
HAL Id: hal-01947338
https://laas.hal.science/hal-01947338

Submitted on 6 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Ordered Chronicle Discovery Algorithm
Alexandre Sahuguède, Euriell Le Corronc, Marie-Véronique V Le Lann

To cite this version:
Alexandre Sahuguède, Euriell Le Corronc, Marie-Véronique V Le Lann. An Ordered Chronicle Dis-
covery Algorithm. 3nd ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal
Data, AALTD’18, Sep 2018, Dublin, Ireland. �hal-01947338�

https://laas.hal.science/hal-01947338
https://hal.archives-ouvertes.fr

An Ordered Chronicle Discovery Algorithm

Alexandre Sahuguède1, Euriell Le Corronc1, and Marie-Véronique Le Lann1

LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
{alexandre.sahuguede, euriell.le.corronc, marie-veronique.lelann}@laas.fr

Abstract. Chronicles are temporal patterns well suited to capture dy-
namic process thanks to an event abstraction of the information of in-
terest. Designing chronicles from a journal log is not a trivial task con-
sidering the huge amount of data generated by highly-advanced systems.
Chronicle discovery is a mean to help expert design chronicles that are
representative of a system behavior from direct observations. In this pa-
per, a clustering approach to the chronicle discovery problem is consid-
ered. To improve the discovered chronicle quality, an order in the design
of interesting pattern is introduced. This allows a better robustness to
small perturbations in the input journal log. The efficiency of the ordered
chronicle discovery algorithm is evaluated on a real dataset.

Keywords: Temporal data mining · Chronicle discovery · Clustering.

1 Introduction

In recent years, both academic and industrial communities have been interested
in the study of the timed discrete event models called chronicles. Chronicles
are temporal patterns well suited to capture dynamic process by means of an
event abstraction of the information of interest. Chronicles are used to model
care-pathways [3], web-services [7], or alarms [6]. However, designing chronicles
is not a trivial task, a task that often requires the knowledge of an expert. The
need for a chronicle discovery algorithm to help the expert to analyze the huge
amount of data that modern systems generate is clear.

Several approaches to the chronicle discovery problem exist. Cram [2] pro-
poses an interactive approach to this problem. Based on the APriori algorithm
[1], this algorithm requires the user to check the result on each iteration and
stops if the discovered chronicles satisfy the user. This algorithm uses a single
temporal sequence for this task. Another approach [3] consists in mining sev-
eral sequences where a known phenomenon appears once in each sequence. In
previous work [8], we try to use a clustering approach to reduce the need of an
expert. In this algorithm, a density-based clustering algorithm is used to clus-
ter patterns by similarity. However, our first approach is not sufficiently robust
to small perturbations in the input data. In this paper, we try to tackle this
problem with the introduction of an order in the pattern construction.

The rest of this paper is organized as follows. In Section 2, concepts used in
this paper are described. Section 3 presents the ordered chronicle discovery algo-

2 A. Sahuguède et al.

rithm. In Section 4, our algorithm is evaluated on real data. Section 5 concludes
this work.

2 Concepts and definitions

An event is defined by x = (e, t) with an event type e ∈ E, and a time instant t ∈
N. A temporal sequence is a time-ordered set of events denoted S = {x1, . . . , xn}
with n a finite number of events, and tj < tj+1, j = 1, . . . , n− 1. The set of all
event types occurring in S is called ES .

A chronicle C is a pair (X , T) where X = {x1, . . . , xn} is a set of partially
ordered events with n a finite number of events, and T = {τij}1≤i<j≤n is a set of
temporal constraints on X . A temporal constraint is a tuple τij = (xi, xj , t

−, t+),
also noted τij = xi[t

−, t+]xj , with 0 ≤ t− ≤ t+. τij = xi[t
−, t+]xj is said satisfied

by a couple of events xi = (ei, ti), xj = (ej , tj) if and only if (tj − ti) ∈ [t−, t+].
EC denotes the set of all event types of C. A n-length chronicle is a chronicle
with n events.

