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UNDERWORLDS: Cascading Situation Assessment for Robots

Séverin Lemaignan', Yoan Sallami?, Christopher Wallbridge?,
Aurélie Clodic?, Tony Belpaeme?, and Rachid Alami?

Abstract— We introduce UNDERWORLDS, a novel lightweight
framework for cascading spatio-temporal situation assessment
in robotics. UNDERWORLDS allows programmers to represent
the robot’s environment as real-time distributed data struc-
tures, containing both scene graphs (for representation of
3D geometries) and timelines (for representation of temporal
events). UNDERWORLDS supports cascading representations: the
environment is viewed as a set of worlds that can each have
different spatial and temporal granularities, and may inherit
from each other. UNDERWORLDS also provides a set of high-
level client libraries and tools to introspect and manipulate the
environment models.

This article presents the design and architecture of this
open-source tool, and explores some applications, along with
examples of use.

I. INTRODUCTION

UNDERWORLDS is a distributed and lightweight open-
source frameworkﬂ that enables robot programmers to build
and refine spatial and temporal models of the environment
surrounding a robot in real-time. UNDERWORLDS makes it
possible to share these world models amongst the software
components running on the robot. Additionally, UNDER-
WORLDS enables users to represent and manipulate multi-
ple alternatives to the current, perceived world model in
a distributed manner. For instance, the world with some
objects filtered out; the world ‘viewed’ from the perspective
of another agent; a hypothetical world resulting from the
simulated application of a plan, etc.

A. Distributed Situation Assessment

Anchoring perceptions in a symbolic model suitable for
decision-making requires perception abilities and their sym-
bolic interpretation. We call physical situation assessment
the cognitive skill that a robot exhibits when it represents
and assesses the nature and content of its surroundings and
monitors its evolution.

Numerous approaches exist, like amodal (in the sense of
modality-independent) proxies [1], grounded amodal repre-
sentations [2], semantic maps [3], [4], [5] or affordance-
based planning and object classification [6], [7].

UNDERWORLDS is specifically inspired by geometric and
temporal reasoners like SPARK (SPAtial Reasoning & Knowl-
edge) [8] or TOASTER (Tracking Of Agents and Spatio-
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TEmporal Reasoning) [9]. SPARK acts as a situation as-
sessment reasoner that generates symbolic knowledge from
the geometry of the environment with respect to relations
between objects, robots and humans. It also takes into
account the different perspective that each agent has on
the environment. SPARK embeds a modality-independent
geometric model of the environment that serves both as basis
for the fusion of the perception modalities and as bridge with
the symbolic layer [10]. This geometric model is built from
3D CAD models of the objects, furniture and robots, and
full body, rigged models of humans. It is updated at run-time
by the robot’s sensors. Likewise, UNDERWORLDS embeds a
grounded amodal model of the environment, updated online
from the robot’s sensors (sensor fusion).

However, SPARK is a monolithic module that does not
support sharing its internal 3D model with other external
components. In contrast, UNDERWORLDS focuses on offering
a shared and distributed representation of the environment
within the robot’s software architecture. This also distin-
guishes UNDERWORLDS from complex cognitive toolkits like
KnowRob (as found in OpenEASE [11]). While these tools
maintain a spatio-temporal model of the world, this model is
internal and not meant to be made widely accessible to other
external processes. UNDERWORLDS focuses instead on re-
usability and sharing of distributed spatio-temporal models.
As such, UNDERWORLDS can be seen as a middleware for
spatio-temporal world models and, contrary to KnowRob,
it does not provide any intrinsic high-level processing or
reasoning capability. Such reasoning skills are implemented
in loosely-coupled clients (see Section |LII| hereafter).

Work on distributed scene graphs [12] has been previously
applied to robotics to provide a shared 3D representation
of the robot’s environment (for instance, the Robot Scene
Graph [13] or the Deep State Representation proposed
in [14]). UNDERWORLDS offers a similar distribution mech-
anism for 3D scene graphs and extends it to temporal repre-
sentations. Besides, UNDERWORLDS further extends this line
of work by providing the ability to create, manipulate and
share multiple alternative worlds. As an example, these could
correspond to filtered or hypothetical views on the initial,
perceived model of the environment.

