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Abstract
Collaboration between humans and robots to accomplish dif-
ferent kinds of tasks has been recently studied as a planning
problem and several techniques have been developed to de-
fine and generate shared plans where humans and robots col-
laborate to achieve a common goal. However, current meth-
ods require the knowledge of the human about the plan under
execution and an agreement between users and robots about
their roles before the execution of the plan.
In this paper, we propose an extension to the Hierarchical
Agent-based Task Planner (HATP) that enables humans and
robots to negotiate some aspects of the collaboration online
during the execution of the plan. The proposed method is
based on the automatic generation of a conditional plan in
which missing information is acquired at execution time by
means of sensing actions. The proposed method has been
fully implemented and tested on a real robot performing col-
laborative tasks in an office-like environment.

1 Introduction
In recent years, the interest in applications where humans
and robots collaborate to accomplish a complex task is sig-
nificantly increasing. Human-robot interaction has found
breeding grounds in industrial robot applications, as well as
in applications that have as objective the integration of social
robots in public spaces densely populated by humans (malls,
touristic sites, parks, etc.), and it is not hard to imagine that
in the near future the environments in which service robots
help humans in their daily tasks will increase.

The deployment of service robots introduces new scien-
tific challenges: exhibit a safe navigation, operate in a so-
cial acceptable way observing social rules, evaluate the sit-
uation, estimate and satisfy the humans needs, etc. In this
work, we deal with the problem of high level planning for
service robots. Different approaches to the automated plan-
ning problem have been studied, and different tools have
been developed to address the planning problem in the robot
domains. As we will see, there is a substantial difference be-
tween planning for industrial robots and planning for service
robots. In particular, the interactions of a service robot are
mostly with non-expert users, while in an industrial context,
the users are usually expert and they know in the detail the
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task that is shared with the robot, and how the robot executes
the task. In the service robots context, there is a high vari-
ability of tasks that have to be executed with high level of
uncertainty, given that tasks must be executed upon requests
of the users that are not known at planning time. We believe
that in order to deal with this kind of uncertainty, the clas-
sical re-planning approach is not appropriate, because, mak-
ing assumptions on user needs and re-planning when these
assumptions are not valid at execution time, can bring to be-
haviours that are not socially acceptable.

In this work, we present an extension to an Hierarchical
Task Network planner that is able to compute plans that ad-
dress the lack of knowledge at planning time about the spe-
cific user needs, allowing the possibility of agreements be-
tween humans and robots at execution time.

Hierarchical Task Network (HTN) is a common planning
formalism and, among HTN planners, Hierarchical Agent-
based Task Planner (HATP) (Lallement, De Silva, and Alami
2014) (de Silva, Lallement, and Alami 2015) has special
features for representing human-robot collaborative tasks.
HATP is based on SHOP (Nau et al. 1999) and extends HTN
planning in order to make it more suitable for robotic do-
mains and, in particular, for Human-Robot Interaction (HRI)
domains. HATP is an HTN planner that decomposes a goal
task and produces a plan where all the decisions about the
actions and their parameters have been already taken (of-
fline planning). HATP is also capable of partially handling
belief states that can be used to model different levels of
knowledge about the environment by the agents (humans
and robots) (Warnier et al. 2012), but it has not been used to
generate conditional plans. Interactions defined in previous
works using HATP focus on the description of the plan to
non-expert users, on the agreement about the plan before its
execution, or on the acquisition of some knowledge needed
to execute some action within the plan (see next section for
further details). However, these interactions have not been
designed to control the flow of execution of the plan at run-
time.

