
HAL Id: hal-01943616
https://laas.hal.science/hal-01943616

Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable Neighborhood Search with Cost Function
Networks To Solve Large Computational Protein Design

Problems
Antoine Charpentier, David Mignon, Sophie Barbe, Juan Cortés, Thomas

Schiex, Thomas Simonson, David Allouche

To cite this version:
Antoine Charpentier, David Mignon, Sophie Barbe, Juan Cortés, Thomas Schiex, et al.. Vari-
able Neighborhood Search with Cost Function Networks To Solve Large Computational Protein
Design Problems. Journal of Chemical Information and Modeling, 2019, 59 (1), pp.127-136.
�10.1021/acs.jcim.8b00510�. �hal-01943616�

https://laas.hal.science/hal-01943616
https://hal.archives-ouvertes.fr


Variable Neighborhood Search with Cost

Function Networks to Solve Large

Computational Protein Design Problems

Antoine Charpentier,† David Mignon,‡ Sophie Barbe,¶ Juan Cortes,S

Thomas Schiex,∗,† Thomas Simonson,‡ and David Allouche∗,†

†MIAT, Université de Toulouse, INRA, Castanet-Tolosan, France

‡Laboratoire de Biochimie (CNRS UMR 7654), École Polytechnique, 91128 Palaiseau, France

¶INRA-INSA 792,CNRS-INSA 5504, LISBP, Toulouse, France

SLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

E-mail: thomas.schiex@inra.fr; david.allouche@inra.fr

Abstract

Computational Protein Design (CPD) aims to predict amino acid sequences that fold to a specific

structure and perform a desired function. CPD depends on a rotamer library, an energy function and

an algorithm to search the sequence/conformation space. Variable Neighborhood Search (VNS)

with Cost function networks is a powerful framework that can provide tight upper bounds on the

global minimum energy. We propose a new CPD heuristic based on VNS, where a subset of the

solution space is explored (a “neighborhood”), whose size is gradually increased with a dedicated

probabilistic heuristic. The algorithm was tested on 99 protein designs with fixed backbones,

involving nine proteins from the SH2, SH3, and PDZ families. The number of mutating positions

was 20, 30, or all amino acids, while the rest of the protein explored side chain rotamers. VNS

1

thomas.schiex@inra.fr
david.allouche@inra.fr


was more successful than Monte Carlo (MC), Replica Exchange MC and a heuristic steepest-

descent energy minimization (SDH), providing solutions with equal or lower best energies in most

cases. For complete protein redesign, it gave solutions 2.5 to 11.2 kcal/mol lower than the other

approaches. VNS is implemented in the toulbar2 software. It could be very helpful for large

and/or complex design problems.

Introduction

Computational protein design (CPD) is an important developing tool in biotechnology, with possi-

ble applications in drug design, green chemistry, biomaterials, bioenergy and beyond. It is also an

attractive approach to understand protein structure-function relationships.

The method starts from a particular protein sequence and structure and amino acid positions

are iteratively selected and allowed to mutate so as to optimize a desired property, such as protein

stability or ligand binding. In recent years, CPD has led to proteins with optimized thermostability

and solubility,1,2 novel ligand-binding,3–5 novel enzyme activity,6–8 and completely redesigned

sequences.9

CPD methods are characterized by an energy function, a description of conformational space,

and a search method to explore sequences and conformations. If many amino acid positions are

allowed to mutate, the problem becomes enormous, and so efficient energy functions and powerful

search methods are required. Many applications rely on a molecular mechanics energy function

and a simple implicit solvent model, such that the energy function takes the form of a sum over

amino acid pairs. While recent works try to better represent the flexibility of proteins at the cost of

increased computational complexity,10 conformational space is usually defined by a fixed protein

backbone and a discrete library of rotamers for each amino acid side chain. The unfolded state is

usually treated implicitly, through a set of amino acid chemical potentials. Even with these drastic

simplifications, the space to explore can be huge and the optimization problem remains NP-hard.

Thus, with n mutating positions, twenty allowed amino acid types, an average of 12 rotamers per

2



side chain type as in the Tuffery rotamer library,11 and a total of N amino acids, the number of

possible states is 12N × 20n.

The goal of CPD is usually to identify a small collection of low energy solutions, which can

be experimentally tested. For some applications, it is important to sample large numbers of low

energy states, or to enumerate all the states within a given energy window. This allows thermody-

namic properties to be estimated, such as ligand binding free energies or acid/base constants. This

can be achieved using ε-guaranteed algorithms such as TopN12 and K∗,4,13 later improved with

CFN algorithms14–16 or extended to affinity-based sequence optimization.17 Or it can be achieved

using Monte Carlo based approaches18–21 with only asymptotic guarantees in the limit of infinite

sampling. For other applications, a few solutions are sufficient, which can then be refined or mod-

ified manually using expert knowledge and/or experiments. To evaluate the quality of sampled

sequences and conformations, an important goal is to identify, when possible, the global minimum

energy sequence and conformation, referred to as the GMEC. The GMEC is an important candi-

date solution in its own right, and it also serves as a reference, indicating the energy range that

should be sampled by good solutions.

With a given energy function and conformational space, the quantity and quality of sampled

states are determined by the exploration method. Several classes of methods exist. Simulated an-

nealing with Monte Carlo (MC) is very common; by performing multiple runs one expects to sam-

ple a collection of low energy solutions, and to reach the GMEC in the limit of a very long run.22

However, in practical situations, there are no guarantees and few theoretical results on convergence

and the nature of the sampled ensemble. Related methods with similar properties include genetic

algorithms23 and a steepest descent heuristic (SDH24–26) with multiple restarts. A second class

of methods uses MC or Replica Exchange MC (REMC).19,27–29 These methods efficiently sample

very large numbers of states according to a Boltzmann distribution, which provides rigorous ther-

modynamic properties. Although convergence to the Boltzmann distribution is only guaranteed in

the infinite limit,30 it is common to observe numerical convergence over long runs for many small-

and medium-sized problems. Assuming convergence, one then obtains tight confidence intervals

3



for average properties such as rotamer probabilities, binding free energies or sequence profiles.

A third class of exploration methods aims to provably identify the GMEC and possibly states

within a small energy window above it. Cost function networks31–34 are one framework that can

provably find the GMEC. However, the problem being NP-hard, success is not guaranteed within

a reasonable computing time. In practice, state-of-the-art CFN algorithms use branch-and-bound

search and tight incremental bounds to solve large design problems. The search is separated in

two phases: in a first phase, increasingly good solutions are found until the optimal solution is

found. In a second phase, search is proving that this solution is optimal (no better solution exists).