B. Representing Alternative States of the World

The components which make use of spatial and temporal
models of the environment are usually found in the inter-
mediate layers of robotic architectures, between the low-
level perceptual layers, and the high-level decisional layers.
They include modules like geometric reasoners (that compute
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spatial and topological relations between objects), motion
planners or action recognition modules.

These components exhibit different needs in terms of
representation, like different nominal spatial and/or tempo-
ral resolutions. For instance, a 3D motion planner would
typically use coarse 3D models of surrounding objects to
lower the computational load while planning, while a module
assessing the visibility of objects might need high-resolution
models for accurate 3D visibility testing. This requirement
of multiple task-specific representations has been framed as
the need for deep representations by Beetz [15].

Traditional robotic middlewares, like ROS, are not par-
ticularly well suited to deal with these different needs:
full geometric data can be represented, but is not first-
class citizen: a basic task like displaying a 3D mesh at an
arbitrary position is not particularly easy to perform with
ROS, requiring the combination of static Collada meshes,
a URDF kinematic description, TF broadcasters, and a 3D
visualisation tool like RViz. Critically, simultaneously repre-
senting and reasoning on alternative states of the environment
is not directly feasible.

Representing alternative states is however often highly
desirable. For instance, software components manipulating
environment models typically perform better if the models
are physically consistent. However, low-level perception in-
accuracies often introduce hard-to-avoid physical inconsis-
tencies (like detected objects floating in the air, or wrongly
inset into other objects). Therefore, a post-process stage
(for instance, using a physics simulation engine) is needed
to move the objects seen by the robot into physically-
correct positions. Implemented with a classical approach
(for instance, using ROS TF frames), we would repre-
sent an object book with two frames: the original frame
(e.g.,book_frame_raw) and a second one computed by the
physics engine (e.g..book_frame_corrected). Such an
approach leads to the robot’s 3D model being cluttered with
multiple frames and does not scale well.

Another example pertains to geometric task planning:
a geometric task planner typically needs to reason over
hypothetical future states of the environment (“What happens
if I move this glass onto that pile of books?”). The planner
generates many possible future states, which in turn might
require further processing (for instance, running a physics
simulation). Such a tool would benefit a flexible representa-
tion system, where models are derived from each other, with
partial modifications and different timescales.

A third example relates to human-robot interaction sce-
narios where perspective taking is important (a prototypical
example being the game ‘I spy with my little eye’, as
implemented in [16]). Perspective taking is a cognitive skill
that relies on the ability for an agent to take someone else’s
point of view to estimate what they see from their perspec-
tives. Perspective taking has previously been implemented
in robotics by temporarily placing virtual cameras at eye
locations for each of the humans tracked by the robot [17].
While acceptable for simple cases, such an approach does
not maintain truly independent spatio-temporal models of

the environment for each agent, and in particular, it does not
permit the representation of proper false-belief situations. On
the contrary, separate, independent world models as imple-
mented by UNDERWORLDS effectively support such a skill,
which is an important precursor to research and implement
human’s mind modelling (i.e., a theory of mind) [18].

Lastly, geometric pre-supposition accommodation makes
another interesting case for alternative worlds representation.
Pre-supposition accommodation originally comes from lin-
guistics, where it describes the mechanism by which context
is adjusted [...] to accept [...] a sentence that imposes certain
requirements on the context in which it is processed [19]. In
the context of spatio-temporal representations, we call pre-
supposition accommodation the ability of an agent to adjust
its model so that it matches some contextual constraint.
For instance, if A tells B to “catch the red balloon behind
you”, B might create a representation of an imaginary red
balloon, placed behind her, even without actually observing
the balloon: B accommodates the pre-supposition of a red
balloon being present behind herself. Endowing robots with
this capability has been touched upon by Mavridis et al.
within their multi-modal Grounded Situation Model [2].
However, to the best of our knowledge, a general framework
which would enable robots to accommodate spatial and
temporal pre-suppositions by deriving imaginary worlds from
existing ones has not been proposed so far.

UNDERWORLDS addresses this need and the main con-
tribution of this work is a generic approach to represent
and share multiple parallel representations of the world.
UNDERWORLDS does so by allowing clients to clone existing
worlds, modify them, and re-share them, without the cost of
duplicating geometric data (as explained in section [[I). By
organising clients in a network (Figure [I)), worlds can be
made dependent on each other, resulting in a loosely-coupled
modular approach to spatio-temporal world representation
that we call cascading situation assessment.

