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Abstract— In order to improve adaptation capabilities
of robots for human-robot interaction, we take inspiration
from psychology and neuroscience to propose a hybrid
control architecture. This architecture is based on the
multiple Experts approach that is mainly used for mammal
behavior modelling. We propose to couple a human-aware
task planner (HATP) with a model-free reinforcement
learning to allow the robot to learn behaviors relevant
to solve tasks in interaction, taking advantage from the
a-priori knowledge provided to the planner and the cheap
decision capability of the reinforcement learning agent. We
evaluate this architecture in a HRI task of cleaning a table
and show that the combination of Experts (planner and
reinforcement learning agent) increases the learning speed
of the learning agent.

I. INTRODUCTION

Studies on mammals in psychology and neuroscience
have provided strong evidence that two categories of
behavior exist and mammals switch between them [1],
[2]. Goal-directed behaviors – relying on costly but
adaptive planned long-term consequences of actions [3]
– and habitual behaviors – reactive behaviors fitted to a
stable given context – have been extensively studied [4],
modeled as Experts using the theory of Reinforcement
Learning [5]. The computational principles underlying
the switch between behaviors is an ongoing research
topic [6], [7], [8] and some applications of these prin-
ciples to robotics [9], [10] have produced promising
results both for modelling the underlying mechanisms
and improving robot capabilities.

On the other hand, the emergence of robots as col-
laborators of human users increases the need for them
to be given robust adaptation capabilities. For a more
efficient interaction, robots should be able to perform
correctly on a collaborative task no matter if the user is

known and predictable or new and unreliable. One key
point to allow robots to interact with other agents is to
integrate them in the planning process. This has been
achieved by Human Aware Task Planner (HATP) [11]
that, among others, outputs a plan with both the robot’s
and the other agent’s action flows, some actions being
joint and some being independent.

In this paper, we apply behavioral architecture princi-
ples in a human-robot interaction task (simulated ”ta-
ble cleaning” task [12]), in order to verify both the
generality of the multiple behaviors approach and its
efficiency for interaction and adaptability to various
human users. We propose an architecture with HATP as
goal-directed behavior and a model-free reinforcement
learning algorithm (MF) as habitual behavior. Whereas
the HATP planner embed knowledge on how to solve
the task in interaction, its ability to plan bootstraps
learning of the model-free algorithm. When the latter
has learnt, the robot can rely on its cheap decision
capability to avoid planning but still perform correctly.
As a proof of concept, we evaluate the performance of
each behavior controlling alone the robot, and a random
mixture of HATP and MF propositions. We show that
HATP performs better than MF on the task, as it starts
with an initial knowledge. The combination of HATP
and MF improves the performance of the robot on the
task, widening the results from [10] on a different, more
complex task. The MF actually learns faster, taking
advantage from HATP knowledge and guidance.

II. CONTROL ARCHITECTURE

A. Experts

We have two systems able to provide the next action
to do to the robot:



• Human-Aware Task Planner (HATP) [11]. This
planner allows the robot to take into account a
human partner in a cooperative context. As a HTN
planner, HATP uses known preconditions and ef-
fects of actions in order to find the best plan that
reaches the goal. It takes as input a list of all
possible actions and their description in terms of
preconditions and effects and also a description of
the current world state as a set of predicates with
a closed world assumption. Then, it looks for the
combination of actions that minimizes the solution
cost. This cost is computed based on execution
time and human-aware costs, e.g the balance of
efforts between agents or waiting time of the human
partner. This plan is then executed step by step until
the goal is reached. It is thus well-suited to be the
Goal-Directed Expert in our architecture.

• Qlearning algorithm (MF). It is a one layer neural
network implementation of a Qlearning algorithm,
a model-free reinforcement learning algorithm [5].
From the activity generated by the current state,
each action receives a value depending on the
connection weights between input neurons and out-
put (action) neurons. These values are converted
into probability of selection using the Boltzmann
function. Each action performed is valued by a
feedback, strengthening or decreasing the connec-
tion between state and action, thus the probability
to select each action in a certain state evolves over
time, in order to maximize the accumulation of this
feedback signal.

Both systems have advantages and drawbacks, but are
in fact complementary:

• HATP has a priori knowledge, provided by a human
expert, stored in the task domain. It provides a
complete plan and it does not require a learning
phase. However, it can happen that it is not able to
find a plan. Moreover, it becomes slower to provide
a solution as soon as the domain gets bigger or the
combinatorics increases.

• The Qlearning algorithm requires a learning phase
that could be long but it is always able to propose
an action. Moreover, once the learning phase has
been realized, the system proposes the most inter-
esting action known without planning, and thus is
very fast. On the other hand, if the task changes,
learning has to be done again according to the new
conditions, which is even longer than learning from
scratch.