In this paper, we take a different perspective of the prob-
lem by introducing the possibility of agreements between
humans and robots at execution time. This objective is
achieved by generating a conditional plan in which miss-
ing information are acquired at execution time by means of
sensing actions. More specifically, information that are un-
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known at planning time are explicitly represented: actions
to acquire such information at execution time are explic-
itly planned, and the flow of the plan is determined by the
online result of such sensing actions. It is important to no-
tice that the proposed mechanism is different from standard
re-planning approaches (that would be possible with HATP
since it is very fast) in the aspect that we do not want to
make any assumption about unknown information at plan-
ning time. As already mentioned, we believe that in several
HRI scenarios making assumptions on user needs and re-
planning when necessary may not be adequate. Moreover,
by using a conditional plan, the robot can implement proac-
tive behaviours (e.g., moving towards a person and asking if
s/he needs help, as shown in Example 2 later), rather than
waiting for user commands.

In the system presented in this paper, we use HATP to
generate multiple plans and then these plans are merged into
a Petri Net Plan (PNP) (Ziparo et al. 2011) that actually rep-
resents a conditional plan, where portions of the plan will be
chosen at execution time depending on human-robot inter-
actions. Thanks to the formalism described in this paper, it
is possible to plan negotiation actions between humans and
robots that are resolved at execution time, without the neces-
sity to agree on all the details of the plan before starting the
execution.

The proposed method has been fully implemented and
tested on a real robot performing human-robot collaborative
tasks in an office-like environment. The developed software
is general with respect to any particular application domain,
is based on the already available implementations of HATP
and PNP and is released as open-source code1.

2 Related work
Considering autonomous robots that cooperate with humans
to accomplish complex tasks is one of the most interesting
challenge of robotics and artificial intelligence. Indeed to be
able to cooperate with humans, a robot has to provide dif-
ferent abilities such as: understanding what humans are do-
ing, estimating the human intentions and preferences, oper-
ating in a safe way, and being able to interact in a socially-
acceptable way without being annoying.

To achieve these capabilities, different researches (Shah
2011) (Shah et al. 2011) have successfully proposed to use
shared plans, allowing the agents to serve the same purpose
imitating the shared mental model within a humans team
(Stout et al. 1999). In order to allow humans and robots to act
according to the same plan, both of them have to be aware of
it. In presence of expert users, the robot can learn to perform
a complex task by learning from demonstrations (Argall et
al. 2009), where a human explicitly teaches the robot a skill
or a specific task. In (Nikolaidis and Shah 2013), the idea of
cross-training is applied to shared-planning. A human and a
robot can iteratively switch roles to learn a shared plan for
a collaborative task. Learning from demonstrations has ob-
tained good results in domains where the human user is ex-
pert or is interested in becoming expert. But in applications

1https://sites.google.com/site/htnplanningservicerobots/

related to cooperation between service robots and naı̈ve hu-
mans, learning by demonstration is not a viable approach.

In (Lallée et al. 2013) and (Petit et al. 2013), in order
to allow a naı̈ve human user and a robot to cooperate, the
shared plan is negotiated before the execution using spoken
language so as to ensure that the agents involved in the plan
know what and when they have to act at execution time. In
(Milliez et al. 2015), the robot is able to adapt its planning
approach depending on the user task-knowledge. The system
defines four levels of task-knowledge concerning the human
collaborator (New, Beginner, Intermediate and Expert) and
the robot interacts with the user depending on such task-
knowledge level. The robot explains each step of the plan to
a New collaborator, while it directly executes the plan with
an Expert collaborator. Moreover, during the interaction, the
robot updates the task-knowledge level of its user depending
on his/her successes with the tasks. However, in a service
robot application, explaining the whole plan to a non-expert
user before its execution can not be considered socially ac-
ceptable, the necessity to agree on the specificities of the
plan before its execution can make the HRI experience less
comfortable. In such applications, it can be useful to plan an
interaction without the assumption of complete belief and
without the necessity to agree on the plan before its execu-
tion.

Recognition of user activities and plan execution in which
the robot adapts according to recognized situations have also
been studied by several authors (e.g., (Levine and Williams
2014)). For example, a system for human-robot collab-
oration in typical domestic environments (Fiore, Clodic,
and Alami 2016) has been developed to consider different
modalities of the planning problem: Robot plans, Human
plans and Robot adapts. In the first modality, the robot uses
its sensors to estimate a representation of the world and uses
it to produce a plan to complete the joint goal. In the second
modality, the human user creates a plan using a GUI. In the
last modality, the human starts to perform an action and the
robot, estimating the intention of the human, tries to produce
a plan to help. In all the modalities, the plan is represented
by a Hierarchical Task Network that is executed by a plan
management module.