II. DESIGN AND ARCHITECTURE
A. Software architecture

Figure [I] depicts a typical UNDERWORLDS topology: a
graph (that happens to be an acyclic graph on Figure (1} but
does not have to be in the general case) of worlds, with
clients connecting the worlds to each others.

1) Clients: Software components implementing accessing
UNDERWORLDS worlds are called clients. Clients can both
read and write onto the worlds they are connected to,
and automatically see updates broadcast by other clients
connected to the same world. To ensure data consistency,
worlds can have many simultaneous readers, but only one
writer at a given time.

UNDERWORLDS provides several standard clients (like a
3D visualisation tool or a physics engine simulator). Clients
are however typically written by the end users, depending
on the needs of one’s specific architecture.

2) Worlds: Worlds are effectively distributed data struc-
tures composed of a scene graph representing the 3D ge-
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Fig. 1. Schema of a possible UNDERWORLDS network: eight clients (user-
written & architecture specific; in blue) are sharing environment models
through four independent worlds (made from joint spatial and temporal
models). This architecture enables successive and modular refinement of
the models (cascading situation assessment), effectively adapted to each
client’s needs.

ometry of the environment, and a timeline storing temporal
events.

While each world is technically independent from all the
others, dependencies (and therefore, coupling) arise between
worlds from the clients’ connections. For instance, filters
effectively create a dependency between worlds. On Fig-
ure (1} the Physics-based position correction client creates a
dependency between the world base (which represents here
the result of raw sensor fusion) and the world corrected
which would be a physically-consistent copy of base. As a
result, an UNDERWORLDS network can also be seen as a de-
pendency graph between worlds (where cyclic dependencies
are permissible).

This architecture enables what we call cascading situation
assessment: independent software components (the clients)
build, refine and share successive models of the environment
by a combination of filtering/transformations steps and model
branching. A change performed by one client (for instance, a
face tracker updates the pose of the human head) may thereby

cascade to each of the downstream, dependent worlds.

3) Scenes: Worlds contain both a geometric model and
a temporal model. The geometric model is represented as
a scene graph. The scene graph has a unique root node, to
which a tree of other nodes is parented.

Nodes in an UNDERWORLDS scene graph have three pos-
sible types: objects that represent concrete physical objects
(typically with one or several associated 3D meshes); entities
that represent abstract entities like reference frames or groups
of objects; perspectives that represent viewpoints of the
scene (like cameras or human gaze).

Every node has a unique ID, a parent, a 3D transformation
relative to the parent and an optional name. Object nodes
optionally store as well pointers to their associated meshes.
Importantly, mesh data (or other geometric datasets like
point clouds) are not stored within the nodes themselves.
UNDERWORLDS represents geometric data as immutable
data, identified by their hash value (preventing de facto data
duplication). Nodes only store the hash corresponding to the
desired geometric data, and the actual data is pulled from
the server by the clients whenever they actually need it (for
rendering for instance).

4) Timelines: Complementing the spatial representation
encapsulated in the scene graph, each world also stores the
world’s timeline. This data structure is shared and synchro-
nised amongst the clients in the same way as the scene
graph. Clients can record and query both events (duration-
less states) and situations in the timeline, i.e., states with a
start time and a (possibly open-ended) end time.

B. Distributed spatio-temporal models

UNDERWORLDS is not a monolithic piece of software.
Instead, it stands for both a network of interconnected
clients which manipulate spatial and temporal models of the
robot environment (for instance, a motion planner, a object
detection module, a human skeleton tracker, etc.), and for
a client library that makes it possible to interface existing
software components with the network.

Critically, the network is essentially hidden to the client:
from the user perspective, the environment model is manip-
ulated as a local data structure (see Listing [I)). Modifications
to the model are asynchronously synchronised with a central
server (the underworlded daemon) and broadcast to every
other client connected to the same world.