Our idea it to find how to combine them to take
advantage of both. In this paper, we will explain how we
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Fig. 1. The control architecture of the robot. The Decision layer is
a multiple Experts architecture, arbitrated by the MetaController. In
parallel, the Goal-directed Expert, which is long to plan but can take
action consequences into account, and the Habitual Expert, which is
quick to plan but slow to learn the policy, propose an action. The
final decision (chosen action) is sent to the Executive and Functional
Layers for execution.

use HATP planning system to bootstrap the Qlearning
algorithm. This has two goals, the first one is obviously
to fasten the learning phase of the algorithm, the second
one is to enable the learning algorithm to learn a policy
that is quite consistent in order to avoid too many
inconsistent behavior of the system when it will be faced
to a real human.

B. Architecture

We adapt the model from [10] to the layered archi-
tecture from [13] except that in the Decision Layer, the
Value Iteration Model-based algorithm is replaced by
the Human-Aware Task Planner (HATP). Consequently
we have two Experts: one called Goal-Directed Expert
that is hold by HATP, one called Habitual Expert that
is hold by Qlearning. Figure 1 gives an overview of the
architecture.

Experts receive the current state estimation of the
world (it matches the state description, see section III)
from the perception processing, they both receive exactly
the same information. They then send their next action
proposition to the MetaController. The MetaController
arbitrates between the two propositions and send the
chosen action to the supervision system to be executed.
The Habitual Expert receives back the executed action
in order to learn. The system loops at the end of the
action execution.

In this setup, we only use a random arbitration be-
tween Experts propositions. Few of the criteria proposed
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Fig. 2. The Robot and the human partner are facing the table. One
tape is on human side, two tapes and the trashbin are on robot side.
At left, the initial state. At right, the final state.

in [14] are directly applicables, as they mostly rely on
the probability distributions maintained by their Experts
for decision. Using HATP implies that the MetaCon-
troller has no probability information on the action
proposed by the goal-directed Expert. Thus, exploration
of relevant criteria will be discussed in section V.

III. TASK DESCRIPTION

The task is inspired from [12]. The goal of the task
is for the robot to clean the table with the help of a
human partner. Cleaning the table is equivalent to “all
items are in the thrashbin” (or none are on the table -
but the first expression of the goal is more restrictive on
the final state to be in). Some of the objects can be out
of its range, so the human partner should help. Figure 2
shows the setup.

The task has been run in simulation for now, but the
running algorithms to pilot the robot are the same than
the ones running on the real robot.

We construct the state manipulated by the architecture
as a vector of the following boolean facts on environ-
ment. These facts are computed based on geometry in
[15].

• Object isReachableBy Robot (including Trashbin)
• Object isReachableBy Human (including Trashbin)
• Object isIn Trashbin
• Human isReachableBy Robot
• Robot hasInHand Object
• Human hasInHand Object

These facts are computed from the point of view of the
robot.

The set of actions that are available for both actors are
the following: PickObject, ThrowObject, GiveToHuman
= (give(from robot), take(from human)), TakeFromHu-
man =(give(from human), take(from robot)), Wait, Goto
(Object, Trashbin, Human).

The Wait action allows the robot to wait until the
human performs an action (or until a time limit is
reached). HATP returns this action when, according to
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Fig. 3. Mean cumulative reward on 10 simulations where the robot
repeatedly fulfils the task. Errorbars represent the standard deviation
from the mean every 100 decisions.

its plan, the next robot action cannot be executed without
human intervention (e.g. only one tape remains, out of
robot range). In simulation, we give to the human a
”collaborative behaviour”: he performs the actions that
HATP planned for him and participates to a handover
when the robot needs to. Thanks to this action, the robot
will indirectly learn the behaviour of the human partner.
If the behaviour of the human changes (e.g. he becomes
less cooperative or has a different way to solve the task),
the wait action will not have the same effects and so, the
robot will learn to achieve the task in a different way.

IV. RESULTS

We evaluate the performance of the robot using the
cumulative reward obtained during the task duration.
One reward unit is given to the robot when the table is
empty and the robot waits. The setup is then reinitialized
and the task can be done again, thus the cumulative
reward corresponds to the number of times the task has
been solved. We study the performance of each Expert
(HATP and MF) controlling the robot alone, and then
the combination of them. All experiments last the same
fixed time, but the number of decisions taken at the end
may vary.

From figure 3, we observe the performance of each
Expert alone and the combination by looking the number
of rewards during a fixed duration (i.e. the number of
times the system is able to solve the task).. We observe a
poor performance of the MF alone, which is not able to
solve the task more than three times. As the MF has no
initial knowledge, it has to discover the right sequence
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Fig. 4. Number of action per experiment. Dashed line is the mean
number of action depending on the control method (MF only, HATP
only or combination).
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Fig. 5. Mean MF connection weights evolution for MF alone and
MF and HATP combination. The amplitude is defined as the sum of
the absolute value of weights. Weights are initialized to zero, thus the
higher the amplitude is, the more the MF has learnt which action to
do.

of actions, which is non trivial as the number of states
and actions is quite big.

The random combination HATP-MF is performing
much better than the MF alone, solving the task 25 times
in average. However, HATP alone perform even better,
solving the task 34 times in average. Indeed, the task is
easy enough to solve for HATP and the time required
to find a plan is negligible here. As the simulated
human always performs the actions planned by HATP,
the plan found by HATP is always optimal and will
never change during the task execution. Accordingly,
the random combination of HATP and the MF performs

worst as it can include actions proposed by the MF that
make the plan non optimal.