When the search is interrupted because of a cpu-time limit, one usually says that optimality was

not proven: for sure the last phase was not finished (possibly not even started). With the Rosetta

energy function35,36 and the Dunbrack rotamer library,37 the full design problem, where all amino

acids were allowed to mutate, could be solved for proteins of about 100 amino acids.38 Comparable

performances were obtained with a molecular force field and an EEF1 solvent model.32 In recent

experiments with the same force field but a different solvent model and rotamer library, the GMEC

was usually found and proven for problems where 20 positions could mutate and up to 96 other

could change rotamers.29 For larger problems, CFN algorithms were not able to prove optimality.

In this work, we propose a new approach for large protein design problems that combines the

capacity of CFN algorithms with a so-called Variable Neighborhood Search (VNS): a stochastic

optimization algorithm originally defined in Operations Research.39 The idea is to select a subset

of amino acid positions and identify the GMEC for these using CFN algorithms, with the others

held fixed. A new subset is then chosen, and so on, until the energy cannot be improved in a

reasonable time. We will refer to the subset of positions as the mutator subset or simply the

mutators. Given a current selection of mutators, its neighborhood designates its design space: the

collection of designs that can be reached by changing the amino acid identity or rotamer of one or

more mutators. The mutator optimizations are done with CFN. With a mutator number of one or

two, VNS can be seen as MC in the low temperature limit. We will typically use larger mutator

numbers, and will compare several methods to choose the mutators, which can be deterministic,

4



probabilistic, or structure-based.

Below, we describe the CPD context and the VNS procedure, including the CFN framework

and the VNS search. Next, we evaluate several variants of the VNS method on nine small proteins

from the SH3, SH2, and PDZ families. The VNS variants are compared to each other and to results

obtained here and earlier with SDH, MC, and REMC.29 Finally, we discuss the potential impact of

the method in CPD.

Theoretical framework

The CPD problem

In this work, we assume a “pairwise decomposable” energy function,40 a fixed protein backbone,

a discrete library of amino acid side chain rotamers. The pairwise energy function describes the

energy of the molecular system of interest as a sum of terms, each of which depends on the relative

positions of at most two atoms or atom groups. In the CPD case, this reduces to pairs of side-chain

conformations. In this context, CPD typically searches for sequences that optimize the folding en-

ergy, namely the difference between the energies of the folded and unfolded states. The unfolded

state is usually not explicitly modeled but captured by a sum of fitted terms, each of which depends

on the amino acid type at one position. With these assumptions, a sequence-conformation is de-

fined by a vector r whose components ri are integer numbers that indicate the side chain type and

rotamer at amino acid position i. The folding energy of a sequence-conformation can be written

as:

E(r) = Ebb +
∑
i

E(ri) +
∑
i<j

E(ri, rj) (1)

Ebb is the energy of the protein backbone. E(ri) describes intra side chain and side chain-backbone

interactions, and contains a contribution from the unfolded state. E(ri, rj) is a side chain-side

chain interaction. All these terms can be pre-computed and stored in an energy matrix. In some

applications, the backbone term Ebb may also include contributions from side chains that are not

5



allowed to move or mutate.

Cost Function Networks

Cost function networks were introduced in Constraint Programming for discrete optimization. The

problem is to minimize a cost function that depends on many discrete variables,41 a problem known

as Weighted Constraint Satisfaction. The total cost is a sum of simpler terms, also called cost

functions, that each depend on just a few variables. The problem of finding the GMEC can be

reduced to this problem, as shown by the form of the CPD energy, Eq. (1). The CFN variables

represent side chain types and rotamers. The CFN cost functions represent energy contributions,

and the total cost function represents the folding energy. Formally, using the terminology of protein

design, a CFN can be defined as follows:

Definition 1. A CFN (R,W ) is defined by:

• a setR of rotamer variables ri, where i is an amino acid position; i ∈ {1, . . . , n} def
= I . Each

ri takes its values in a finite domain Di (a list of side chain types and rotamers).

• a set W of cost functions wS , each involving a set of rotamer variables {ri|i ∈ S}, S ⊆ I .

We denote DS =
∏

i∈S Di the Cartesian product of the domains of all the variables indexed in

S ⊆ I . A vector of DI represents an assignment of all the variables (types and conformation), in

other words a sequence-conformation. It will be denoted rI or simply r. A vector of DS will be

denoted rS .

The total cost w(r) of a sequence-conformation r is defined as the sum over all cost functions:

w(r) =
∑
W

wS(rS) (2)

Here, rS is the projection of r onto S, while w(r) could also be written wI(rI). The total cost

can be identified with the CPD folding energy. A cost function that depends on a single variable,

say w{i}, is called a unary cost function; it corresponds to a term E(ri) in the folding energy. A

6



cost function that depends on two variables ri, rj is called a binary function; it corresponds to a

term E(ri, rj). The backbone energy Ebb can be viewed as a cost function that has no variable-

dependence or equivalently depends on an empty set of variables: Ebb ≡ w∅. The optimization

problem is to identify a sequence-conformation r that gives the minimum total cost.

Guaranteed CFN solving

The Weighted Constraint Satisfaction problem can be solved using various algorithms, the most

usual being a guaranteed branch-and-bound algorithm42,43 that combines best and depth-first searches

with tight incremental lower bounds. These algorithms rely on the representation of the space DI

of sequence-conformations as a binary tree. The root of the tree is associated with the original

CFN. Any node in the tree has two children obtained by choosing both a variable ri and a value

ρ in its domain. The left child is a new CFN with ri set to ρ (Di becomes {ρ}). The right child

is a CFN where ρ has been removed (Di becomes Di\{ρ}). The leaves of this tree correspond to

CFNs with all variables assigned to a distinct state rI ∈ DI . Together, they represent the complete

set DI and their energies. Because this tree has guaranteed exponential size, it is never explored

fully. Instead, the algorithm relies on the energy of the best solution (leaf) found so far as a global

upper bound on the energy of the GMEC. It computes a lower bound on the energy of the CFN

associated with the current node using so-called “local consistency-enforcing algorithms”.44 These

algorithms reformulate a CFN in an equivalent CFN that gives direct access to a non-naive lower

bound on the optimum energy. If at a given node, this local lower bound is equal to or larger than

the global upper bound, the exploration of the branch is stopped. Depth-first search will then back-

track and explore the most recent unexplored branch, with the guarantee that the optimal solution

cannot be missed. Figure 1 shows a complete binary tree of depth 4.

Partial tree search with limited discrepancies

The amino acid position i and the rotamer value ρ chosen for testing at each node determine the

precise tree structure. In practice, the branch-and-bound algorithm spends only a minor fraction

7



of its time to find the optimal leaf and the rest to prove optimality. Because we are not focused

on guaranteed optimization, we used a partial-tree search mechanism called “Limited Discrepancy

Search” (LDS)45 which we now rapidly describe: LDS assumes that for every position i, a rotamer

value ρ0 ∈ Di that most likely participates in a low energy solution can be determined heuristically.