These systems are suitable in environments where the
perception of the robot can be considered robust enough
to guarantee error-free evaluations of the current situation.
However, for social robots interacting with non-expert peo-
ple in a public environments, the assumption of being able
to perfectly assess the current situation is very strong. More-
over, the use of a GUI or other interaction mechanisms to
create a shared plan is also not feasible in many situations.
Finally, some interactions considered in previous systems
are oriented to explain or to describe the plan, but they do
not affect the flow of execution of the plan.

When the robot has partial or incorrect information on an
entity of the environment when executing an action, some
systems have been implemented for adding communication
actions to fix the divergent belief (Warnier et al. 2012). How-
ever, again the information are collected and used only at the
level of the single action and they do not affect the remaining
flow of execution of the plan.
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In this paper, we present a different and novel approach
to generate shared plans to facilitate human-robot collab-
orations. It focuses on interactions that determine the flow
of execution of the current plan at execution time. In other
words, we introduce the possibility of online negotiations
between humans and robots to agree on the next steps of the
plan. In this way, we can avoid: (i) to negotiate the whole
plan before the interaction and (ii) to estimate the human
intentions with the risk of making mistakes. To this end,
the proposed system generates conditional plans that include
sensing actions. The sensing actions are human-robot in-
teractions used to determine, at run-time, some conditions
that change which branch of the plan is executed. The use
of sensing actions reduces the requirement of assessing the
situation around the robot. Indeed, our system relies only on
the assumption that, when a sensing action is carried out, the
robot can reliably perceive the related conditions. This con-
trasts with previous works requiring the system to be able to
evaluate the complete world state at any time. Consequently
this feature improves applicability of the proposed method
to more complex scenarios.

3 Formalism and algorithms
In order to add online interactions and thus generate con-
ditional plans, it is necessary to drop the assumption of a
complete knowledge about the initial state at planning time.
In the proposed formalism, we define execution variables, as
variables whose values are not known at planning time, but
they will be set only at execution time, allowing to control
the flow of execution of the plan. The system we propose
is designed to first generate multiple HATP plans and then
merge them into a complex conditional plan, using such ex-
ecution variables.

In previous work, HATP is based on the definition of an
HATP domain denoted by D = ⟨A,M⟩, where A is a finite
set of actions (or operators) and M is a finite set of methods
(expressing the hierarchical decompositions). In this paper,
we define an extended HATP domain described by the fol-
lowing 3-tuple:

D
′
= ⟨A,M, C⟩ (1)

where
• A is a finite set of actions (or operators),
• M = {Mγi , i = 1...n} is a finite set of methods in which

the decompositions Mγi depend on the initializations γi
(defined below),

• C = {c1, c2, ..., ck} is a finite set of execution variables
defined on finite domains and whose values are unknown
at planning time.
More specifically, given the execution variables C =

{c1, . . . , ck} and the domains Ωj , j = 1, . . . , k that denote
the sets of possible values for the variables cj . γi = (c1 =
σ1, c2 = σ2, ..., ck = σk) is an assignment of each variable
cj to a specific value σj ∈ Ωj . Let n be the total number of
possible assignments of the variables in C. Given an assign-
ment γi, the decomposition in Mγi depends on the values
of the variables assigned in γi. In this work, we consider

only boolean variables, hence σj ∈ {True, False} . Conse-
quently, in this paper n = 2k.

The architectural schema of our system is shown in Fig-
ure 1. Given the extended HATP domain D

′
, one HATP plan

Pi for each initialization γi is computed, then each HATP
plan is translated into a PNP πi and finally all the PNP plans
are merged into a single conditional plan π∗ also represented
as a PNP. The final conditional plan includes sensing actions
that are evaluated at execution time to control the flow of ex-
ecution of the plan.