A chronicle instance IC(S) is a subset of events of S such that their event
types are those of X and their time occurrences satisfy all the temporal con-
straints T of C. The frequency of a chronicle C in a temporal sequence S is the
number of instances of C in S and is named fC(S).

Let S be a temporal sequence and let (a, b) be a pair of event types such that
a, b ∈ ES . The set Oab is the set of all the occurrences of (a, b) in S such that b
follows a:

Oab = {〈(a, ti), (b, tj)〉 | ∀i, j, ti < tj , (a, ti), (b, tj) ∈ S}. (1)

The set Dab is all the temporal distances between each occurrence of the pair
(a, b):

Dab = {(tj − ti) | 〈(a, ti), (b, tj)〉 ∈ Oab}. (2)

Example 1. Let C = (X , T) be a 3-length chronicle with X = {x1 = (a, t1),x2 =
(b, t2),x3 = (b, t3)}, and T = {τ12 = x1[10, 20]x2,τ13 = x1[3, 4]x3}. The set
of all event types of C is EC = {a, b}. Let S = {x1, x2, x3, x4, x5} be a tem-
poral sequence with x1 = (a, 1), x2 = (b, 4), x3 = (a, 10), x4 = (b, 13), and
x5 = (b, 27). Events x1 and x3 are different occurrences of event type a. Two
instances of C appear in S: I1C(S) = {x1,x2,x4} = {(a, 1),(b, 4),(b, 13)}, and
I2C(S) = {x3,x4,x5} = {(a, 10),(b, 13),(b, 27)}. The frequency of C in S is fC(S) =
2 and corresponds to the total number of instances. About the pair (a, b): Oab =
{〈(a, 1), (b, 4)〉,〈(a, 1), (b, 13)〉,〈(a, 1), (b, 27)〉,〈(a, 10), (b, 13)〉,〈(a, 10), (b, 27)〉} and
Dab = {3, 12, 26, 3, 17}.

Proposition 1. Let Dab be a set of temporal distances for a pair (a, b). The
2-length chronicle C = (X , T) can be obtained from Dab with X = {x1 =
(a, t1), x2 = (b, t2)}. T = {τ12 = x1[min{Dab},max{Dab}]xj} is given by the
lower and upper bounds of Dab

1. All instances IiC(S) are occurrences of Oab. The
frequency fC(S) is the size of Dab.
1 When Dab contains only one element, t− = t+ = Dab.

An Ordered Chronicle Discovery Algorithm 3

Proof. Directly from the chronicle definition and Equation (2).

Example 2. Let (a, b) be a pair of event types with Dab = {3, 12, 26, 3, 17}. The
2-length chronicle C = (X , T) is obtained with X = {x1 = (a, t1),x2 = (b, t2)}
and T = {τ12 = x1[3, 26]x2}. The instances of C in the temporal sequence S
seen in Example 1 are I1C(S) = {(a, 1), (b, 4)}, I2C(S) = {(a, 1), (b, 13)}, I3C(S) =
{(a, 1), (b, 27)}, I4C(S) = {(a, 10), (b, 13)}, and I5C(S) = {(a, 10), (b, 27)}. They
correspond to the set Oab of the pair (a, b).

3 Ordered chronicle discovery

In this section, the chronicle discovery algorithm proposed in our previous work
[8] is explained. Then, our new approach is presented. With a temporal sequence
as input, this is a 2 step algorithm.

The first step is the discovery of a set of 2-length chronicles from a temporal
sequence S. First, the set of temporal distances Dab is computed for each pair
of event types from ES . Then, a cluster analysis is performed on each of these
sets with DBSCAN2 [4]. This clustering algorithm builds clusters thanks to the
point density in the data. Clusters found depend on some parameters ε and
minPts. Points that are not included in clusters are determined as noise. This
analysis takes advantage of the natural clusters present in the sets D. Finally,
2-length chronicles are generated by means of Proposition 1 for each cluster.
Since clusters found by DBSCAN are homogeneous, the frequencies fC(S) of the
2-length chronicles generated from it is exactly the number of temporal distances
in D. Chronicles with a frequency less than minPts are not generated by this
step.

