
packet counts, close to 40%.

B. Case Study: one Time Slot in one MAWI Trace
We present now several results associated to the execution of

the unsupervised detection system over a single, 15 seconds long
time slot. The choice of 15 seconds is motivated by the target
of performing the analysis in short-time batches, close to real-
time. The same slot length shall be considered in the rest of the
evaluations. We use the MAWILab trace on April 1st 2004. This
time slot lasts from the 405th to the 420th second in the trace.

Figure 3 depicts the similarity graphs obtained by the Inter-
Clustering Result Association approach, as described in Section
III-B1. The ICLA cluster similarity graphs obtained for flows
aggregated on a destination IP address /24 basis are presented in
Figure 3a. Each vertex is a cluster found in any of the generated
sub-spaces. Each vertex number is the index of a cluster among
the whole cluster set within the clustering ensemble P. The
normal traffic is here circled and it is represented by the vertex
group with the highest number of vertices. Every other group of
vertices is a clique and potentially contains an anomaly. Similarly,
Figure 3b depicts the outlier similarity graph obtained for flow
aggregation at the destination IP address /24 level using the IOA
approach. Each vertex number is the index of the associated
outlier among the complete outliers set within the clustering
ensemble P. Every edge means that the linked clusters or outliers
are similar according to the criteria defined in Section III-B3.
Finally, the same type of ICLA and IOA graphs are built over
the source IP address /24 flow aggregation.

Every connected component which is also a clique is treated
as a potential anomaly. Each potential anomaly is assigned an
index. This index has the following meaning: values between 0
and 99 represent anomalies from clusters found in source IP
address aggregated flows; values between 100 and 199 represent
anomalies from outliers found in source IP address aggregated
flows;, values between 200 and 299 represent clusters found in
destination IP address aggregated flows, and values between 300
and 399 represent anomalies from outliers found in destination
IP address aggregated flows. The choice of 100 anomalies for

www.fukuda-lab.org/mawilab/
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(b) Packet counts.

Fig. 2: Attack events occurrence and packet counts from the MAWILab repository.
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(c) Anomaly similarity graph

Fig. 3: Cluster similarity graph, outlier similarity graph and anomaly similarity graph for destination aggregated data. Anomalies
are easily identified as small cliques.

each type of anomaly source is made under the assumption that
there are less than 100 cliques in each graph, but the indexing
can be simply overruled in case of more detected anomalies.

The next step consists of applying anomaly correlation on
the potential anomalies, to finally identify those flows that are
different from the normal ones and that share the same source
IP address and destination IP address sets. Recall the definitions
introduced in Section IV-A to compute a similarity metric among
potential anomalies. Figure 3c depicts the resulting anomaly
similarities as a graph. In this specific analyzed time slot, the
anomaly correlation results in three edges from the graph. Each
edge represents the link between two similar anomalies, here
anomalies 101 and 300 (outlier in both source and destination IP
address aggregation, i.e., a point-to-point anomaly), 111 and 305
(the same as before), and finally 100 and 205 (outlier in source
IP address aggregation and cluster in destination IP address
aggregation, i.e., a point-multipoint anomaly).

Table II details each of the identified anomalies along with its
type, the segment indexes extracted from ICLA and IOA and
the two signatures detected from both source and destination

Anomaly type Source traffic Destination traffic Source signature Destination signaturesegment index segment index

Few ICMP pkts 111 305 nSrcs = 1, nSrcs = 1,
nICMP/nPkts > λ1 nICMP/nPkts > λ2

Few ICMP pkts 101 300 nSrcs = 1, nSrcs = 1,
nICMP/nPkts > α1 nICMP/nPkts > α2

SYN Net Scan 100 205 nSrcs = 1, nDsts > β1, nSrcs = 1, nDsts > β3,
nSYN/nPkts > β2 nSYN/nPkts > β4

TABLE II: Signatures of anomalies found.

aggregated flows. The term “Few ICMP packets” actually means
that these two anomalies were containing just a few harmless
ICMP packets. Both of these anomalies could have easily been
discarded by an impact estimation based on nPkts/second.