The system that we propose can be divided in four main
steps:
• Domain formulation- Given a human-robot interaction

task that can be executed in several ways, the user defines
the extended HATP domain that represents the task.

• HATP plan request and production- The system sends
a plan request for each initialization γi of C to HATP that
answers with HATP plans.

• HATP plan translation- The HATP plans obtained with
the different initializations γi are individually translated
in PNP plans.

• PNP plan merging- The PNP plans obtained in the trans-
lation step are merged into a single conditional plan by
adding sensing actions to the different choices executed
in the different plans.
These steps are described in the remaining of this section.

3.1 Domain formulation
The first step is the formulation of an extended HATP do-
main. Once the execution variables C for the task to be mod-
elled are decided, it is important to guarantee the presence
of a proper decomposition for each initialization of the un-
known values of the variables in C. In this way, when send-
ing different HATP plan requests for each initialization γi
of the variables in C, it is always possible to obtain the cor-
responding HATP plan. A discussion about the number of
methods that the designer has to write is provided in the next
section.

The HATP plans generated in this way will start from the
same initial world state and will differ in some actions de-
pending on the initialization γi, so during the execution they
will produce different world states. As shown later, when
different decompositions (and thus different world states)
are found during the evolution of the plan, a sensing action
is added in the final conditional plan.

Notice that, in this paper we assume that in the sensing
actions involving user interaction, the user will act in such a
way to increase the knowledge of the robot about the situa-
tion. For example, a question about who is going to execute
some task will be answered with a definite statement filling
the missing information.

Let us consider a simple example of human-robot interac-
tion and show its extended HATP domain.

Example 1. A human and a robot can both perform actions
T1 and T 2 and both of them must be completed to accom-
plish the joint mission. We assume that each agent will
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Figure 1: Architectural schema of the proposed system.

perform exactly one action. We want to generate a condi-
tional plan in which the agreement on who is performing
which action will be performed at execution time.

In this scenario, the extended HATP domain contains two
kinds of actions: (i) operational actions T1 and T 2 to be exe-
cuted by any agent, (ii) interaction actions (also called inter-
actions) AskT1T2, AnswerHT1, AnswerHT2, used to model
the human-robot interaction at execution time. Moreover, a
boolean execution variable HumanDoesT1 is used to denote
whether the human is willing to execute Action T1.

In this domain, two assignments of the execution vari-
ables are possible: γ1 = {HumanDoesT1 = True} and
γ2 = {HumanDoesT1 = False} . Consequently, the ex-
tended HATP domain must contain two different methods
for the decomposition of the task (HumanChoosesT1, Hu-
manChoosesT2) that correspond to the two possible assign-
ments γ1 and γ2, respectively.

More formally, the extended HATP domain for this exam-
ple is a 3-tuple D

′
= ⟨A,M, C⟩ with:

• A = {T1, T2,AskT1T2,AnswerHT1,AnswerHT2}
• M = {HumanChoosesT1,HumanChoosesT2}
• C = {HumanDoesT1}

3.2 HATP plans request and production
To produce the HATP plans for each initialization γi, the
system automatically generates and sends plan requests to
the HATP planner and collects the results, i.e., the n HATP
plans P1, . . . , Pn. This step is implemented in a straightfor-
ward way by using functions defined in the HATP language.

For the Example 1 defined above, the system generates
two different plan requests (respectively for γ1 and γ2). The
resulting HATP plans are shown in Figure 2 and represent
the input for the translation step.

3.3 Translation step
Once the HATP plans are generated, in the next step each
plan is translated into a PNP.

The translation algorithm builds a PNP πi by navigat-
ing the input HATP plan Pi from the initial nodes (nodes

Figure 2: HATP plans for HumanChoosesT1 and Human-
ChoosesT2.

that do not have predecessors) to the goal states. The algo-
rithm is depicted in Algorithm 1 and uses functions defined
in the HATP and PNP libraries, denoted with “HATP ” and
“PNP ” prefixes, respectively.