Figure 4 shows the number of actions proposed to
the supervision system during each experiment. We can
see that the MF alone suggests twice to three times
more actions than HATP or the combination in the same
given time. This is mainly due to the way each Expert
decides: the MF only needs to compute the values of
each action (which is propagating the state activity to
action neurons) and to draw an action from the resulting
probability distribution. It proposes a lot of infeasible
actions and the supervision system will not spend time
to execute them as it will stop to the preconditions veri-
fications. HATP checks for action preconditions when
planning and so, for each of the action proposed by
HATP, the supervisor spend time to execute it (or try to
execute it if the action is not really feasible according
to the geometry). The number of actions suggested by
the combination of Experts is closer to the one with
HATP alone while remaining lightly higher. It can be
explained by the fact that a part of the actions proposed
by the combination comes from HATP and, for the ones
coming from the MF, HATP helps it to learn faster a
solution, causing it to propose less infeasible actions.

Finally, we analyse the effect of combination on learn-
ing of MF in Figure 5. Learning is evaluated by weights
amplitude, namely the sum of weights absolute value
over actions. The MF starts with weights initialized
to zero, each learning step increases or decreases the
value of some of the weights, until convergence. The
figure shows that learning occurs much earlier for the
combination of Experts than when the MF is alone.
The combination has a bootstrapping effect and the
knowledge about the task from HATP is transfered to
the MF. This shows that a human-provided a priori
knowledge can be used to guide exploration and learn
quicker. Even if not tested in this experiment, this means
that a change in task condition for which HATP can
find a new plan can be learnt quickly by the MF, so the
robot will be able to adapt to the new conditions without
taking too much time.

V. DISCUSSION

We proposed the Decision Layer of a robotic control
architecture combining two Experts: a human-aware
planner (HATP) and a model-free reinforcement learning
agent (MF). We evaluated each Expert on a simulated
”table cleaning” task in interaction with a human. We
showed that combining the Experts’ action proposi-
tion significantly increases the performances and the
learning speed compared to the MF alone. In term
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of pure performance, the combination performs worst
than HATP alone in this task. However, we strongly
believe that having a combination of Experts compared
to HATP alone will be beneficial even if the performance
decreases. Indeed, the addition of the learning agent will
allow the system to find a solution in some specific cases
where the planner can be blocked (e.g. HATP does not
take into account the geometry and can find plan feasible
at a symbolic level but not in reality). Moreover, the
learning agent will allow the robot to adapt its behaviour
if the human does not act as expected by HATP. In
future work we will test the system with a more complex
task that will challenge more HATP and with different
behaviours for the human.

Here, we used a random criterion as a proof of
concept: it is a starting point to validate our principle
on a much more realistic task than in [10]. However,
in order for a human being to trust the robot enough to
collaborate on a task, the behavior can not be random
when the MF is still learning. Thus the need for a
relevant criterion implies that the latter is able to take
into account the state of learning of the MF and gives it
control only when learning has converged into a stable
policy. Give to the MetaController an information on
the variation of MF weights can allow for a more clever
arbitration.

In our architecture, we start with a difference be-
tween the initial knowledge provided to each Expert.
We could provide an equivalent knowledge to the MF,
which would be able to find a good behavior since the
beginning. However, we choose not to do it because this
knowledge, as is the knowledge given to HATP, would
be human-provided, and thus will not be necessarily
well-adapted to the robot. For example, the knowledge
in HATP may consider that the task can be solved by
taking the tape out of robot’s range from the human
partner giving it. It makes the assumption that any
human partner will actively participate in solving the
task. But the one that provided this knowledge neglects
that the partner may not understand what is expected
from her or may be afraid of the robot. Providing the
same – potentially wrong – knowledge to the MF will
prevent it to try unexpected behavior, explore the task
space and eventually find a better-suited solution for a
real world problem.

HATP is indeed limited to the knowledge the human
gave to it. If it happens that a case has been forget by
its designer, HATP is blocked. The use of simulation
could help us to find these kind of limitations and
the use of the learning algorithm could help to find
a suited solution that then could be added to HATP

domain. HATP is able to devise a plan not only for
the robot but also for the human it interacts with. It
is well suited for interaction because it can take into
account general knowledge about how the task should
unfold from a human perspective (and predictability is
something you are looking at when you interact with
somebody). However, if we think about interaction, we
have also to think about adjustment given the human the
robot interacts with. Flexibility of learning could help in
that direction. It could help, for example, to tune costs
used by HATP to compute its plan so it is better suited
for interaction with a given person.

In order to validate more generally this approach, the
experiment will be done on a real robot and with real
human partners interacting, as our architecture is easily
transferable from simulation to real world. This will
provide some behavioral variability from non-simulated
human partners. We will also be able to study different
ways to give reward to the robot: it is given from the
simulation in this work, but it could be extracted from
analysing the reaction from robot’s partner and increase
robot’s autonomy.
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