As previously mentioned, worlds are composite data struc-
tures comprised of a scene graph and a timeline. These
data structures are synchronised using Google’s gRPC mes-
sage passing frameworkﬂ ensuring high throughput, relia-
bility and cross-platform/cross-language support. The UN-
DERWORLDS API is specifically discussed hereafter, in sec-
tion

UNDERWORLDS is meant to broadcast complex environ-
ment representations (typically including large geometric
datasets, like meshes) in real-time. UNDERWORLDS itself
does not perform many CPU intensive tasks (CPU intensive

Zhttp://www.grpc.io/
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processing tasks — sensor fusion, physics simulation, etc.—
are performed by the clients themselves) and as such, the
performance bottleneck is essentially the network’s data
throughput. In that regard, one of the simple yet critical
optimisations performed by UNDERWORLDS is automatic
caching of mesh data. Mesh data are not transmitted when
nodes are updated; only a hash value of the mesh data. The
client can then request the full data whenever it is actually
needed.

C. Time and space complexity analysis

UNDERWORLDS is fundamentally about distributing two
datastructures: a scene graph (with nodes representing spatial
entities) and a timeline (where events are stored as a flat list).
Typical time and space complexities arise from these datas-
tructures. In typical usage scenarios (where the number of
nodes or events remain under a few hundred relatively small),
the computational load to manipulate these datastructures
is however dominated by the actual processings performed
by the clients with the data. In the current implementation,
scene graphs and timelines are stored in-memory. Were
they required, serialization and persistent storage are not
anticipated to be difficult to implement.

More interesting is the time complexity of distributing
changes across an UNDERWORLDS network. With n the
number of worlds and m the number of clients in an
UNDERWORLDS network, the worst-case (when every world
is a parameter of every client) time complexity of creating
or updating a node and propagating the change across the
network is O(n x m) (this effectively corresponds to the
UNDERWORLDS server performing n X m requests to notify
clients of the update). The space complexity is the same (as
clients own a full copy of the worlds they monitor), except
for mesh data whose space and time complexities are O(1)
(only the server stores the mesh data).

In the common case of one client performing a full update
of a single world (with p nodes) at each time step, the
complexity of propagating these changes across the network
would be O(p x m). Figure [2[ shows measured propagation
time for one change across up to 20 cascading worlds.

III. API & CLIENTS
A. API

As mentioned, UNDERWORLDS uses Google’s gRPC as
message passing protocol. The protocol is explicitly defined
(using the protocol buﬁ‘er interface definition language),
and bindings to various languages and platforms can be
automatically generated from the protocol definition file (as
of Jan 2018, gRPC can generate bindings for C, C++, C#,
Node.js, PHP, Ruby, Python, Go and Java, on Windows, Mac,
Linux and Android). The cross-platform/cross-language sup-
port of gRPC is especially welcome in the academic context,
as it offers ease and flexibility to plug a variety of pre-
existing components into an UNDERWORLDS network.

3https://developers.google.com/protocol-buffers/
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Fig. 2. Propagation times of one change (node creation) across n worlds.
The test is performed by running n — 1 pass-through filters that monitor one
world and replicate any changes into the next world. Durations measured
over 20 runs, performed on a 8 core machine.

However, the gRPC message passing layer is low-level
with respect to the typical use of UNDERWORLDS (manip-
ulation of asynchronous, distributed spatio-temporal models
of the robot environment). In particular, the asynchronous
fetching (and conversely, remote updating) of nodes and
time-related objects is typically hidden from the user, and
managed instead by the UNDERWORLDS client library.

UNDERWORLDS currently offers such a high-level client
library for Python only (a C++ library is under development).
Listing (1| gives a complete example of an UNDERWORLDS
client performing simple filtering: the client continuously
listens for changes in an input world, removes some objects
(in this case, items whose volume is below a threshold), and
forwards all other changes to an output world, effectively
making the output world a copy of the input world with all
smaller objects removed.

import underworlds

1

2

3 # by default, connect to the server on localhost
4 with underworlds.Context ("small_object_filter") as ctx:
5

6 in_world = ctx.worlds["worldl"

7 out_world = ctx.worlds["world2"]

8

9 while True:

10

11 in_world.scene.waitforchanges ()

12

13 for node in in_world.scene.nodes:

14 if node.volume > THRESHOLD:

15 out_world.scene.nodes.update (node)

Listing 1: Example of a simple yet complete UNDERWORLDS
filter, written in Python: the client connects to the UNDER-
WORLDS network, blocks until the world wor1dl changes,
and only propagate nodes that match the condition to the
world world2.