To better understand how the signatures are generated, Figures
4a and 4b depict the results of the characterization phase for
the SYN network scan anomaly. Each sub-figure represents a
partition Pn for which filtering rules were found. They involve
the number of IP sources and destinations, and the fraction of
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Fig. 4: Filtering rules for characterization of the found network
scan in MAWI.

(a) ROC curves of attacking events. (b) Sensitivity curves of alarms.

Fig. 5: ROC curve for attacking events and sensitivity curve
of alarms from 2001 to 2006 with 4 traces by month.

SYN packets. Combining them produces a signature that can be
expressed as (nSrcs = 1) ∧ (nDsts > β1) ∧ (nSYN/nPkts > β2),
where β1 and β2 are the two thresholds obtained by separating
normal and anomalous clusters at half distance, as depicted in
Figure 4. This signature makes perfect sense: the network scan
uses SYN packets from a single attacking host to a large number
of victims. The main advantage of the unsupervised approach
relies on the fact that this new signature has been produced
without any previous information about the attack or the baseline
traffic.

C. Global Evaluation and Benchmarking on the MAWI
Dataset

We present now a deeper and more reliable view of the
global detection results obtained with the unsupervised detection
approach on the MAWI dataset. In particular, we run the
detection system on a large time-span subset of the MAWI
dataset, consisting of four traces randomly selected per month
during six years, from January 2001 to December 2006. The
detection accuracy is evaluated through ROC curves and alarm
sensitivity curves. ROC curves evaluation is the standard statisti-
cal approach used to evaluate a detector or binary classifier. ROC
curves allow the visualization of the trade-off between the True
Positives Rate (TPR) and False Positives Rate (FPR) in a single
curve, as a function of the detection threshold Th, as described
in Section IV-B.

The ROC curve analysis considers the detection of all the
attacking events in the corresponding time span, using the labels
of the MAWILab dataset as ground truth. An attack is assumed
to be correctly detected if at least one of its flows is flagged
as anomalous. The alarm sensitivity evaluation accounts for the
variations of the TPR when changing the anomaly detection
threshold. Figure 5 reports the obtained results. The ROC curve
depicted in Figure 5a shows that the unsupervised detection
system is able to detect more than 95% of the anomalous events
documented by MAWILab. The curve also evidences a constant
and very low rate of false positives across statistical tests, with
a FPR below 1%. This is especially important since it reduces
the risk of alarms saturation for the network operator. In terms
of the TPR sensitivity to the detection threshold, we see that, as
expected, smaller detection thresholds are able to capture more
of the anomalous events, additionally showing that the largest
majority of the attacks are composed by small flows in terms of
packets and transmitted bytes. This is also coherent with the fact

Detector Total # alarms # alarms also in MAWILab % events w.r.t MAWILab
Hough [5] 275419 134920 71%
Gamma [6] 608714 142872 75%
PCA [7] 1375118 145834 77%
KL [8] 24781 24777 13%

TABLE III: Table of alarms reported by each detector and their
respective contributions to MAWILab. MAWILab contains
190375 anomalies from 2001 to 2006.

that most of the attacks in the MAWILab dataset are labeled as
scans.

As a comparison with other papers analyzing MAWI traffic,
we describe the detection results of the detectors [5]–[8] used
in MAWILab [4] in Table III. It is important here to remind
that the MAWILab labels are obtained through consensus among
detectors. This means that every alarm from each detectors is not
necessary considered as abnormal in MAWILab, only a fraction
of alarms are actually classified as anomalies. Table III thus
provides the absolute and relative number of anomalies for each
detector that contributes to MAWILab from 2001 to 2006. The
detector that exhibits the biggest contributions is PCA [7]: 77%
of the documented anomalies in MAWILab have been reported by
this detector. Since our unsupervised anomaly detection system
is able to detect at least one flow in more than 95% of the
anomalies of MAWILab, it has better performance than any of
the detectors used in MAWILab in terms of number of detected
anomalous events. This demonstrates the high accuracy of our
detection approach: it can detect a wide range of anomalies and
obtain results close to the ones obtained in MAWILab through
a combination of multiple anomaly detectors.

