
HAL Id: hal-01944178
https://laas.hal.science/hal-01944178

Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HATP: Hierarchical Agent-based Task Planner
Raphaël Lallement, Lavindra de Silva, Rachid Alami

To cite this version:
Raphaël Lallement, Lavindra de Silva, Rachid Alami. HATP: Hierarchical Agent-based Task Planner:
Demonstration. International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2018), Jul 2018, Stockholm, Sweden. �hal-01944178�

https://laas.hal.science/hal-01944178
https://hal.archives-ouvertes.fr


HATP: Hierarchical Agent-based Task Planner
Demonstration

Raphaël Lallement
LAAS-CNRS, Uni. of Toulouse,

Toulouse, France
Raphael.Lallement@laas.fr

Lavindra de Silva
Institute for Advanced Manufacturing,
Uni. of Nottingham, Nottingham, UK
Lavindra.deSilva@nottingham.ac.uk

Rachid Alami
LAAS-CNRS, Uni. of Toulouse,

Toulouse, France
Rachid.Alami@laas.fr

KEYWORDS
Multi-robot planning; HTN planning; Geometric planning
ACM Reference Format:
Raphaël Lallement, Lavindra de Silva, and Rachid Alami. 2018. HATP:
Hierarchical Agent-based Task Planner. In Proc.of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),
Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
Hierarchical Task Network (HTN) planning is a proven approach
to solving complex, real world planning problems more efficiently
than planning from first principles when “standard operating pro-
cedures” (or “recipes”) can be supplied by the user [13, 14]. By
planning for tasks in the same order that they are later executed,
total-order HTN planners always know the complete state of the
world at each planning step. This enables writing more expressive
planning domains than what is possible in partial-order HTN plan-
ning, such as preconditions with calls to external procedures [14].
Such features have facilitated the use of total-order HTN planners
in agent systems and seen them excel in AI games [5, 7, 12, 17].

This paper describes the Hierarchical Agent-based Task Planner
(HATP), a total-order HTN planner. Since its first implementation
[11], HATP has had various extensions and integrations over the
years, such as support for splitting a solution into multiple streams
and assigning them to the agents in the domain [1]; modelling
their beliefs as distinct world states [18]; allowing “social rules” to
be included by the user to define what kind of agent behaviour
is appropriate [1, 11]; allowing tasks to be planned by taking the
human’s safety and comfort into account [16]; and to interleave
HTN and geometric planning [2, 3, 6].

Since many of these implementations have remained prototypes,
we have significantly enhanced them as well as HATP itself, and
integrated them into a stand-alone HATP distribution, which is now
available as open source software (under a BSD 2-Clause License).
This paper presents some of our recent improvements to HATP,
and gives an overview of its user-friendly language, which treats
agents as distinct entities; its mechanisms for effective control over
decomposition; and its integration into our robotics framework.

2 LANGUAGE FEATURES
The HATP syntax is a product of lessons learnt over years of prac-
tical integration with real agent/robotic systems and other applica-
tions. Like in standard HTN planning, an HATP domain consists

Proc.of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of a set of user supplied HTN methods (“recipes”) and operators.
For defining these, however, HATP employs some useful struc-
tured programming concepts such as structures, conditionals, and
typing. Moreover, the agent types and object types in an HATP
domain/problem are defined separately as a collection of structures
called entities. An entity-structure has a set of attributes, each of
which represents either a data value, or a relationship between
the entity and other entities. An attribute can be one of the stan-
dard data types boolean, integer, or string. An attribute can also
correspond to a set of objects, which can be manipulated in pre-
conditions and effects via standard set operations. For example, an
entity representing a robot-agent may have the attribute carry of
type Container declared as a set, denoting that the robot can carry
multiple objects of type Container.

An HATP initial state is an instantiation of the defined enti-
ties, with value assignments to their attributes; e.g. the robot-agent
above could be instantiated with “robot = new Agent;” and its con-
tainers added via the statements “robot.carry add con1; robot.carry
add con2;” where con1 and con2 are instantiated container objects.