B. Standard Clients

The UNDERWORLDS package provides several standard
clients to perform common tasks on UNDERWORLDS net-
works.
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Fig. 3.

Screenshot of the uwds view 3D visualisation and manipulation
client. In this particular example, the 3D meshes have been pre-loaded using
uwds load. Their positions are then updated at run-time using the robot’s
sensors and proprioception (joint state).

1) 3D Visualisation and manipulation: Interestingly,
while UNDERWORLDS deals with 3D geometries and scenes,
it does represent 3D entities purely as data structures; no
visual representation is involved (and as such, the UNDER-
WORLDS server and core libraries do not depend on any
graphics library like OpenGL). However, for all practical
purposes, the ability to visualise the content of a scene is
desirable. UNDERWORLDS provides a standard client, uwds
view, that performs real-time 3D rendering of worlds, using
OpenGL (Figure [3).

This tool also supports basic object manipulations (trans-
lations, rotations), that are broadcast to the other UNDER-
WORLDS clients connected to the same world.

Assets loading: Often, objects manipulated by the robot
have known meshes with corresponding CAD models that
can be conveniently pre-loaded. In these cases, UNDER-
WORLDS provides a tool, uwds load, that loads a mesh
into a UNDERWORLDS network (and optionally, creates a
node) from a large range of 3D formats (including Collada,
FBX, OBJ, Blender)|

2) Physics simulation: When perception modules provide
objects localisation, the physical consistency of the locations
is not typically enforced. For instance, objects that are
supposed to lay on a table might be slightly above (or inset
into) the table; or when dropping an item into a box, the
robot can not update the location of the item anymore as it
becomes occluded.

These issues can be alleviated by relying on a physics
simulation to stabilise the position of objects: natural physics
(including gravity) are simulated for a short amount of time
(up to one second) ahead of time, and the objects’ positions
are updated accordingly. To this end, UNDERWORLDS pro-

4The underlying import capability is provided by the ASSIMP library.
http://assimp.sourceforge.net/
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arbitrary examples of worlds (represented as boxes) and clients (ellipses).
CLients are connected to the worlds either as readers or providers of data.
UNDERWORLDS introspection features make it possible to also visualise
when clients were last active.

Screenshot of the network topology introspection tool, with

vide a standard filter, the physics_filter, based on the
Bullet RT physics simulation and the pybulletﬂ library.
It generates an output world that mirrors its input world
after a specific duration of physics simulation, the physical
properties of objects (including mass, friction, inertia) being
provided from standard URDF descriptions.

3) Introspection and debugging: UNDERWORLDS pro-
vides a range of tools to inspect a running network. Graphical
tools (uwds explorer and uwds timeline, see Fig-
ure[d) provide a user-friendly overview of the system’s graph
with the connections between the clients and the worlds, as
well as their activity.

Specialised command-line tools are also available to list
the worlds and their content (uwds 1s) at run-time, or
to display detailed information for a specific node (uwds
show).

4) Interface with ROS: UNDERWORLDS is meant to inte-
grate as easily as possible into existing robot architectures,
and interfaces transparently with ROS’ TF frame system
through the uwds tf£ client.

The uwds tf client continuously monitors the ROS TF
tree, and mirrors TF frames as nodes in the desired UN-
DERWORLDS world. A node is first created if none matches
a given TF frame, and its transformation is subsequently
updated, mirroring the TF frame. A regular expression can
be provided to only mirror a subset of the TF tree into
UNDERWORLDS.

Currently, the process is unidirectional: the uwds tf
client performs TF to UNDERWORLDS updates, but not the
reverse.

C. Spatial Reasoning and Perspective Taking

Spatial reasoning [20] is a field in its own right, and has
been used for natural language processing for applications
such as direction recognition [21], [22] or language ground-
ing [23]. Other examples in human-robot interaction include

Shttps://pybullet.org/
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Ros et al. [17], [16] which has recently been integrated
into a full architecture for autonomous human-robot inter-
action [10].

UNDERWORLDS  provides an  exemplary client
(spatial.relations) to compute both allo-centric
(independent of the viewpoint like isIn or isOn) and
ego-centric (i.e., viewer-dependent, like inFrontOf or
leftOf) spatial relations between objects. Other libraries,
like QSRLib [24], that implement computational models of
Qualitative Spatial Relations, could be trivially combined
with UNDERWORLDS to provide more advanced geometric
analysis. Future developments will also include the results
of the more basic research on spatio-temporal reasoning for
robotics, led by de Leng and Heintz [25].