The second step of the chronicle discovery algorithm is the chronicle synthesis
from the 2-length chronicles previously discovered. This step uses a similarity
index on the events of the 2-length chronicles called the Jaccard index.

Definition 1 (Jaccard index). Let S be a temporal sequence and C = (X , T)
be a chronicle with xi one of its event. The set of time occurrences of xi in all
chronicles instances IC(S) is determined by the following formula:

Oi = {ti | ∀IC(S), xi = (e, ti) ∈ X}. (3)

With xj another event of C and Oj its set of time occurrences, the Jaccard index
between xi and xj is calculated by the following formula:

S(xi, xj) =
|Oi ∩ Oj |
|Oi ∪ Oj |

. (4)

The Jaccard index quantifies the frequency at which the occurrence of two events
appears at an identical time. An index equals to 1 shows that the two events
always appear at the same time, whereas an index lower than 1 shows that some
occurrences do not appear at the same time.

2 Any clustering algorithm that can be used on 1-dimensional data could be applied
instead of DBSCAN.

4 A. Sahuguède et al.

The major difference between the approach in this paper and the approach
in [8] is that we can use all values of the Jaccard index and not only values of
1. The use of the Jaccard index only on values of 1 allows most of the chronicle
construction problems to be solved. A chronicle solution for each frequency is
created. Then, each 2-length chronicle is combined to the chronicle solution of
its frequency without any ordering constraints. The Jaccard index between the
events of the 2-length chronicle and the events of the chronicle solution is then
computed. If the Jaccard index is equal to 1, those events are merged. Once
all the 2-length chronicles are treated, the learned chronicles correspond to the
chronicles solution.

Unfortunately, this previous approach does not take into account all the prob-
lems that occur with the use of the Jaccard index on a percentage of similarity.
Another method for this chronicle synthesis step should be considered.

First, 2-length chronicles are sorted by their frequency in the temporal se-
quence mined. Then, for each frequency in the set of all possible frequencies of
the 2-length chronicles discovered F , a chronicle solution will be synthesized.
This chronicle will be the synthesis of the set of all candidate chronicles. A
chronicle is candidate when its frequency is higher than the product between
the current frequency and the minJac parameter. The minJac parameter is
the minimum threshold for which the Jaccard index is taken into account. The
candidate 2-length chronicles are then sorted by the value of the interval of their
temporal constraints. Finally, for each pair of candidate chronicles, the Jaccard
index between each event is computed.

Once all the Jaccard indexes are compiled, one chronicle solution is initialized
with all the candidate 2-length chronicles. Then, operations are sorted according
to the value of the Jaccard index: the higher the index, the sooner the operations
will be applied to the chronicle solution. An operation is the fusion of two events
in the chronicle solution. An operation with a Jaccard index below the thresh-
old minJac is not taken into account. Furthermore, since candidate chronicles
are sorted by interval, the operations (with the same Jaccard index) between
chronicles with small intervals will be treated sooner than those with high inter-
vals. With the operations sorted, they are checked sequentially. If an operation
satisfies the rules of a chronicle, it is applied on the chronicle solution. Once all
operations are applied, the independent sub-chronicles in the chronicle solution
are extracted and added to the set of learned chronicles. The use of the Jac-
card index on different values than 1 means that several solutions can be found
depending on the order of the operations. This step could be repeated with a
different order of operations that could result in a different chronicle solution.
In some cases, a different solution could be interesting for the users to explore.
This is the object of future work.