A branch in the tree that sets ri to a rotamer different from ρ0 is called a discrepancy. LDS is

parameterized by a bound δ on the maximum number of discrepancies that are allowed in any

explored branch. With δ = 0, a single branch defined by the heuristically chosen rotamers is

explored. With larger δ bounds, an increasingly large fraction of the tree can be explored. When

δ = n (the number of positions in the protein sequence), all branches can potentially be explored.

To obtain good solutions, Fontaine et al.46 proposed setting the number δ of allowed discrepancies

to three or less. This gave a good balance between computational cost and quality on several large

benchmark problems. The size of the partial tree that can be explored scales as (k+δ)δ+1,47 where

k is the number of mutators. In practice, because of the tight lower bounds provided by CFN local

consistencies, only a tiny unpredictable fraction of this is explored. Beyond the lower bound, local

consistencies also provide, for free, the preferred rotamer ρ0 ∈ Di that is needed by LDS: this is

the so-called “support” as defined by Cooper et al.,44 in Definition 4.5. It is at least guaranteed to

have a minimum one-body energy.

Variable Neighborhood Search overview

The fundamental mechanism driving VNS is a local search within the neighborhood of a given

state, or sequence-conformation r ∈ DI . Neighboring states are ones obtained by changing one

or more types or rotamers of r. The amino acid positions allowed to mutate are the mutators. If

the best state r′ within the neighborhood has a better energy than r, it is adopted and the process

is repeated. Such a local search will eventually be trapped in a local minimum. VNS then restarts,

using a new, larger set of mutators and thus a larger neighborhood.

VNS iteratively performs three steps. In the first step, a subset K of k(i) amino acid positions

are selected randomly to be mutators. The number k(i) is drawn from a sequence of integers, in-

8



Figure 1: A binary search tree with four amino acid positions with two possible rotamer values each. At
the root node, an unassigned position (r1) is chosen and either assigned a chosen rotamer (left branch) or
this rotamer removed from the domain (right branch). If one uses δ = 2 in LDS, the dashed branches on
the rightmost parts of the tree and subtrees can never be explored. For δ = 0, the only branch explored
always follows left branches, defining an initial “greedy” candidate solution, which energy already provides
an upper bound on the GMEC energy.

dexed by i, which depends on the current iteration number. For example, k(i) could be drawn from

a Luby sequence, defined below. In the second step, a search in the corresponding neighborhood

yields a new solution r′. In the third step, if r′ has a lower cost, it replaces r and the number of

mutators is reset to its initial value k(0); otherwise, i is incremented and the next mutator number

in the sequence will be used. The algorithm is shown in Fig. 2. For neighborhood exploration,

we use a partial LDS, depth-first, branch-and-bound algorithm that exploits local consistencies for

both energy bounds and the heuristic choice of rotamers.

Neighborhood growth

At the end of each VNS iteration, the number of mutators is modified according to the sequence

k(i). If the latest iteration was successful (energy improvement), i is reset to 0 and the algorithm

shifts back to the beginning of the mutator number sequence. If not, i is increased. The simplest

mutator number sequence is defined by k(i + 1) = k(i) + 1. This is called the k++ sequence.

Because LDS complexity can rapidly increase with the mutator number, it seems more suitable

9



Figure 2: Variable Neighborhood Search procedure with mutator sequence k(i). The protein back-
bone is shown on the left as a chain of gray beads, representing amino acid residues. In step (1), we
choose a subset of k(i) mutators (blue positions in the middle). In step (2), their amino acid types
and rotamers are optimized, with the other positions fixed. The new types/rotamers are colored on
the right. In step (3), if the energy has improved, the next iteration will use a mutator number k(0).
Otherwise, the next mutator number in the sequence will be used.

Algorithm 2: The VNS schema: an initial sequence-conformation r is generated by a greedy
assignment of variables (line 1). VNS iterates until the mutator number k reaches n or the
runtime exceeds a limit (line 3). k(i) mutators are selected (line 4). The corresponding
rotamer variables are optimized (the other rotamers being fixed) using limited discrepancy
search. If the energy was improved, we shift back to the start of the mutator number sequence;
otherwise, the next mutator number will be used.

Function VNS/LDS+CFN(R,W, δ)
1 r ← genInitSol() // initialize sequence-conformation

2 i← 0 // i: progress in the mutator sequence

3 while (k ≤ n) ∧ (not T imeOut) do
4 select a subset K ⊂ I of k(i) mutators // their rotamers are rK

5 use LDS+CFN.Search to select new rotamers r′K
// The sequence-conformation is now r′ = r′K + rI\K

6 if w(r′) < w(r) then
7 r ← r′

8 i← 0 // Shift back to initial mutator number

9 else
i← i+ 1 // next mutator number

10 return r

10



to only increase it if smaller neighborhoods have been sufficiently explored. The simplest way

to achieve this would be to increase the mutator number less frequently. With this aim, we have

explored a new update rule based on the Luby series,48 defined by:

If i+ 1 is a power of 2, and i = 2t − 1, then luby(i) = 2t−1

If not, and 2t−1 ≤ i < 2t − 1, then luby(i) = luby(i− 2t−1 + 1)

where t is the solution of the equation in the left part of either of the conditions above. This

expression defines the following sequence for luby(i): {1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,. . .} In this

series, powers of 2 are spaced increasingly and irregularly. We then defined a mutator sequence

km(i), parameterized by its initial value km(0) and a constant integer m. If luby(i) = 2m, we

increase the mutator number by one; otherwise, we keep the previous mutator number:

If luby(i) = 2m, k(i) = k(i− 1) + 1

Otherwise, k(i) = k(i− 1)

With the smallestm value (m = 0), the increase of the mutator number is maximum, but it is already

slower than the k++ rule, with a sequence of increments {1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,. . .}. With

a largerm, the mutator number increases even more slowly. With a slower increase, the probability

is higher that any amino acid position will be considered as a mutator before larger neighborhoods

are considered. Thus, local energy improvements are more likely to be found earlier.

Structure-based versus random mutator sets

The default VNS approach draws the k mutator positions from a uniform random distribution. In

the CPD context, we expect that the protein 3D structure can guide a more efficient heuristic. The

first mutator was always taken from a uniform distribution. The remaining mutators were chosen

using a deterministic or a probabilistic scheme. The deterministic scheme used the nearest neigh-

bors of the first mutator, based on the distances between side chain Cβ atoms. In the probabilistic

schemes, the remaining mutators were sampled either uniformly at random or with a probability

11



pi that decreased with distance in the 3D protein structure:

pi ∝
1

di
(3)

where di is the distance of position i from the first mutator. This last heuristic will be denoted

d-prob.