UNDERWORLDS also implements an efficient algorithm to
assess object visibility from a specific viewpoint (i.e., from
a given perspective node). The algorithm (color picking)
enables fast (single pass) computation of the visibility of
every object in the scene, while providing control regard-
ing how many pixels should be actually visible for the
object to be considered globally visible. The command-
line tool uwds visibility returns the list of visible
objects from the point of view of each camera in a given
world, and UNDERWORLDS also provides the helper class
VisibilityMonitor to programmatically access visibil-
ity information.

When integrated into a filter node, visibility computation
allows easy creation of new worlds representing the esti-
mated perspectives of the different agents.

IV. APPLICATION EXAMPLE: PERSPECTIVE-AWARE
JOINT ACTIONS

UNDERWORLDS is being used within the large European
project MuMMERﬂ for service robots to compute visibility
and knowledge about objects, places and agents within a mall
environment.

We present here a simplified scenario, yet representative
of situations which are processed in real-time by MuMMER
robots: two humans and a robot are looking at a table and
have to coordinate joint actions (pick and place). One object
on the table (the green box in Figure [3) is only visible to
one human and the robot, but hidden to the second human.
The robot needs to take into account this fact to generate
appropriate and legible joint manipulation actions. Figure [3]
illustrates the topology of the UNDERWORLDS network that
we use to this end.

A first client, static_env_provider, provides the envi-
ronment models and allows to build a first ENV world
where static objects, furnitures and walls are present. Then,
three worlds cascade through three (independent) clients:
robots_state_monitor augments ENV with the robot state
(using underneath the ROS robot state publisher node)
and broadcast a new world ENV_ROBOTS. objects_monitor
then recognises and adds the dynamic objects (using
ar,track,alvarﬂ). humans_monitor finally detects and

6http://www.mummerfproject.eu
Thttp://wiki.ros.org/ar_track_alvar

Static environment
provider
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Computation of
spatial relations
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|

Fig. 5. Schema of the UNDERWORLDS architecture used in the
MuMMER project. Clients read and generate the worlds ENV —
ENV_ROBOT — ...—> HUMAN«*_PERSPECTIVE. The last two worlds
HUMAN{1, 2} _PERSPECTIVE represent the immediate visual perspective
of each of the humans, as well as their past visual perceptions. As such,
they are the visual memories of the humans, that the robot can rely on when
making decisions.

continuously updates the humans poses (using [26]). It
broadcasts a world called BASE that contains as a result the
static environment, the robots, the dynamic objects and the
detected humans.

The world BASE goes through a physics filter client (as
explained in section [[lI-B.2) to obtain the STABLE world
where all elements are present with physically-consistent lo-
cations. This physically-correct world is used by the compu-
tation_of _spatial_relations client to compute spatial relations
such as onTop, isIn or isAbove (see Section [[II-C).

The world STABLE is also used by a perspectives_filter
client to compute the different visual perspectives of each
agent (in our case: human 1, human 2 and the robot itself).
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In addition to a 3D rendering of the input world from the
perspective of the agent, it aggregates the history of what
was visible to the agent at a given point in time. As such, it
does not only offer a snapshot of the agent visual perspective
at the current time but also acts as the visual memory of each
agent.

With this network, the robot can easily compute that an
object on the table is only seen by the human 1 and not the
human 2; additionally, if human 1 moves in a position where
the object is not visible anymore to him, the perspective_filter
will maintain the knowledge that the human had seen it (and
keep the last position where it has been seen).

UNDERWORLDS makes it possible to implement such
a geometric reasoning pipeline in a fully decoupled way,
and each intermediary world can be easily introspected at
run-time. This example shows how UNDERWORLDS facili-
tates the implementation and debugging of complex spatio-
temporal reasoning pipelines.