Roughly speaking, an HATP plan is an oriented graph,
in which each node is an action and each directed arc rep-
resents a causal link between two actions. The translation
algorithm executes a graph traversal in a depth-first manner
starting from each initial node and adding a PNP ordinary
actions for each HATP action node. These ordinary actions
are connected by following the causal links in the HATP
plan. During the visit of the HATP plan, the algorithm uses
a set of visited nodes to avoid adding the same instance of
an action different times and to guarantee the termination
of the recursive procedure. When two or more successor ac-
tions are found, the algorithm adds a fork operator to the
PNP and activates the construction of parallel portions of
the plan. When the successor of the current HATP node has
been already visited, it means that the successor has two pre-
decessors and so the algorithm adds a join operator, closing
a previous fork. Given that the PNP plans obtained in this
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step are only a translation of the HATP plans, no sensing ac-
tions (i.e., conditions to be evaluated at execution time) are
introduced in this step.

More specifically, the translation algorithm first ini-
tialises the variables needed to activate the recursive func-
tion Translate. This function first collects the actions to pro-
cess at each stage in the variable nextA. Depending on the
number n of such actions, three cases are considered: (i)
n = 0 : the current plan is terminated and a goal final node is
added to it; (ii) n = 1: if the current action has not been vis-
ited already, it is added and the function is recursively called
to generate the rest of the plan, otherwise, a join operator is
added to merge the current portion of the plan π with a pre-
vious portion of the plan reaching the current action that has
been already generated in previous steps of the algorithm;
(iii) n > 1: a fork operator is added to activate parallel exe-
cution of the current actions.

Algorithm 1: Translation algorithm
Input : P : HATP plan
Data : V : set of visited action instances in P (global

variable)
Output: π: PNP plan corresponding to P

1 begin
2 π = PNP empty();
3 V = ∅ ;
4 return Translate (π, P, null);
5 end
6
7 Function Translate(π, P, a) → π′

8 if a = null then
9 A = HATP initActions(P );

10 else
11 A = HATP getSuccessors(a);
12 n =| A |;
13 if n = 0 then
14 π′ = PNP addGoal(π);
15 else if n = 1 then
16 a = member(A);
17 if a /∈ V then
18 push(V, a);
19 π̂ = PNP addAction(π, a);
20 π′ = Translate(π̂, P, a);
21 else
22 π′ = PNP addJoin(π, a);
23 else if n > 1 then
24 for a′ ∈ A do
25 push(V, a′);
26 πk = Translate(π, P, a′);
27 end
28 π′ = PNP addFork(π,π1, . . . ,πn);
29 return π′;

A PNP generated by the translation algorithm for the Ex-
ample 1 is shown in Figure 3.

All the PNPs computed using the translation algorithm

Figure 3: PNP for HumanChoosesT1 obtained by the trans-
lation of the relative HATP plan.

provide the input for the merge step.

3.4 Merge step
The merge step is the most important part of the system in
which the final conditional PNP π∗ is generated. As already
mentioned, sensing actions are introduced during this step
to manage the execution variables.

More specifically, the Merge algorithm identifies, in the
n HATP plans, the actions whose effects depend on the val-
ues of some execution variables in C. For instance, given
a variable cj ∈ C, in the n HATP plans there will be plans
computed with the assumption that cj is True and plans com-
puted with the assumption that cj is False. These two groups
of plans, at a certain point, will generate different decompo-
sitions and thus different world states. At such point, two
different actions will be executed in the plans of the first
group and in the plans of the second group, according to
the effect of the variable cj described in the description of
the corresponding methods. Consequently, a sensing action
is generated and introduced in the final plan to evaluate the
value of cj at run-time and to execute the corresponding part
of the plan, depending on such value.

Referring again to Example 1 and to the resulting plans
shown in Figure 2, we can notice that the two plans differ in
the actions AnswerHT1 and AnswerHT2 that depends on the
different values of the execution variable HumanDoesT1. At
this point a sensing action on the variable HumanDoesT1
(i.e., on the outcome of the answer) is added, in order to
control the flow of execution of the remaining part of the
plan depending on the value of the execution variable at run-
time.