VNS heuristics

By combining a specific mutator number sequence with neighborhood growth heuristics, we ob-

tained six different VNS heuristics. The mutator number sequence was given either by the k++

or the Luby-based sequences. The neighborhood growth was done either with a uniform random

method, a nearest neighbor method, or a d-prob method. The various heuristics are represented as

leaves of the tree in Figure 3.

k++

random d-prob k-nearest

km(i) (Luby)

random d-prob k-nearest

Figure 3: Representation of six different VNS heuristics defined by the mutator number sequence
used and the neighborhood growth method used.

Numerical methods

Models and test cases

To evaluate VNS in the CPD context, we used test problems from earlier work.29 They were based

on nine protein domains, from the SH3, SH2 and PDZ structural families in Table 1. For each do-

main, the energy matrix was computed with the Proteus CPD package,26 using the Amber ff99SB

12



molecular mechanics energy function, a Coulomb Accessible Surface Area (CASA) implicit sol-

vent model29,49 and the Tuffery rotamer library.50 The model represents a good balance between

accuracy and computational effort.51 The first nine test problems (Full tests) corresponded to the

full redesign of each protein, except for GLY and PRO residues, which were not mutated. Addi-

tional test problems corresponded to the redesign of 20 or 30 amino acid positions in each protein

(N20 and N30 tests, respectively). Five choices of mutating positions were considered in each case.

The positions were close together in the 3D structure. amino acids that were not allowed to mutate

kept their wild type amino acid types, but were allowed to explore all possible rotamers. The test

set contained 9 × (5 + 5 + 1) = 99 problems in total. The search space size for each problem is

the product of the total number of types and rotamers allowed at each amino acid position. These

sizes ranged from 1061 to 10229.

Table 1: Protein set for testing.

Type Name PDB Length Vars.a

PDZ NHERF 1G9O 91 76
PDZ Syntenin 1R6J 82 72
PDZ DLG2 2BYG 97 82
SH3 Abl 1ABO 56 48
SH3 Crk 1CKA 57 49
SH2 Syk 1A81 108 92
SH2 Grb2 1BM2 98 88
SH2 Zap70 1M61 109 88
SH2 Src 1O4C 104 96

a The number of amino acids, excluding Gly and Pro.

Numerical protocols

The six VNS heuristics were implemented in the toulbar2 CFN solver. The C++ code of toulbar2

is available under an MIT license at https://github.com/toulbar2/toulbar2. For each test problem,

we applied VNS with the six heuristics described above (Fig. 3). The initial number of mutators

was k(0) = 4 with a fixed discrepancy value of 3, a value set according to results previously

obtained on a large collection of problems (not including these) in The Probabilistic Inference

Challenge (PIC2011)(http://www.cs.huji.ac.il/project/PASCAL/). For the Luby based variants,

13

https://github.com/toulbar2/toulbar2
http://www.cs.huji.ac.il/project/PASCAL/


the parameter m was set to 3, based on short test runs on 20 instances randomly picked in the

FULL, N20 and N30 set of the 1CKA and 1ABO proteins (over 990 overall). We imposed a CPU

time limit of two hours. To estimate variability, ten runs were done for each test problem, with

different initial random seeds.

The results were compared to those obtained by three other search methods:29 Monte Carlo

(MC), Replica Exchange Monte Carlo (REMC), and a multi-start, steepest-descent minimization

heuristic (SDH). The results for the MC runs and the N20 and N30 REMC runs were presented

in previous work. The SDH and the Full REMC runs are reported here. The SDH method uses a

large number of “minimization cycles”. In each cycle, a random sequence-conformation is chosen,

then the energy is minimized, one residue at a time, with the others fixed in their current state. The

entire sequence is scanned repeatedly this way until the energy no longer improves, ending the

cycle.29

The new REMC runs used an improved selection of two-position moves (which provides better

results than the selection strategy used earlier29). The new SDH runs used a slightly modified treat-

ment of histidine residues, allowing multiple protonation states. All these results were obtained

with the Proteus software,26 using the following settings:

• MC: The simulation temperature was constant and corresponded to a thermal energy of kT

= 0.2 kcal/mol. The simulations lasted 109 steps and never exceeded 9 hours.

• Steepest descent heuristic (SDH): Each run included 110,000 minimization cycles, except

for a few cases that were extended to 330,000 or 990,000 cycles; run times did not exceed

24 hours.

• REMC: The REMC runs used eight replicas and 0.75 x 109 MC steps per replica. The

thermal energies of the replicas were spaced in a geometric progression between 0.125 and 2

or 3 kcal/mol. The total CPU time per core was never more than 3 hours, for a total cpu-time

on an 8-core machine of 24 hours at most.29

For each test we computed the difference ∆E = EProteus−EVNS between the best energy obtained

14



with the Proteus protocols and the best VNS energy. A positive value indicates an improvement

with VNS. For the nine Full tests, new REMC runs were performed here. The new runs used an

improved selection of two-position moves (which provides better results than the selection strategy

implemented in previous work29).

Results

Qualitative analysis

For a given VNS heuristic and category of problems (Full, N30, or N20), Table 2 reports the

frequency of improvement (∆E > 0) and stagnation (∆E = 0) over all runs and test problems.

All six VNS variants provided energies of the same or better quality than MC+REMC+SDH for

most of the tests, especially for the larger tests. On the easiest category (N20), the energy was

unchanged for about 2/3 of the tests and improved for about 30%, with a mean improvement of

about 0.1 kcal/mol. Indeed, for most of the N20 tests, MC+REMC+SDH found the GMEC,29

which cannot be improved. On the most difficult, Full category, the best VNS methods improved

over MC+REMC+SDH in 94–99% of the cases, with a mean energy improvement of about 3±1

kcal/mol. The best VNS energies, overall, were given by the Luby/d-prob heuristic.

Table 2: Frequency of energy improvement with VNS: each row represents a VNS heuristic and
reports the percentage of runs in which the energy improved (+) or was unchanged (0) compared
to SDH+MC+REMC.

Full N30 N20
VNS + 0 + 0 + 0
Luby/d-prob 98% 0% 65% 31% 31% 68%
Luby/random 99% 0% 63% 31% 31% 69%
Luby/nearest 94% 0% 60% 31% 28% 66%
k++/d-prob 80% 0% 56% 27% 27% 66%
k++/nearest 80% 0% 54% 21% 21% 62%
k++/random 76% 0% 56% 25% 25% 67%

15



Quantitative analysis

For each VNS heuristic H and test problem P , we averaged the energy gain over the ten runs; the

result is denoted ∆E(H,P ). The standard deviation over the runs is denoted σ(∆E)(H,P ):

∆E(H,P ) =
1

10

10∑
r=1

∆E σ(∆E)(H,P ) =

√√√√ 10∑
r=1

(∆E(r)−∆E(H,P ))2

9
(4)

For each heuristicH and problem categoryC, we computed the average of ∆E(H,P ) and σ(∆E)(H,P )

over the corresponding tests, denoted 〈∆E〉C and 〈σ(∆E)〉C . The results are given in Table 3 and

shown as a scatter plot in Figure 4.