To show that HATP’s syntax is sound with respect to traditional
HTN languages, we have developed in [4] a formal mapping from
HATP’s syntax into that of SHOP—the dominant HTN planner
in the literature. Intuitively, attributes of entities correspond to
predicate symbols in SHOP, and the entity names and attribute
values to the parameters of predicates. For example, if variables Rob,
Loc1, and Loc2 represent robots and locations, then, the assignment
“Rob.at = Loc2” will map to the two predicates “at(Rob,Loc2)” and
“¬at(Rob,Loc1)” in SHOP (where Loc1 is the robot’s previous location),
and “Loc2.empty = false” to “¬empty(Loc2)”.

HATP supports developing agent-oriented domains by making
a distinction between agents and other types of objects. Agents are
treated as “first class citizens”, and it is possible to define different
types of agents. By virtue of making this distinction, HATP is able
to split a solution (sequence of action nodes) found into multiple
solution “streams”, one per agent in the solution, and to add causal
links between streams for synchronisation [1]. The various streams
may then be executed concurrently in a multi-agent system by
synchronising where necessary.

3 CONTROL OVER SEARCH
HATP provides ways to control how variables occurring in meth-
ods are bound at runtime, via the SELECT (which we abbreviate to
SEL), SEL-ORDERED, and SEL-ONCE constructs. The SEL construct
binds the given variable in the usual way. In essence, the construct
amounts to a “backtrack point” that allows all values of the asso-
ciated variable—and thus all ground instances of the method—to



be considered. SEL-ORDERED binds the variable in some given or-
der, governed by a user-supplied ordering relation; the variable
can be bound in ascending or descending order with respect to
the relation. Finally, SEL-ONCE binds the variable only once—any
remaining bindings are disregarded. This offers a reduction in the
branching factor at the expense of completeness, as some of the
ignored bindings may also yield HATP solutions. As an example
of the value of SEL-ONCE, consider the setting where if one robot
cannot navigate to a destination then none of the others will be able
to either. Here, there is no need to consider all possible robot-object
bindings: trying a single binding will suffice.

Recently, we have enabled the encoding of domain-dependent
backtrack preferences by a developer, allowing themore “promising”
backtrack points to be explored first, resulting in faster search.
These preferences can be conditional, and the next backtrack point
to explore can be at a different “level” in the search tree. For example,
if it is impossible to plan a particular route to a restaurant (e.g. due to
a road closure), it might be faster in some settings, before trying the
other (possibly numerous) routes, to “jump” to an earlier backtrack
point in the search tree and pick a different restaurant.

4 SYMBOLIC-GEOMETRIC PLANNING
While an HTN hierarchy allows one to intuitively reason about
high-level tasks in terms of more specific tasks, and eventually
in terms of basic actions, the latter are still “abstractions” of the
lowest possible level of detail, and they make certain assumptions
about theworld. For example, anHATP operatormove(Robot,From,To)
might assume that as long as location To is adjacent to location
From, that the robot at From will be able to navigate to location To.
In reality, however, this will not work when certain geometrical
characteristics of the robot and the route make the move physically
impossible. Combining HATP with geometric planning algorithms
used in robotics is therefore crucial to be able to obtain primitive
solutions that are viable in the real world.

To this end, we have developed a tighter integration with a
geometric planner (GP) by taking inspiration from the prototype
integrations in [3, 6]. Interleaved HTN and geometric planning is
now a built-in feature of HATP. The main improvements are the
following new syntactic constructs (which concretise the concepts
discussed in [9]) for action definitions, which can be used to: (i)
consult the GP, during HTN planning, to determine against the
current 3Dworld state whether there exists a viable trajectory for an
action; (ii) apply such a trajectory to the 3D world; (iii) compute the
symbolic facts resulting from the trajectory, including any relevant
side effects such as distanceMoved(robot1,15); (iv) transparently add
such facts into HATP’s symbolic world state; and (v) constrain the
geometric goal states (positions and orientations) considered.