Notice that, although the actions that will determine a
sensing are already specified in the HATP domain (e.g.,
AskT1T2), the sensing action added in the final PNP specif-
ically refers to the value of the execution variables that
change between two different plans coming from different
assignments. In other words, the sensing action is introduced
on the outcome of the interactions defined in the HATP do-
main.

The Merge algorithm (shown as Algorithm 2) takes as in-

553



put the n PNP plans produced in the translation step, main-
tains a vector of world states (one for each input plan) and a
set of current actions, and returns the final conditional plan.
The algorithm is based on a recursive function that is ini-
tialized with a vector containing the initial world state in all
the components and the set of actions corresponding to the
initial actions in the input PNP plans.

The Merge function terminates when the set of actions
A is empty, which eventually occurs when all the plans are
completely visited. If some actions in A remain to be pro-
cessed, then a new vector of world states W ′ is computed
by applying the actions in A to the current vector of world
states W . This operation performed by the HATP library can
produce two possible cases: (i) all the world states in W ′ are
the same, (ii) different world states are present in W ′. In the
first case, the values of the execution variables did not af-
fect the decomposition of all the plans considered, therefore
the actions in A are all the same and it is possible to pro-
ceed by just adding the single action a ∈ A to the final PNP
and call the Merge function recursively on the next vector
of world states and on the next set of current actions. In the
second case, instead, the presence of different world states
and of different actions means that some execution variable
affected the decomposition. At this point, the algorithm first
computes the set of execution variables Γ that caused the
different decompositions and then adds to the output plan
a common representation of the actions that cause the dif-
ferent world state in W

′
and a sensing action for each vari-

ables in Γ. In words, a multilevel tree in which each path
from the root to a leaf corresponds to an initialization of
the variables in Γ is added to the output plan. Subsequently,
for every possible initialization γi of the variables in Γ, the
Merge function is recursively called to build each branch on
the subsets of information (world states, actions and input
PNP plans) relative to the given initialization. Finally, these
branches are connected with the sensing action to complete
the conditional part of the PNP2.

4 Complexity Analysis
In this section we analyse the complexity of writing the do-
main by the planner expert and the computational complex-
ity of the algorithms.

4.1 Complexity of writing the extended domain
In the worst case, when each execution variable depends on
all the others, it is necessary to write in the extended HATP
domain one method for each assignment and thus an expo-
nential number of methods with respect to the number of
execution variables. However, this situation is not common,
since in several cases such variables (at least some of them)
are independent from the others.

When execution variables are independent from each
other, it is not necessary to manually specify one method
for each possible combination of the values of these vari-
ables. In practice, an exponential number of requests of the
methods are still necessary, but they can be automatically

2The full PNP generated for this example is available in the web
site referred in footnote 1.

Algorithm 2: Merge algorithm
Input : Π = {π1, . . . ,πn} : PNP plans to merge
Data : W : vector of world states

A: set of actions
Output: π∗: output conditional PNP

1 begin
2 w = HATP computeInitWB();
3 A = ∅ ;
4 W = ∅ ;
5 for πi ∈ Π do
6 A = A ∪ PNP getF irstAction(πi);
7 push(w,WS);
8 end
9 π = PNP empty();

10 π∗ = Merge(Π, A,W,π);
11 return π∗;
12 end
13
14 Function Merge(Π, A,W,π) → π∗

15 if A = ∅ then
16 return π;
17 else
18 W ′ = HATP apply(A,W );
19 // apply actions A to all the states in W and

compute a new vector of world states
20 if states in W ′ are all the same then
21 // the actions are also all the same

a = member(A);
22 π′ = PNP add(π, a);
23 A′ = PNP nextActions(A,Π);
24 π∗ = Merge(Π, A′,W ′,π′);
25 else
26 Γ =

variables causing the changes in W ′;
27 π′ = PNP addSensing(Γ,π);
28 for each initialization γi of Γ do
29 Wi = subset of W ′ relative to γi ;
30 Πi = subset ofPNP relative to γi;
31 Ai = subset ofA relative to Πi;
32 π̂i = Merge(Πi, Ai,Wi, ∅);
33 end
34 π∗ =