Table 3: Averages 〈∆E〉C of the mean energy improvement, compared to MC+REMC+SDH, over
the test category C, and average 〈σ(∆E)〉C of its standard deviation.

Full N30 N20
VNS 〈∆E〉C 〈σ(∆E)〉C 〈∆E〉C 〈σ(∆E)〉C 〈∆E〉C 〈σ(∆E)〉C
Luby/d-prob 3.17 1.03 0.77 0.35 0.15 0.01
Luby/random 2.95 1.06 0.76 0.32 0.15 0.01
Luby/nearest 2.78 1.36 0.69 0.33 0.13 0.07
k++/d-prob 0.77 2.40 0.59 0.47 0.13 0.11
k++/nearest 1.03 2.21 0.43 0.59 0.10 0.20
k++/random 0.55 2.47 0.58 0.48 0.14 0.05

Luby/d-prob is the best method, offering both quality and reliability in most test categories

and especially in the most challenging “Full” category. In this category, the results of k++ and

Luby are clearly separated. Luby outperform k++, providing better energies and smaller standard

deviations, especially with the structure-based neighborhood growth heuristic d-prob.

For the N20 set, we used toulbar2 to identify proven GMECs using options -dee: -d:

-l=3 -m=2.32 Using the best solution provided by the VNS heuristics as an initial upper bound,

toulbar2 was able to prove the optimality of 36 out of the 45 instances within a 72 hours time-

out but never improved over the best VNS solution. Over this set of 36 instances with a proven

GMEC, VNS with Luby/d-prob found the GMEC in 357 of 360 runs (99.1%). For the 3 remaining

designs, the best solution could not be improved and no optimality proof reached within the 72

16



Figure 4: Average and standard deviation of the average energy improvement using different VNS
heuristics and test categories. The average and standard deviation for a VNS method H and a test
category C (Full, N30, N20) were computed over all the tests in C. Blue and green colors are
respectively associated with k++ and Luby mutator growth methods. Squares, circles and triangles
are respectively associated with k-nearest, random, and d-prob position selection. Each category
is highlighted by an ellipsoid.

17



hours timeout. SDH reached the GMEC in 25 of the 36 cases. When all N20 instances are consid-

ered, VNS improved over (SDH+MC+REMC) in 14 cases, with improvements ranging from 0.04

to 1.39 kcal/mol. While the average improvement was very small over N20, there were no runs

with ∆E < 0.

VNS Luby/d-prob also gave the best results on N30, offering improved energies for almost

2/3 of the N30 tests, including nine improvements by more than 1.5 kcal/mol. The best energy

improvement obtained over all runs and problems was 5.4 kcal/mol.

To see how the results of the best VNS (Luby/d-prob) distribute over the different test problems,

we show a box-plot of the distribution of ∆E over the nine Full tests in Figure 5 (boxplots for the

N20 and N30 datasets, on a per instance basis, are available as Figures S1 and S2). If we consider

the best VNS runs (among the 10 runs per test), the energy improvements ranged from 1.3 to 11.2

kcal/mol. In 8 cases out of 9, the median energy obtained with VNS Luby/d-prob also improved

over the best energy obtained by MC+SDH+REMC with a maximum of 11.2 kcal/mol for 1G90.

The worst median ∆E was obtained on 1A81, with a value -0.30 kcal/mol. In this case, both the

average and maximum improvements remained positive (respectively, 0.2 and 2.5 kcal/mol).

Optimality proof for side chain positioning

VNS does not provide an optimality proof for its best solution, which may not be the GMEC. As

a partial optimality test, we considered the Full tests and asked whether for the obtained sequence,

the obtained side chain rotamers were indeed optimal. Using Luby/d-prob, for every test problem,

an optimal side chain positioning was found among the 10 runs. In the MC+REMC+SDH tests,29

the optimal side chain rotamers were obtained only for five of the nine Full instances.

Over all problem categories and all runs, Luby/d-prob appears to improve conformational sam-

pling, since 91% of all lowest-energy sequences corresponded to optimal side chain positions. As

another test of reliability, we restarted sequence optimization from the best VNS solutions using

the Hybrid best first search algorithm42 (toulbar2 command line with no options) and with a previ-

ously published Depth First Search protocol32 (both available in toulbar2). After 24 hours timeout

18



Figure 5: Box plot of ∆E values with VNS Luby/d-prob from ten runs on each Full test.

with each protocol, none of these did provide any energy improvement, suggesting that the VNS

energies were already very good. No optimality proof could be obtained either.

Neighborhood growth speed

We compared the k++ and Luby neighborhood growth sequences during the VNS searches. We

considered the nine Full problems. The histogram of mutator numbers used in the VNS searches

is shown in Figure 6. With k++, the mutator number increased rapidly to sizes that define very

hard subproblems. Using Luby, with the parameter m = 3, neighborhood growth was slower and

energy exploration more effective. The largest mutator sets included about 40 amino acids, which

is fewer than the average number of residues within 14 Å of a given amino acid residue. With

Luby, seven times more subproblems (or nodes) were explored on average. The largest mutator

numbers were 49 and 40, respectively, with k++ and Luby. The median mutator number was 8

with both methods.

19



Figure 6: Histogram of the mutator numbers explored during the Full design tests using the k++

(blue) or Luby (green) sequences.

Computational efficiency

As shown in Figure 7, the average time by run is similar for all the VNS heuristics and is around

10, 15 and 50 minutes for respectively the N20, N30 and FULL cases. The use of the Luby-

based heuristic has a limited effect on the run time. However, it does increase the probability of

identifying the GMEC (without proving optimality). An indicative rate of best solution recovery

is provided in Table S1.

With the Luby/d-prob strategy, and considering only “FULL” instances, Table 4 shows that

the average time to obtain the best solution for the considered proteins ranges between 14 and 88

minutes. The observed variability is clearly related to the different sizes of the proteins and is

very likely also influenced by the interaction terms defined by the energy functions for each of the

considered proteins.

In comparison,29 SDH and REMC methods maximum run times reached almost 24 hours of

sequential cpu-time (REMC using at most 3 hours on 8 cores). MC maximum run time was close

to nine hours.

20



Luby /d-prob Luby Luby/ nearest random nearest d-prob
0

5

10

15

20

25

30

35

40

45

50

FULL

N30

N20

m
in

u
te

s

Figure 7: Average run times in minutes on FULL (blue circle), N30 (orange cross) and N20 (green
triangle) for each considered heuristic.

Table 4: Family, PDB identified, problem size (number of variables) and CPU times (in minutes)
for the full redesign of each protein, averaged over ten runs using Luby d-prob.