D. Comparison to Other Unsupervised Approaches
In this Section we propose to benchmark the detection

capabilities of the proposed system against some approaches
proposed in the past for unsupervised detection of network
attacks and anomalies: DBSCAN-based, k-means-based, and
PCA-based outliers detection. The first two consist of applying
either DBSCAN or k-means to the complete feature space X,
identify the largest cluster Cmax, and compute the Mahalanobis
distance of all the flows lying outside Cmax to its centroid. The
ROC curve is generated by comparing the sorted distances to
a detection threshold. These approaches are similar to those
used in previous work [9]–[11]. In the PCA-based approach,
PCA and the sub-space methods [12], [13] are applied to the
complete matrix X, and the attacks are detected by comparing
the residuals to a variable threshold. Both the k-means and
the PCA-based approaches require fine tuning: in k-means, we
repeat the clustering for different values of clusters k, and take
the average results. In the case of PCA we present the best
performance obtained for each evaluation scenario.

The comparison is conducted using once again MAWI traffic,
but now including real traffic traces from the METROSEC
project [14]. These traces consist of real traffic collected on
the French RENATER network, containing simulated attacks
performed with well-known DDoS attack tools. Traces were
collected between 2004 and 2006, and contain DDoS attacks that
range from very low intensity (i.e., less than 4% of the overall
traffic volume) to massive attacks (i.e., more than 80% of the
overall traffic volume).

Figure 6 depicts the detection performance and false alarm
rates obtained in the detection of attacks in MAWI and MET-
ROSEC traffic. Figure 6a corresponds to the detection of 36
anomalies in MAWI traffic, using l1 flow aggregation level (cf.,
Section III-A). These anomalies include network and port scans,
worm scanning activities (Sasser and Dabber variants), and some
anomalous flows consisting on very high volumes of NNTP traffic.
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(a) MAWI, l1 flow aggregation. (b) MAWI, l2 flow aggregation. (c) METROSEC, l2 flow aggregation.

Fig. 6: True positives rate vs false alarms in MAWI and METROSEC. Comparison to state-of-the-art unsupervised approaches
for anomaly detection.

Figure 6b also corresponds to anomalies in MAWI traffic, but
using l2 aggregation level. In this case, there are 9 anomalies,
including different kinds of flooding DoS/DDoS attacks. Finally,
Figure 6c corresponds to the detection of 9 DDoS attacks in
the METROSEC dataset. From these, 5 correspond to massive
attacks (more than 70% of traffic), 1 to a high intensity attack
(about 40%), 2 are low intensity attacks (about 10%), and 1 is a
very-low intensity attack (about 4%). The detection is performed
using l2 aggregation.

Obtained results permit to evidence the great advantage of
using the proposed approach with respect to previous ones. In
particular, all the approaches used in the comparison generally
fail to detect all the attacks with a reasonable false alarm rate.
Both the DBSCAN-based and the k-means-based algorithms
get confused by masking features when analyzing the complete
feature space X. The PCA approach shows to be not sensitive
enough to discriminate different kinds of attacks of very different
intensities, using the same representation for normal-operation
traffic.

E. Sensitivity Analysis of the Clustering Algorithm
The performance of the detector is directly linked to the

goodness of the clustering step. By goodness we refer to the
ability of the algorithm to produce homogeneous clusters. Re-
member that we use DBSCAN to cluster each of the sub-
spaces of the feature space. As any other clustering algorithm,
DBSCAN has some parameters which constrain its performance;
in particular, DBSCAN uses two parameters which define its
notion of cluster density: the minimum number of patterns which
define a cluster (nbpDBS from now on) and the intra-patterns
maximum neighboring distance ε (or epsDBS from now on).
We therefore evaluate the sensitivity of the detection accuracy of
the complete system to variations on nbpDBS and epsDBS.
Sensitivity analysis is critical as it permits to verify that an
algorithm is able to perform well when used with a wide range
of settings. We conduct the sensitivity analysis on a subset of
the MAWI dataset generated by randomly selecting one trace
for each month between January 2001 and December 2006. As
mentioned before, the ground-truth is provided by the MAWILab
dataset.