PNP addBranches(π′, π̂1, . . . , π̂n);
35 return π∗;

generated. For example, assume that all the boolean execu-
tion variables c1, . . . ck ∈ C are independent (i.e., the values
at execution time of each variable can be assigned indepen-
dently of all the others). Then, although the number of as-
signments γi is exponential in the number of such variables,
n = 2k, only 2k methods must be written by the user (one
for each assignment of each single variable), while the set of
methods {Mγi } can be composed automatically, by generat-
ing all the possible combinations of the values of the execu-
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tion variables and thus combining the appropriate methods.

The complexity of writing the extended domain thus de-
pends on the dependencies among the execution variables.
For clusters of variables that are dependent on each other,
it is necessary to provide one method for each combination
of the values of these variables, while for independent vari-
ables only one method for each possible value of the variable
is needed.

Hence we can see that the complexity of writing an ex-
tended domain comes from the repetitive task of writing
several times some methods to reflect the different possi-
ble decomposition depending on the execution variables. In-
deed HATP language has been studied to be easy to learn
and understand, as demonstrated in (de Silva, Lallement,
and Alami 2015). The language is very similar to object-
oriented languages, its expressiveness is compared to SHOP
language, and it is proven that its language is easier to ma-
nipulate thanks to its constructs. Furthermore, HATP has
been specifically designed to work with robotics, so it in-
cludes some constructs that make it easy to represent agents
(robots and humans).

4.2 Complexity of the algorithms

The computational complexity of the overall process is dom-
inated by the number of instantiations of the execution vari-
ables, which is exponential in the number of such variables.
Thus, for k binary execution variables, the number of ini-
tializations γi is n = 2k. Consequently, 2k executions of the
translation algorithm and one execution of the merge algo-
rithm with n input plans are performed.

The complexity of the translation algorithm is linear in
the size of the HATP plan in input. The size of the result-
ing PNP is indeed linear in the size of the input HATP plan.
While the complexity of the merge algorithm is linear in the
total size of all the input plans. To compute an overall com-
plexity, if we consider the case in which all HATP plans have
size s (or s being the average size of such plans), then the
complexity is O(2ks).

Although the proposed approach has exponential com-
plexity, it is still effective in practice since: (i) all the compu-
tation is performed offline, before the actual interaction with
the user and thus it does not affect the interaction experience;
(ii) the number of execution variables in practical applica-
tions is usually limited, since an application scenario with
too many execution variables would be anyway too complex
to be effective; (iii) the basic functions used in the presented
algorithms and implemented in the HATP and PNP libraries
are all very fast.

Consequently, in all the scenarios in which the proposed
system has been tested, the actual computation time for gen-
erating the conditional PNP was always in the order of a few
seconds. However, it is evident that the proposed approach
does not scale well to large domains with many execution
variables.

5 Application on a service robot
The proposed system has been fully implemented and inte-
grated using the existing tools HATP3 and PNP4. Thanks to
the PNP ROS bridge available in the PNP library, the con-
ditional plans generated by our system have been executed
on a real robot, after the implementation of the basic actions
and conditions.

In this section, we describe two full examples of applica-
tions for the proposed approach on a service robot helping
users in a office-like environment. Since the focus of this pa-
per is on modelling a domain and on the generation of the
corresponding interaction behaviour and not on the specific
capabilities of the robot or on the design of the interaction
primitives, we provide an evaluation of the effectiveness of
the presented approach and of the complexity of the gen-
erated plans rather than evaluations of the basic robotic ca-
pabilities in the human-robot interactions. Consequently, we
rely on a spoken dialogue tool that is responsible of the in-
teractions. This tool is based on a grammar-based speech
understanding technique and it is thus suitable for defining
the set of possible answers that are expected in each situation
of the plan. This allows us to assume that the system always
stays in one of the states of the conditional plan. This prop-
erty is actually guaranteed at execution time, as soon as the
user interacts with the robot in a cooperative manner (i.e., by
selecting one of the options provided by the robot).