Family PDZ SH2 SH2 SH2 SH2 PDZ PDZ SH3 SH3
PDB 1A81 2BYG 1O4C 1M61 1BM2 1R6J 1G9O 1ABO 1CKA
#. vars 92 97 96 88 88 72 76 48 49
〈 cpu 〉 74±24 70±34 55±14 50±18 49±18 45±23 37±20 15±7 11±3

Concluding discussion

Cost function networks and their algorithms, implemented in Toulbar2, define a powerful frame-

work for large CPD problems, able to provably obtain the GMEC for large problems in short

times. For other problems that are too large for the GMEC to be found, we would nevertheless

like to exploit the power of CFNs. This is done here by applying CFN optimization to a series of

subproblems, whose size is gradually increased until the energy does not improve further. This it-

erative approach is referred to as Variable Neighborhood Search, and has been extensively used for

other discrete optimization problems.52,53 The key parameters of the method are the sequence of

subproblem sizes and the detailed method for choosing the subproblems. Here, we defined a subset

21



of mutator positions and we increased their number with the help of a Luby integer sequence.

The best strategy for choosing the mutators was a random one (d-prob) that choses with a high

probability positions close together in the 3D protein structure. This strategy appears to balance

the need to distribute mutators throughout the structure and the need for concerted rearrangements

of groups of nearby amino acids in order to optimize packing and lower the folding energy. In this

respect, our VNS strategy contrasts with heuristic schemes like SDH, where individual positions

are optimized, or Monte Carlo where one or two amino acids are changed at a time. The largest

energy improvements in our tests occurred when there were 4–8 mutators. Thanks to the CFN

optimization, these positions are rigorously optimized, and all relevant concerted rearrangements

are taken into account.

The largest CPD problems where Toulbar2 identified the GMEC38 used the Talaris force field

distributed with Rosetta, where different distance cutoffs are applied to different energy terms, be-

tween 6 and 10 Å. The problems considered here used a larger energy cutoff, which presumably

makes the energy surface more rugged and complex, hence the need for a complex, multi-position

exploration. It may be that a simplified energy function with an aggressive cutoff could be used to

guide the VNS method, for example to choose the detailed structure of the search tree. The full en-

ergy function would then be optimized with the help of the resulting tree. For non-globular proteins

that have an elongated structure, a smaller energy cutoff could make the problem decomposable

into subproblems that interact only through few amino acids. The VNS heuristics developed in this

paper could be extended to exploit such situations.

Because of its increased efficiency, our method can be highly useful in various CPD contexts.

The benchmarked problems used Tuffery’s rotamer library50 with 248 rotamers for a fully mutable

residue. Since intensive CFN algorithms are only applied on relatively small subproblems in VNS,

there is no visible reason that would preclude the use of VNS and the proposed heuristic with

denser rotamer libraries37 or energy-based conformer libraries.54

More generally, whether it is for a better modeling of the protein flexibility or to account for

multiple desirable or undesirable states of the protein being designed,55,56 computational protein

22



design will require to process increasingly harder and larger problems. In this context, our ap-

proach could be highly useful to handle the greatly increased search space of such refined models.

This is also supported by the fact that VNS was recently parallelized.57

The VNS algorithm is not designed for the extensive enumeration of low-energy states, unlike

Monte Carlo. Nevertheless, the visited sequences give information about local minima and the

energy landscape of the system, through the collection of suboptimal solutions explored during

the search. Another limitation of the VNS method is that the folding energy is optimized without

considering alternative objectives, such as protein solubility or specific binding of other proteins.

This defines multi-objective optimization problems, which are computationally difficult and often

addressed with simple, heuristic methods. For example, to design ligand binding while maintaining

protein stability, it is common to optimize the energy of the protein-ligand complex. A more

rigorous approach would optimize the ligand binding free energy while imposing a limit on the

folding energy. Such an approach was discovered and applied recently, with the help of adaptive

importance sampling Monte Carlo.21 Another example of a multi-objective optimization would be

to optimize folding energy while also optimizing the folding of the associated messenger RNA,

or while enforcing a DNA coding sequence that overlaps with another protein coding sequence.58

The VNS framework offers possibilities along these lines, since it can take advantage of “constraint

programming expressivity”41 in order to enrich the CPD model with new types of constraints.

In conclusion, we have adapted the Variable Neighborhood Search algorithm to large protein

design problems. We have shown that a slower growth of the mutator set and search space and a

probabilistic mutator selection significantly improve the performance. Complex, concerted struc-

ture rearrangements are explored for each mutator thanks to the CFN framework. As CPD models

become more realistic and complex, finding the GMEC and proving its nature will become increas-

ingly intractable. In the context of very large problems and/or more complex physical models, the

search approach described in this paper should be highly useful.

23



Acknowledgements

This work was granted access to the HPC resources on the TGCC-Curie supercomputer, the

Computing mesocenter of Région Midi-Pyrénées (CALMIP, Toulouse, France) and the Geno-

Toul (Toulouse) Bioinformatic platform. This work was supported by the EMERGENCE program

of IDEX Toulouse (E-CODE project), the French National Research Agency (ANR-12-MONU-

0015-03 for JC, TSi, SB, ANR-16-C40-0028 for TSc and DA) and the French National Institute

for Agricultural Research (INRA).

Associated Contents

Supplementary materials are provided that describe more detailed information on the per-instance

energy gap as well as the frequency of recovery of the best energy on each problem category. This

information is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Korkegian, A.; Black, M. E.; Baker, D.; Stoddard, B. L. Computational thermostabilization

of an enzyme. Science 2005, 308, 857–860.

(2) Diaz, J. E.; Lin, C.-S.; Kunishiro, K.; Feld, B. K.; Avrantinis, S. K.; Bronson, J.; Greaves, J.;

Saven, J. G.; Weiss, G. A. Computational design and selections for an engineered, ther-

mostable terpene synthase. Protein Sci. 2011, 20, 1597–1606.

(3) Rudicell, R. S.; Kwon, Y. D.; Ko, S.-Y.; Pegu, A.; Louder, M. K.; Georgiev, I. S.; Wu, X.;

Zhu, J.; Boyington, J. C.; Chen, X.; Shi, W.; Yang, Z.-y.; Doria-Rose, N. A.; McKee, K.;

O’Dell, S.; Schmidt, S. D.; Chuang, G.-Y.; Druz, A.; Soto, C.; Yang, Y.; Zhang, B.; Zhou, T.;

Todd, J.-P.; Lloyd, K. E.; Eudailey, J.; Roberts, K. E.; Donald, B. R.; Bailer, R. T.; Ledger-

wood, J.; Mullikin, J. C.; Shapiro, L.; Koup, R. A.; Graham, B. S.; Nason, M. C.; Con-

24

http://pubs.acs.org


nors, M.; Haynes, B. F.; Rao, S. S.; Roederer, M.; Kwong, P. D.; Mascola, J. R.; Nabel, G. J.

Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody In Vitro Improves Protection

against Lentiviral Infection In Vivo. J. Virol. 2014, 88, 12669–12682.

(4) Roberts, K. E.; Cushing, P. R.; Boisguerin, P.; Madden, D. R.; Donald, B. R. Computational

Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity. PLoS Comput. Biol.

2012, 8, 1–12.

(5) Verges, A.; Cambon, E.; Barbe, S.; Salamone, S.; Le Guen, Y.; Moulis, C.; Mulard, L. A.;

Remaud-Siméon, M.; André, I. Computer-aided engineering of a transglycosylase for the

glucosylation of an unnatural disaccharide of relevance for bacterial antigen synthesis. ACS

Catal. 2015, 5, 1186–1198.

(6) Smith, B. A.; Hecht, M. H. Novel proteins: from fold to function. Curr. Opin. Chem. Biol.

2011, 15, 421 – 426, Molecular Diversity.

(7) Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.; Röthlisberger, D.; Zanghellini, A.; Gal-

laher, J. L.; Betker, J. L.; Tanaka, F.; Barbas, C. F.; Hilvert, D.; Houk, K. N.; Stoffard, B. L.;

Baker, D. De novo computational design of retro-aldol enzymes. Science 2008, 319, 1387–

1391.

(8) Khare, S. D.; Kipnis, Y.; Takeuchi, R.; Ashani, Y.; Goldsmith, M.; Song, Y.; Gallaher, J. L.;

Silman, I.; Leader, H.; Sussman, J. L. S.; Stoddard, B. L.; Tawfik, D. S.; Baker, D. Computa-

tional redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat.

Chem. Biol. 2012, 8, 294–300.

(9) Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B. L.; Baker, D. Design of a

novel globular protein fold with atomic-level accuracy. science 2003, 302, 1364–1368.

(10) Hallen, M. A.; Keedy, D. A.; Donald, B. R. Dead-end elimination with perturbations

(DEEPer): A provable protein design algorithm with continuous sidechain and backbone

flexibility. Proteins: Struct., Funct., Bioinf. 2013, 81, 18–39.

25



(11) Gaillard, T.; Panel, N.; Simonson, T. Protein side chain conformation predictions with an

MMGBSA energy function. Proteins: Struct., Funct., Bioinf. 2016, 84, 803–819.

(12) Henrion, M. Search-based methods to bound diagnostic probabilities in very large belief nets.

Seventh conference on Uncertainty in Artificial Intelligence. 1991; pp 142–150.

(13) Georgiev, I.; Lilien, R. H.; Donald, B. R. The minimized dead-end elimination criterion and

its application to protein redesign in a hybrid scoring and search algorithm for computing

partition functions over molecular ensembles. J. Comput. Chem. 29, 1527–1542.

(14) Viricel, C.; SIMONCINI, D.; Allouche, D.; De Givry, S.; Barbe, S.; Schiex, T. Approximate

counting with deterministic guarantees for affinity computation. International Conference on

Modelling, Computation and Optimization in Information Systems 2015. 2015; pp 165–176,

Proceedings of the 3rd International Conference on Modelling, Computation and Optimiza-

tion in Information Systems and Management Sciences.

(15) Viricel, C.; Simoncini, D.; Barbe, S.; Schiex, T. Guaranteed weighted counting for affinity

computation: Beyond determinism and structure. International Conference on Principles and

Practice of Constraint Programming. 2016; pp 733–750.

(16) Viricel, C.; de Givry, S.; Schiex, T.; Barbe, S. Cost function network-based design of pro-

tein–protein interactions: predicting changes in binding affinity. Bioinformatics 2018, 733–

750.

(17) Ojewole, A. A.; Jou, J. D.; Fowler, V. G.; Donald, B. R. BBK* (Branch and Bound Over K*):

A Provable and Efficient Ensemble-Based Protein Design Algorithm to Optimize Stability

and Binding Affinity Over Large Sequence Spaces. J. Comput. Biol. 2018, 25, 726–739,

PMID: 29641249.

(18) Druart, K.; Bigot, J.; Audit, E.; Simonson, T. A hybrid Monte Carlo method for multiback-

bone protein design. J. Chem. Theory Comput. 2017, 12, 6035–6048.

26



(19) Villa, F.; Panel, N.; Chen, X.; Simonson, T. Adaptive landscape flattening in amino acid

sequence space for the computational design of protein:peptide binding. J. Chem. Phys. 2018,

149, 072302.

(20) Polydorides, S.; Simonson, T. Monte Carlo simulations of proteins at constant pH with gen-

eralized Born solvent, flexible sidechains, and an effective dielectric boundary. J. Comput.

Chem. 2013, 34, 2742–2756.

(21) Villa, F.; Mignon, D.; Polydorides, S.; Simonson, T. Comparing pairwise-additive and many-

body generalized Born models for acid/base calculations and protein design. J. Comput.

Chem. 2017, 38, 2396–2410.

(22) Van Laarhoven, P. J.; Aarts, E. H. Simulated annealing: Theory and applications; Springer,

1987; pp 7–15.

(23) Chowdry, A. B.; Reynolds, K. A.; Hanes, M. S.; Voorhies, M.; Pokala, N.; Handel, T. M. An

object-oriented library for computational protein design. J. Comput. Chem. 2007, 28, 2378–

2388.

(24) Wernisch, L.; Héry, S.; Wodak, S. Automatic protein design with all atom force fields by

exact and heuristic optimization. J. Mol. Biol. 2000, 301, 713–736.

(25) Schmidt am Busch, M.; Lopes, A.; Mignon, D.; Simonson, T. Computational protein design:

software implementation, parameter optimization, and performance of a simple model. J.

Comput. Chem. 2008, 29, 1092–1102.

(26) Simonson, T.; Gaillard, T.; Mignon, D.; Schmidt am Busch, M.; Lopes, A.; Amara, N.;

Polydorides, S.; Sedano, A.; Druart, K.; Archontis, G. Computational protein design: The

proteus software and selected applications. J. Comput. Chem. 2013, 34, 2472–2484.

(27) Yang, X.; Saven, J. G. Computational methods for protein design and protein sequence vari-

ability: biased Monte Carlo and replica exchange. Chem. Phys. Lett. 2005, 401, 205–210.

27



(28) Druart, K.; Palmai, Z.; Omarjee, E.; Simonson, T. Protein:ligand binding free energies: a

stringent test for computational protein design. J. Comput. Chem. 2016, 37, 404–415.

(29) Mignon, D.; Simonson, T. Comparing three stochastic search algorithms for computational

protein design: Monte Carlo, Replica Exchange Monte Carlo, and a multistart, steepest-

descent heuristic. J. Comput. Chem. 2016, 37, 1781–1793.

(30) Grimmett, G. R.; Stirzaker, D. R. Probability and random processes; Oxford University Press,

Oxford, United Kingdom, 2001.