The parameter ε defines the neighborhood of a pattern. In
our case, the feature space is normalized for each attribute j,
and the dimension of each sub-space Xn is 2; ε is thus bounded
between 0 and

√
2. When ε = 0, each point is an outlier. On the

contrary, ε =
√

2 guarantees that each subspace contains a single
cluster and no outliers. Figure 7a shows the obtained ROC curves
of the detection accuracy when changing epsDBS between 0.1

(a) ROC curves of events. (b) Sensitivity curves of alarms.

Fig. 7: ROC curve for attacking events and sensitivity curve
of alarms regarding ε (epsDBS).

(a) ROC curves of events. (b) Sensitivity curves of alarms.

Fig. 8: ROC curve for attacking events and sensitivity curve of
alarms regarding the number of points by cluster (nbpDBS).

and 0.3. The neighboring distance epsDBS = 0.15 provides the
best detection performance; epsDBS = 0.2 exhibits a slightly
degraded performance compared to epsDBS = 0.15, and both
epsDBS = 0.1 and epsDBS = 0.3 display much worse results.
Figure 7b shows similar results in terms of TPR variations.

The minimum number of patterns by cluster nbpDBS repre-
sents the minimum number of patterns in the neighborhood of a
considered pattern needed to form a cluster (this neighborhood
being defined by epsDBS); epsDBS is bounded between 2 and
the total number of patterns in the feature space. However, if we
want to correctly find anomalous clusters, we shall use a small
enough value to find small cluster. We therefore choose to test
values between 2 and 20. Figure 8 evidences the lack of influence
of nbpDBS on the detection performance and sensitivity, since
all curves are overlapping. There are several reasons that explain
this behavior. First, the value of nbpDBS has no impact on the
ability of the system to find a normal cluster in each subspace Xn.
Such impact would be noticeable if the selected values would be
high enough to cause the absence of a normal cluster, as defined
in Section III-B4. The chosen values never lead to the absence
of a normal cluster since there is always at least one cluster that
contains more than 20 aggregated flows. Second, the considered
parameter has no influence on whether an anomaly is considered
as detected in the MAWILab dataset. Section III explains that
anomalies can be represented either as clusters or outliers. When
the minimum number of patterns by clusters is too high, an
anomaly does not contain enough flows to form a cluster. In this
case, the anomaly is represented by several outliers. But, from
the point of view of MAWILab, both cases are identical since the
same flows are tagged as anomalous. These two issues explain
the lack of influence of nbpDBS on the detection performance.
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Number of processing slices

Fig. 9: Proportion of execution time for source aggregated
flows clustering (vertical stripes), destination aggregated flows
clustering (diagonal stripes) and other processing time (hori-
zontal stripes), according to an increasing number of process-
ing slices.