Example 2. Helping to bring an object. A service robot
has to help users in a University Department. In particular,
the robot is able to help users to carry objects. The robot
asks to the user if s/he needs help. If the user does not need
help the robot says goodbye and goes away. If the user needs
help, the robot says to him/her to put the object on its tray
and asks where it has to go. The user can answer that it has
to follow him/her or that it has to carry the object to a known
position.

The extended HATP domain for this scenario contains
two execution variables: ”needHelp” and ”follow”. These
variables respectively define the situations in which the user
needs help in bringing an object and the situations in which
the user wants the robot to follow her/him or to carry the
object in a known position by itself. The conditional PNP
obtained for this scenario allows the human and the robot
to collaborate in the task without the necessity to negotiate
the task before the execution time, managing the information
unknown at planning time with sensing actions. The experi-
ment on a real robot5 of this scenario underlines the capabil-
ity of the system to generate a plan that allow a non-expert
user to collaborate with a robot in a socially acceptable way.
The generated plan is formed by 15 actions, 44 places, 41
transitions and 86 edges.

Example 3. Collaborative navigation. In order to
demonstrate that the proposed system can be used also in

3www.openrobots.org/wiki/HATP/
4pnp.dis.uniroma1.it
5Videos are provided in the web site referred in footnote 1.
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more complex scenarios, another experiment has been de-
veloped. A service robot and a user have to navigate in col-
laborative way in a known office-like environment. In partic-
ular, they have to go from an initial position to a target po-
sition passing through doors and elevators. During the navi-
gation the doors can be open or closed. If they meet an open
door, the robot inquires to the user who has to pass first. If
the door is closed, the robot asks to the user who has to open
the door, the chosen agent will open the door and will pass
first. When the agents are in front of an elevator, the robot
will ask who has to call the elevator and go in first when the
elevator arrives. The agent that calls the elevator also pushes
the floor button. In this general case, we assume that both the
user and the robot can open the doors and manipulate the el-
evators buttons. However, in the practical example, since the
robot used for the experiments has no arms, we provide a
modification of the extended HATP domain to take into ac-
count the specific feature of our robot. In this new scenario,
the generated plan assigns the actions of opening the doors
and manipulating the elevator to the user.

This example shows the scalability properties of the sys-
tem. Indeed in the present example, once methods that allow
the agents to pass through a door or take an elevator are de-
fined, they can be called several times by other methods to
describe a collaborative task involving several doors and el-
evators. The generated plan is formed by 410 actions, 1128
places, 1098 transitions and 2254 edges.

The examples described above demonstrated the effec-
tiveness of the proposed system in generating complex
shared plans including sensing actions for human-robot in-
teractions and collaborative actions. Details (video and com-
ments on the generated PNPs) are given in the web site asso-
ciated to this paper6. Although we did not perform a usabil-
ity study, the execution of the plans in a real scenario proves
its effectiveness.

6 Conclusions
In this paper, we have presented a method for generating
conditional plans for human-robot collaboration, extending
previous work that required knowledge about the plan and
agreement on the agents’ roles at planning time. With the
proposed system, it is possible to generate plans that con-
tains sensing actions able to drive the execution flow of the
plan at execution time according to the result of interactions
between humans and robots.

The paper thus contributes in two ways: from the planning
perspective, it extends HATP planning with the feature of
including sensing actions thus producing conditional plans;
from the robotics perspective, it extends previous work in
human-robot collaboration by adding the feature of on-line
negotiations.

Several different domains have been modelled with the
proposed formalism and the implementation and tests on a
real robot in practical application domains demonstrated its
effectiveness.

6See footnote 1.
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