An analysis of the algorithmic complexity of the presented algorithm shows
that a polynomial complexity could be achieved. The overall algorithmic com-
plexity of this algorithm is given by O(n4m log(m)), with n the number of events
in the input temporal sequence and m the length of the longest discovered chron-

An Ordered Chronicle Discovery Algorithm 5

icle. This complexity could be largely reduced by well-chosen parameters of the
clustering step.

4 Experiments

In this section, the efficiency of the ordered chronicle discovery algorithm is
evaluated on real data. The dataset used in this experiment, called Blocks, comes
from BIDE-D [5] and is summarized in Table 1. In this dataset, the temporal
sequences describe visual primitives obtained from video of an hand stacking
colored blocks. Events describe block contacts and actions of the hand. Each
temporal sequence represents a specific scenario.

Table 1: The dataset Blocks with the number of events and event types for each
temporal sequence.

Temporal Sequence Events Event types

assemble 528 12
disassemble 486 12
move-left 150 10
move-right 154 10
pick-up 184 6
put-down 186 6
stack 362 10
unstack 364 10

Figure 1 illustrates the execution times for different values of the ε parameter
with the parameter minPts set to 3 and minJac set to 0.9, whereas Figure 2
illustrates the number of learned chronicles. These plots compile results of 4 tem-
poral sequences (assemble, move-left, pick-up, and stack) out of the 8 available.
Most of these results show a peak in both the execution time and the number of
chronicles learned with a value of ε around 10. This tends to indicate that the
execution time is correlated to the number of chronicles learned. For the expert,
a good value of ε could be the one that maximizes the number of chronicles
learned. On the plot for the temporal sequence move-left, no peak appears, this
could indicate that a good value of ε for this sequence is higher than 50. Table 2
shows the number of 2-length chronicles discovered, the number of chronicle
learned, and execution time for each temporal sequences with the parameter ε
set to 10, minPts set to 3, and minJac set to 0.9.

In order to evaluate the chronicle learned by the chronicle discovery algorithm
presented in this paper, the notion of chronicle complexity is used. The chronicle
complexity is defined by its length n and the number of its temporal constraints
m. This performance metric is computed by cc = 2m

n−1 . The more constrained
are the events of a chronicle, the bigger its complexity will be, whereas the less
constrained the events of a chronicle, the smaller its complexity.

6 A. Sahuguède et al.

10 20 30 40 50

2
0
0

4
0
0

6
0
0

ε

E
x
e
c
u
ti
o
n

ti
m
e
(s
)

(a) assemble

10 20 30 40 50

2
4

6

ε

E
x
e
c
u
ti
o
n

ti
m
e
(s
)

(b) move-left

10 20 30 40 50

5
1
0

ε

E
x
e
c
u
ti
o
n

ti
m
e
(s
)

(c) pick-up

10 20 30 40 50

5
0

1
0
0

1
5
0

ε

E
x
e
c
u
ti
o
n

ti
m
e
(s
)

(d) stack

Fig. 1: Execution times for different values of ε with minPts = 3 and minJac =
0.9.

10 20 30 40 50

2
,0
0
0
4
,0
0
0
6
,0
0
0

ε

#
ch

ro
n
ic
le
s

(a) assemble

10 20 30 40 50

1
0

2
0

3
0

4
0

5
0

ε

#
ch

ro
n
ic
le
s

(b) move-left

10 20 30 40 50

5
0

1
0
0

1
5
0

ε

#
ch

ro
n
ic
le
s

(c) pick-up

10 20 30 40 50

5
0
0

1
,0
0
0

ε

#
ch

ro
n
ic
le
s

(d) stack

Fig. 2: Number of chronicles learned for different values of ε with minPts = 3
and minJac = 0.9.