F. Computational Time of the Unsupervised Analysis
The last element that we analyze is the computational time

of the unsupervised analysis algorithm. The SSC-based clus-
tering algorithm performs multiple clusterings in N(A) low-
dimensional sub-spaces Xn ⊂ X. This multiple computation
imposes scalability issues for on-line detection of attacks in
very-high-speed networks. Two key features of the algorithm
are exploited to reduce scalability problems in the number of
features A and the number of aggregated flows F to analyze.
Firstly, clustering is performed in very-low-dimensional sub-
spaces, Xn ∈ R2, which is faster than clustering in high-
dimensional spaces [45]. Secondly, each sub-space can be clus-
tered independently of the other sub-spaces, which is perfectly
adapted for parallel computing architectures. Parallelization can
be achieved in different ways: using a single multi-processor
and multi-core machine, using network-processor cards and/or
GPU (Graphic Processor Unit) capabilities, using a distributed
cluster of machines, or combining all these techniques. In
particular, the novel parallel processing programming model
MapReduce [49] and the different big data parallel analysis
frameworks implementing it such as Hadoop and Spark are
perfectly fit to perform the proposed SSC algorithm in parallel.
From now on, we shall use the term ”slice” as a reference
to a single computational entity, independently of the specific
implementation. In the following evaluations, algorithms run on
a desktop machine consisting of an Intel i7 860 CPU with 4 cores
and Hyperthreading, and 8GBs of RAM.

Figure 9 shows the share of the total execution time of the
system between source and destination aggregated flows clus-
tering time (vertical and diagonal stripes) and other processing
time (horizontal stripes), according to an increasing number of
slices. Just as a reference, the total execution time considers the
analysis of the time slot from the 1st to the 15 th second of the
MAWI trace on January 1st 2009. The clustering time of source
aggregated flows is much greater than the clustering time of
destination aggregated flows for any number of used slices. This
is due to the fact that the number of source aggregated flows is
much bigger than the number of destination aggregated flows:
almost 9×103 to about 6×103. The evaluation clearly evidences
that clustering is the most time consuming task of the overall
process. It is therefore pertinent to focus our computational time
analysis on the clustering time.

Figure 10 depicts the Clustering Time (CT) of the SSC-based
clustering algorithm, both (a) as a function of the number of
features A used to describe the aggregated flows and (b) as
a function of the number of flows F to analyze. Figure 10a
compares the CT obtained when clustering the complete feature
space X, referred to as CT(X), against the CT obtained with
SSC, varying A from 2 to 29 features. We analyze a large number
of aggregated flows, F = 104, and use two different number
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Fig. 10: Clustering Time as a function of number of features
and number of flows to analyze. The number of aggregated
flows in (a) is F = 10000. The number of features and slices
in (b) is A = 20 and S = 190 respectively.

of slices, S = 40 and S = 100. The analysis is once again
done with traffic from the MAWI dataset, combining multiple
traces to attain the desired number of flows. To estimate the CT
of SSC for a given value of A and S, we proceed as follows:
first, we separately cluster each of the N = A(A − 1)/2 sub-
spaces Xi, and take the worst-case of the obtained clustering
time as a representative measure of the CT in a single sub-space,
i.e., CT(XSSCwc) = maxn CT(Xn). Then, if N 6 S, we have
enough slices to completely parallelize the SSC algorithm, and
the total CT corresponds to the worst-case (or it is bounded
by the worst-case), CT(XSSCwc). On the contrary, if N > S,
some slices have to cluster various sub-spaces, one after the
other, and the total CT becomes (N%S + 1) times the worst-
case CT(XSSCwc), where % represents integer division. The first
interesting observation from Figure 10a regards the increase
of CT(X) when A increases, going from about 8 seconds for
A = 2 to more than 200 seconds for A = 29. As we said before,
clustering in low-dimensional spaces is faster, which reduces
the overhead of multiple clusterings computation. The second
paramount observation is about parallelization: if the algorithm
is implemented in a parallel computing framework, it can be used
to analyze large volumes of traffic using many traffic descriptors
in an on-line basis; for example, if we use 20 traffic features
and a parallel framework with 100 slices, we can analyze 10000
aggregated flows in less than 20 seconds. Recall that depending
on the aggregation level used in the analysis, this might even
correspond to millions of standard 5-tuple IP flows per second.