The listing below illustrates our new constructs. The precondi-
tion adds constraints to ensure that all robots in the same travel
group as Rob are visible to it after the move; the constraints are
considered by the GP when building goal states corresponding to
To. The precondition then simulates a move in the 3D world to
check whether a trajectory exists for one such goal state. If so,
the “projects” line applies the trajectory to the 3D world, and the
“effects” line computes and adds the resulting symbolic facts into

HATP’s state. The “cost” line retrieves the actual moved distance,
computed by the GP.

action movWithGroup(Agent Rob, Location From, Location To, Type T) {
preconditions {
FORALL(Agent R, { R isIn Rob.travelGroup; }
{ addConstraint(Rob.ID, T.isVisible, R.ID, true) == true; });

Rob.at == From;
To isIn From.adjacent;
checkMove(Rob, From, To) == true; // simulate to check that a move is possible

};
projects { applyMove(Rob, From, To) }; // do the move within the 3D world
effects { Rob.at = To; }; // any side effect is added transparently
cost { moveCost(From, To) }; // used for finding the optimal plan
duration { moveDur(From, To) }; // used to estimate a plan's execution period

We evaluated our tighter integration of symbolic and geometric
planning with a new case study, which required extending the GP
to be able to model the dynamics of quadrotor UAVs, in order to sim-
ulate the assembly of complex structures by multiple cooperating
UAVs. The screenshots below illustrate the assembly of coloured
bars by a single UAV with an attached robotic arm. Each bar is
moved from a holder (top left) and inserted into a matching slot,
or into two vertical bars. The high-level tasks (e.g. ‘pick’ and ‘in-
sert’) are planned by HATP, and their trajectories by the GP. Any
correct high-level plan involves assembling the long blue bar last;
otherwise, there would not exist a trajectory (due to a lack of space
under the blue bar) for the UAV to assemble the long green bar.

Our second scenario is collaborative manipulation involving a
robot and human [9]. At one level of abstraction, the robot must
find and pick the objects on a table and move them onto another; at
the lower level of abstraction, the robot must check that objects are
graspable, and visible and reachable to the human after the move.

5 LAAS ROBOTICS ARCHITECTURE (LRA)
While HATP can be used as a stand-alone planner, it is also part of
the LRA [8]: an interconnected set of components responsible for
different aspects of the overall system. An important component
is the Move3D [15] GP, which represents the real world in 3D and
uses this as input for geometric planning. The robot uses various
sensors to update its 3D state in real-time, e.g. a tag-based stere-
ovision system is used for object identification and localisation,
and a Kinect (Microsoft) sensor is used for tracking humans. The
execution controller is the Procedural Reasoning System [10], re-
sponsible for invoking HATP when a task needs to be planned, and
for executing the solution returned, by invoking the corresponding
actuators on the (possibly simulated) robot. More recently, we have
made HATP accessible to the robotics community by making each
of HATP’s constituent modules a ROS node. This enables standard
and safe interoperability between HATP modules (e.g. via strongly
typed data structures), and between HATP modules and other ROS
nodes, e.g. the ones that control robots in the LRA.



REFERENCES
[1] Samir Alili, Rachid Alami, and Vincent Montreuil. 2009. A Task Planner for an

Autonomous Social Robot. In Distributed Autonomous Robotic Systems 8. Springer
Berlin Heidelberg, 335–344.

[2] Samir Alili, Amit Kumar Pandey, Emrah Akin Sisbot, and Rachid Alami. 2010.
Interleaving Symbolic and Geometric Reasoning for a Robotic Assistant. In ICAPS
Workshop on Combining Action and Motion Planning.

[3] Lavindra de Silva, Mamoun Gharbi, Amit Kumar Pandey, and Rachid Alami. 2014.
A New Approach to Combined Symbolic-Geometric Backtracking in the Context
of Human-Robot Interaction. In Proc. of the International Conference on Robotics
and Automation (ICRA). 3757–3763.