Table 2: Number of 2-length chronicles discovered, number of chronicles learned,
and execution time for each temporal sequence with ε = 10, minPts = 3, and
minJac = 0.9.
Temporal Sequence # 2-length chroni-

cles discovered
chronicles learned Execution time (s)

assemble 47706 5995 512.451
disassemble 53171 3147 482.022
move-left 9568 9 0.54228
move-right 10039 10 0.408546
pick-up 10460 127 10.1122
put-down 10561 180 9.11633
stack 33774 1349 175.352
unstack 35666 1119 131.214

To determine the most relevant chronicles learned, we analyze the frequency
w.r.t. complexity plot. An example of such a plot is given Figure 3 and represents
the 180 chronicles learned from the sequence put-down with the parameters
ε = 10 and minJac = 0.9. On this plot, few chronicles stand out: C30, C31, and
C32 have a high frequency and a good complexity. C30 is graphically represented

An Ordered Chronicle Discovery Algorithm 7

in Figure 4. This chronicle represents the behavior of the scenario put-down
where an hand puts a red block on a green block.

3 6 9 12 15 18 21 24 27 30 33

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

C30

f

cc

Fig. 3: The frequency w.r.t. complexity plot of the 180 chronicles learned in
the sequence put-down with ε = 10, minPts = 3, and minJac = 0.9. The
highlighted chronicle C30 is graphically represented in Figure 4.

t1

ATTACHED-HAND-RED-BEGIN

t2

ATTACHED-GREEN-RED-BEGIN

t3

ATTACHED-GREEN-RED-END

t4

ATTACHED-HAND-RED-END

t5

CONTACTS-GREEN-RED-BEGIN

t6

CONTACTS-GREEN-RED-END

[1, 7]

[1, 18]

[4, 11]

[21, 30]

[21, 31]

[20, 32]

[12, 32]

[24, 41]

[0, 17]

[5, 15]

[5, 13]

[5, 24]

Fig. 4: Chronicle C30 of frequency 30 found in the sequence put-down with ε = 10,
minPts = 3, and minJac = 0.9.

8 A. Sahuguède et al.

5 Conclusion

In this paper, an extension of the clustering approach to the chronicle discovery
presented in [8] is provided. This extension introduces an order in the chronicle
synthesis step that allows the Jaccard index to be exploited on a percentage of
similarity and not only on 0 or 1. The use of the Jaccard index on a fuzzy value
allows noisy data to be exploited. This chronicle discovery algorithm is evaluated
on a real dataset. In future work, the algorithm introduced in this paper should
be compared to others works, such as [2]. Furthermore, other datasets, synthetic
as well as real, should be explored to confirm our results.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB’94, Proceedings of 20th International Conference on Very
Large Data Bases. pp. 487–499 (1994)

2. Cram, D., Mathern, B., Mille, A.: A complete chronicle discovery approach: appli-
cation to activity analysis. Expert Systems 29(4), 321–346 (2012)

3. Dauxais, Y., Guyet, T., Gross-Amblard, D., Happe, A.: Discriminant chronicles
mining - application to care pathways analytics. In: 16th Conference on Artificial
Intelligence in Medicine, AIME 2017. pp. 234–244 (2017)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining (KDD-96). pp.
226–231 (1996)

5. Mörchen, F., Fradkin, D.: Robust mining of time intervals with semi-interval partial
order patterns. In: Proceedings of the 2010 SIAM International Conference on Data
Mining. pp. 315–326 (2010)

6. Morin, B., Debar, H.: Correlation of intrusion symptoms: An application of chron-
icles. In: Recent Advances in Intrusion Detection: 6th International Symposium,
RAID 2003. pp. 94–112 (2003)

7. Pencolé, Y., Subias, A.: A chronicle-based diagnosability approach for discrete
timed-event systems: Application to web-services. Journal of Universal Computer
Science 15(17), 3246–3272 (nov 2009)

8. Sahuguède, A., Le Corronc, E., Le Lann, M.V.: Chronicle discovery for diagnosis
from raw data: A clustering approach. In: 10th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes, SAFEPROCESS 2018 (2018)