Figure 10b compares CT(X) against CT(XSSCwc) for an
increasing number of flows F to analyze, using A = 20 traffic
features and S = N = 190 slices (i.e., a completely parallelized
implementation of the SSC-based algorithm). As before, we can
appreciate the difference in CT when clustering the complete
feature space vs. using low-dimensional sub-spaces: the difference
is more than one order of magnitude, independently of the
number of flows to analyze. Regarding the volume of traffic
that can be analyzed with this 100% parallel configuration, the
SSC-based algorithm can analyze up to 50000 aggregated flows
with a reasonable CT, about 4 minutes in this experience. In
the MAWI traffic analysis corresponding to traces between 2001
and 2006, the average number of aggregated flows in a time slot
of ∆T = 20 seconds rounds the 2500 flows, which represents a
value of CT(XSSCwc) ≈ 0.4 seconds. For the m = 9 features that
we have used (N = 36), and even without doing parallelization,
the total CT is N×CT(XSSCwc) ≈ 14.4 seconds.

VI. CONCLUDING REMARKS

The completely unsupervised anomaly detection system that
we have presented in this paper has many interesting advantages
w.r.t. previous proposals in the field. It uses exclusively unlabeled
data to detect and characterize network anomalies, without
assuming any kind of signature, particular model, or canonical
data distribution. This allows to detect new previously unseen
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anomalies, even without using statistical-learning or human anal-
ysis. Despite using ordinary clustering techniques, the algorithm
avoids the lack of robustness of general clustering approaches
by applying the notions of Sub-Space Clustering. The post-
processing approach permits to construct easy-to-interpret-and-
to-visualize ranked results, providing insights and explanations
about the detected anomalies to the network operator. This allows
to prioritize his time and reduce his overall workload.

We have verified the effectiveness of the overall system to
detect distributed and non-distributed network anomalies in a
completely blind fashion on real traffic from the WIDE net-
work, without assuming any particular traffic model, significant
clustering parameters, or even clusters structure beyond a basic
definition of what an anomaly is. The evaluation on six years of
traffic traces and the sensitivity analysis provide strong evidence
of the accuracy and robustness of the employed techniques to
detect network anomalies. In addition, we have shown detection
results that outperform state-of-the-art approaches for unsuper-
vised anomaly detection.

We have evaluated the computational time of the proposed
clustering algorithm. Results confirm that the system can be
used for on-line unsupervised detection and characterization of
network attacks for the volumes of traffic that we have analyzed.
Even more, they show that if run in a parallel framework, as it
is dictated by the big data analytics tendency today, the analysis
can reasonably scale-up to run in high-speed networks, using
more traffic descriptors to characterize network attacks.

Still, we believe that there are several aspects of the system
which deserve some discussion. The first of these aspects is the
selection of the traffic features for the traffic analysis. The used
traffic features set in this paper is relatively small and indeed
carefully chosen. This may lead the reader to think that the
proposed setup is rather ”ad hoc” and lacks generality. However,
the evaluation results clearly show that our algorithm is able
to discriminate irrelevant and relevant traffic features. In fact,
our approach extracts clusters and outliers that are far from
normal traffic regarding very diverse features. One also needs to
consider the fact that the automatically constructed signatures
(cf. Table I) do not use the same features. This suggests that
adding new features, and among them, irrelevant ones, will
not impact anomaly mining performance. We intend to greatly
increase the number of used traffic features in future work to
introduce generality and verify that the discrimination power is
still preserved.

The clustering techniques also deserve some thoughts. While
the evaluation clearly shows that the detector is efficient in
terms of detection ability, the clustering technique itself looks
perfectible in terms of execution time. SSC combined with ICRA
is indeed able to reliably separate anomalies with different
properties and, in our case, isolate anomalous traffic from normal
flows. However, the computational time analysis clearly shows
that clustering is the most time consuming task. This leads us to
think that the trade-off between accuracy and analysis latency
leans towards the former at the expense of the latter. State-of-the-
art clustering algorithms such as those evaluated in [50] and [51]
might be interesting in our particular approach. These algorithms
would potentially allow to greatly improve the response time
of the system while maintaining, and maybe improving, the
detection accuracy. However, such integration must be carefully
realized in order to preserve the anomaly mining abilities of the
system as proposed in this paper.
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