We are currently deploying a similar network in the frame-
work of the European project MuMMER where a Pepper
robot handles interactive situations in a large shopping centre
in Finland. One of the situation is a guiding task where
Pepper help people to find their route by pointing them
landmarks and explaining them how to reach a destination.
To be effective, this helping behaviour needs to be aware
of the visual perspective of the human. UNDERWORLDS
facilitates the implementation of such a spatio-temporal rea-
soning pipeline, where perception and high-level reasoning
(including complex, human-aware reasoning) have to be
tightly integrated. Because of the decoupling of each of the
clients in the network, UNDERWORLDS also practically sup-
ports software development spread across multiple partners
in different countries, with different expertise.

V. DISCUSSION AND CONCLUSION
A. Relation to existing robotic middleware

Like traditional robotic middleware, UNDERWORLDS of-
fers a form of distributed computation based on message
passing. However, it distinguishes itself from existing mid-
dlewares (including ROS extensions like DyKnow [27]) in
significant ways. Most importantly, UNDERWORLDS pur-
posefully does not offer any general capability to distribute
computation and data streams amongst independent com-
ponents: it focusses specifically on distributing environment
models, both spatial (geometric models) and temporal (events
and situations). In that sense, UNDERWORLDS really is a
distributed datastructure that addresses the specific needs
of spatio-temporal modelling, including the modelling of
hypothetical, alternative world models, something that tra-
ditional middlewares like ROS do not address adequately.
Second, and as presented above, UNDERWORLDS offers
specific mechanisms for the representation and manipulation
of alternative world models that are not directly achievable
with traditional tools.

While using standard middleware as underlying transport
for UNDERWORLDS would be technically feasible and rel-
atively easy to implement, it does not offer any clear ad-

vantage over lighter and dedicated message passing libraries
like ZeroMQ or gRPC (the later being the one used by
UNDERWORLDS).

B. Future work

As illustrated in section UNDERWORLDS is already
deployed and used on the field. Several features are however
still under development.

1) Representation capabilities: as presented in section [II}
the current version of UNDERWORLDS allows to represent
objects, abstract entities like groups and perspectives. Fields
are also part of the UNDERWORLDS design, but are not
yet implemented. Fields are commonly used to represent
continuously-valued spatial entities. Fields might or might
not be spatially bounded. Examples include the working
space of a robot arm (spatially bounded), the field of view
of a camera (spatially bounded), proxemics (potentially un-
bounded). We plan to represent fields in UNDERWORLDS
using the memory-efficient octomaps [28] or NDT-OM
maps [29]. Similarly to geometric data,these datastructures
will not be directly stored with the nodes (nodes will refer to
them through handles), but unlike geometric data, they will
not be treated as immutable datasets by the server, permitting
real-time updates.

Representation of uncertainty: currently node positions
are stored as 4 x 4 transformation matrices, relative to the
node parent. This representation is efficient, and conveniently
matches traditional representation systems (including ROS
TF frames or OpenGL transformations). However, the ex-
plicit management of uncertainties is instrumental to many
robotic applications, and we plan to add full support for
position uncertainties to UNDERWORLDS. We plan to add
this support by adding a pose covariance matrix to the nodes,
and equipping the different UNDERWORLDS helper tools with
corresponding support (like covariance ellipses visualisation
in uwds view).

2) Implementation and Integration: we plan to continue
to improve the integration of UNDERWORLDS into existing
software architectures. A short-term goal is to provide ex-
cellent C++ support, with a high-level, user-friendly C++
client library. This is critical for a broader adoption of
UNDERWORLDS within the robot community. Support for
other languages might follow, depending on demands and
open-source contributions.

C. Conclusion

We have introduced UNDERWORLDS, a novel framework
for shared and composable spatio-temporal representations of
a robot’s world. The key contributions of our approach are:
a composite data structure for environment representation
within a robotic software architecture, made of a scene graph
and a timeline; a mechanism to efficiently and transparently
share this data structure amongst a set of clients (the software
modules of the robot); a cascading architecture permitting the
explicit of representation of alternative states of the world
while maintaining a network of dependencies.



We have additionally presented a concrete instantiation of
a system relying on UNDERWORLDS for its representation
needs, and we have sketched future directions of develop-
ment.

We believe this work can practically support existing
robotic architectures with state-of-the-art spatio-temporal
representation capabilities. We also hope that this line of
research can lead to a better understanding of the represen-
tation needs of modern robotic systems, and participate to
the emergence of a possible common representation platform
for robots, building on previous formalisation efforts like the
RSG-DSL domain specific language [30].
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