(31) Allouche, D.; Traoré, S.; André, I.; De Givry, S.; Katsirelos, G.; Barbe, S.; Schiex, T. Com-

putational protein design as a cost function network optimization problem. Principles and

Practice of Constraint Programming. 2012; pp 840–849.

(32) Traoré, S.; Allouche, D.; André, I.; de Givry, S.; Katsirelos, G.; Schiex, T.; Barbe, S. A

new framework for computational protein design through cost function network optimization.

Bioinformatics 2013, 29, 2129–2136.

(33) Allouche, D.; André, I.; Barbe, S.; Davies, J.; de Givry, S.; Katsirelos, G.; O’Sullivan, B.;

Prestwich, S.; Schiex, T.; Traoré, S. Computational protein design as an optimization prob-

lem. Artif. Intell. 2014, 212, 59–79.

(34) Traoré, S.; Roberts, K. E.; Allouche, D.; Donald, B. R.; André, I.; Schiex, T.; Barbe, S. Fast

search algorithms for computational protein design. J. Comput. Chem. 2016, 1048–1058.

(35) O’Meara, M. J.; Leaver-Fay, A.; Tyka, M.; Stein, A.; Houlihan, K.; DiMaio, F.; Bradley, P.;

Kortemme, T.; Baker, D.; Snoeyink, J.; Kuhlman, B. A Combined Covalent-Electrostatic

Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J. Chem. Theory

Comput. 2015, 11, 609–622.

(36) Alford, R. F.; Leaver-Fay, A.; Jeliazkov, J. R.; OaMeara, M. J.; DiMaio, F. P.; Park, H.; Shapo-

valov, M. V.; Renfrew, P. D.; Mulligan, V. K.; Kappel, K.; Labonte, J. W.; Pacella, M. S.;

28



Bonneau, R.; Bradley, P.; Dunbrack, R. L.; Das, R.; Baker, D.; Kuhlman, B.; Kortemme, T.;

Gray, J. J. he Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.

J. Chem. Theory Comput. 2017, 13, 3031–3048.

(37) Shapovalov, M. V.; Dunbrack, R. L. A Smoothed Backbone-Dependent Rotamer Library for

Proteins Derived from Adaptive Kernel Density Estimates and Regressions. Structure 2011,

19, 844–858.

(38) Simoncini, D.; Allouche, D.; de Givry, S.; Delmas, C.; Barbe, S.; Schiex, T. Guaranteed

Discrete Energy Optimization on Large Protein Design Problems. J. Chem. Theory Comput.

2015, 11, 5980–5989.

(39) Mladenović, N.; Hansen, P. Variable Neighborhood Search. Comput. Oper. Res. 1997, 24,

1097–1100.

(40) Samish, I. The Framework of Computational Protein Design. Methods Mol. Biol. (N. Y., NY,

U. S.) 2017, 1529, 3—19.

(41) Meseguer, P.; Rossi, F.; Schiex, T. Handbook of Constraint Programming; Elsevier, 2006;

Chapter 9.

(42) Allouche, D.; De Givry, S.; Katsirelos, G.; Schiex, T.; Zytnicki, M. Anytime hybrid best-first

search with tree decomposition for weighted CSP. International Conference on Principles and

Practice of Constraint Programming. 2015; pp 12–29.

(43) Hurley, B.; O’Sullivan, B.; Allouche, D.; Katsirelos, G.; Schiex, T.; Zytnicki, M.; de Givry, S.

”Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization”.

Constraints 2016, 21, 413–434.

(44) Cooper, M.; de Givry, S.; Sanchez, M.; Schiex, T.; Zytnicki, M.; Werner, T. Soft arc consis-

tency revisited. Artif. Intell. 2010, 174, 449–478.

29



(45) Harvey, W. D.; Ginsberg, M. L. Limited discrepancy search. Proc. of IJCAI’95. 1995; pp

607–615.

(46) Fontaine, M.; Loudni, S.; Boizumault, P. Exploiting Tree Decomposition for Guiding Neigh-

borhoods Exploration for VNS. RAIRO OR 2013, 47, 91–123.

(47) Larrosa, J.; Rollon, E.; Dechter, R. Limited Discrepancy AND/OR Search and Its Application

to Optimization Tasks in Graphical Models. Proc. of IJCAI. 2016; pp 617–623.

(48) Luby, M.; Sinclair, A.; Zuckerman, D. Optimal speedup of Las Vegas algorithms. Proc. of

TCS. 1993; pp 128–133.

(49) Lopes, A.; Aleksandrov, A.; Bathelt, C.; Archontis, G.; Simonson, T. Computational

sidechain placement and protein mutagenesis with implicit solvent models. Proteins: Struct.,

Funct., Bioinf. 2007, 67, 853–867.

(50) Tuffery, P.; Etchebest, C.; Hazout, S.; Lavery, R. A New Approach to the Rapid Determi-

nation of Protein Side Chain Conformations. J. Biomol. Struct. Dyn. 1991, 8, 1267–1289,

PMID: 1892586.

(51) Gaillard, T.; Simonson, T. Full Protein Sequence Redesign with an MMGBSA Energy Func-

tion. J. Chem. Theory Comput. 2017, 13, 4932–4943, PMID: 28886244.

(52) Hansen, P.; Mladenović, N.; Moreno Pérez, J. A. Variable neighbourhood search: methods

and applications. 4OR 2008, 6, 319–360.

(53) Jarboui, B.; Sifaleras, A.; Rebai, A. 3rd International Conference on Variable Neighborhood

Search (VNS’14). Electronic Notes in Discrete Mathematics 2015, 47, 1 – 4, The 3rd Inter-

national Conference on Variable Neighborhood Search (VNS’14).

(54) Subramaniam, S.; Senes, A. Backbone dependency further improves side chain prediction

efficiency in the Energy-based Conformer Library (bEBL). Proteins: Struct., Funct., Bioinf.

82, 3177–3187.

30



(55) Davey, J. A.; Chica, R. A. Multistate approaches in computational protein design. Protein Sci

2012, 21, 1241–1252.

(56) St-Jacques, A. D.; Gagnon, O.; Chica, R. A. Modern Biocatalysis: Advances Towards Syn-

thetic Biological Systems; Royal Society of Chemistry, 2018; Vol. 32; p 88.

(57) Ouali, A.; Loudni, S.; Loukil, L.; Boizumault, P.; Lebbah, Y. Replicated parallel strategies

for decomposition guided VNS. Electronic Notes in Discrete Mathematics 2015, 47, 93–100.

(58) Opuu, V.; Silvert, M.; Simonson, T. Computational design of fully overlapping coding

schemes for protein pairs and triplets. Scientific Reports 2017, 7, 15873.

31



Graphical TOC Entry

0

1

1

1

New solution S'
Energy E'

Selection of k(i)
mutators

Energy
minimization

Current solution S
Energy E

32