[4] Lavindra de Silva, Raphaël Lallement, and Rachid Alami. 2015. The HATP Hierar-
chical Planner: Formalisation and an Initial Study of its Usability and Practicality.
In Proc. of the International Conference on Intelligent Robots and Systems (IROS).
6465–6472.

[5] Lavindra de Silva and Lin Padgham. 2005. Planning on Demand in BDI Systems.
In Proc. of the International Conference on Automated Planning and Scheduling
(ICAPS) Poster Session. 37–40.

[6] Lavindra de Silva, Amit Kumar Pandey, and Rachid Alami. 2013. An Interface
for Interleaved Symbolic-Geometric Planning and Backtracking. In Proc. of the
International Conference on Intelligent Robots and Systems (IROS). 232–239.

[7] Jürgen Dix, Héctor Muñoz-Avila, Dana S. Nau, and Lingling Zhang. 2003. IM-
PACTing SHOP: Putting an AI Planner Into a Multi-Agent Environment. Annals
of Mathematics and Artificial Intelligence 37, 4 (2003), 381–407.

[8] Sara Fleury, Matthieu Herrb, and Raja Chatila. 1997. GenoM: A Tool for the
Specification and the Implementation of Operating Modules in a Distributed
Robot Architecture. In Proc. of the International Conference on Intelligent Robots
and Systems (IROS). 842–848.

[9] Mamoun Gharbi, Raphaël Lallement, and Rachid Alami. 2015. Combining Sym-
bolic and Geometric Planning to Synthesize Human-Aware Plans: Toward More
Efficient Combined Search. In Proc. of the International Conference on Intelligent

Robots and Systems (IROS). 6360–6365.
[10] François Félix Ingrand, Raja Chatila, Rachid Alami, and Frédéric Robert. 1996.

PRS: A High Level Supervision and Control Language for Autonomous Mobile
Robots. In Proc. of the International Conference on Robotics and Automation (ICRA).
43–49.

[11] Vincent Montreuil, Aurélie Clodic, Maxime Ransan, and Rachid Alami. 2007. Plan-
ning Human Centered Robot Activities. In Proc. of the International Conference
on Systems, Man and Cybernetics (SMC). 2618–2623.

[12] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, Héctor Muñoz-Avila,
J. William Murdock, Dan Wu, and Fusun Yaman. 2005. Applications of SHOP
and SHOP2. IEEE Intelligent Systems 20, 2 (2005), 34–41.

[13] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan
Wu, and Fusun Yaman. 2003. SHOP2: An HTN Planning System. Journal of
Artificial Intelligence Research (JAIR) 20, 1 (2003), 379–404.

[14] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. 1999. SHOP: Simple
Hierarchical Ordered Planner. In Proc. of the International Joint Conference on
Artificial Intelligence (IJCAI). 968–973.

[15] Thierry Simeon, Jean-Paul Laumond, and Florent Lamiraux. 2001. Move3D: A
Generic Platform for Path Planning. In Proc. of the International Symposium on
Assembly and Task Planning. 25–30.

[16] Emrah Akin Sisbot, Aurélie Clodic, Rachid Alami, and Maxime Ransan. 2008.
Supervision and Motion Planning for a Mobile Manipulator Interacting with
Humans. In Proc. of the International Conference on Human Robot Interaction (HRI).
327–334.

[17] Stephen J. J. Smith, Dana S. Nau, and Thomas A. Throop. 1998. Success in Spades:
Using AI Planning Techniques to Win the World Championship of Computer
Bridge. In Proc. of the National Conference on Artificial Intelligence and Innovative
Applications of Artificial Intelligence Conference (AAAI/IAAI). 1079–1086.

[18] Matthieu Warnier, Julien Guitton, Séverin Lemaignan, and Rachid Alami. 2012.
When the Robot Puts Itself in Your Shoes. Managing and Exploiting Human
and Robot Beliefs. In Proc. of the International Conference on Robot and Human
Interactive Communication (RO-MAN). 948–954.


	1 Introduction
	2 Language features
	3 Control over search
	4 Symbolic-geometric planning
	5 LAAS Robotics Architecture (LRA)
	References

