
HAL Id: hal-01949464
https://laas.hal.science/hal-01949464

Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Checking Real-Time Properties of an Auto Flight
Control System Function

Pierre-Alain Bourdil, Bernard Berthomieu, Éric Jenn

To cite this version:
Pierre-Alain Bourdil, Bernard Berthomieu, Éric Jenn. Model-Checking Real-Time Properties of an
Auto Flight Control System Function. IEEE International Symposium on Software Reliability Engi-
neering, Nov 2014, Naples, Italy. �10.1109/ISSREW.2014.40�. �hal-01949464�

https://laas.hal.science/hal-01949464
https://hal.archives-ouvertes.fr

Model-Checking Real-Time Properties of an
AutoFlight Control System Function

Pierre-Alain Bourdil ∗ † ‡, Bernard Berthomieu ∗ ‡, Eric Jenn †
∗ CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France

† Thales Avionics, 105 av du Général Eisenhower, F-31100 Toulouse, France
‡ Univ de Toulouse, LAAS, F-31400 Toulouse, France

Email: {Pierre-Alain.Bourdil|Bernard.Berthomieu}@laas.fr, Eric.Jenn@fr.thalesgroup.com

Abstract—We relate an experiment in modeling and
verification of an avionic function. The problem ad-
dressed is the correctness of a temporal condition en-
abling the detection of a range of faults in the imple-
mentation of the function. Using the Fiacre/Tina verifi-
cation toolset, we produced a formal model abstracting
the function, and confirmed by model-checking that
the condition determined analytically is indeed correct.
The modelling issues ensuring tractability of the model
are discussed.

I. Introduction

We relate an experience in modeling and verification of
a function part of an AutoFlight Control System.

The system has safety and availability requirements,
similar to [1]; we focus on safety issues. A distinctive
feature of the system is that it is conceptually asyn-
chronous; events may occur at unspecified times. But,
for tractability and engineering reasons, it is designed as
a logically synchronous system. This is typical of many
IMA architectures, for instance, in which processing re-
sources execute asynchronously relative to each other [2].
Consequently, non-functional constraints arise, capturing
the temporal properties and constraints under which the
system must operate [3].

A practical solution to solve these problems is to main-
tain events as long as necessary to cover asynchrony. The
main objective of our work is to formally compute and
check how long an event must be maintained. These non-
trivial tasks are currently done analytically by experienced
engineers. In our experiment, this is done by model-
checking using the Fiacre/Tina tool suite, which is well
suited here since the formalism underlying Fiacre/Tina
models is timed and asynchronous. It is however neces-
sary, by a suitable abstraction, to prevent combinatorial
explosion.

Our modeling and verification of the function enable
early design flaw detection. Moreover, our design leads to
tractable state spaces on which the candidate durations
for events persistence can all be be checked by exhaustive
analysis.

The use case is introduced in the next section. Section
III overviews the Fiacre/Tina verification environment.
Section IV discusses modeling issues; our verification re-
sults are summarized in Section V.

II. Use Case Presentation

A. AutoFlight Control System (AFCS)

The function discussed in the paper is part of a generic
AutoFlight Control System (AFCS). The AFCS provides
four main capabilities to support the operational use of
an aircraft : the Autopilot (AP), the Auto throttle (AT),
the Flight Director (FD), and finally the Flight Guidance
(FG). We focus on the latter.

The Flight Guidance (FG) allows the pilot to oper-
ate the aircraft according to high-level scenarios, called
“modes”. Example of modes are “capture a target alti-
tude”, “maintain a target vertical speed”, “achieve a target
thrust value”, etc. The logic of interactions are beyond
the scope of this paper; we focus on the altitude target
acquisition function in mode “reach an higher altitude”.

The architecture is meant to deal with safety issues
related to a range of faults [1], thus there is a Command
channel and a Monitoring channel (COM/MON). However
we do not consider availability aspects here (redundancy,
fail-safe operation or hot spares resources). We verify
the correctness of the temporal condition enabling the
detection of faults.

B. Architecture overview

Fig. 1: Architecture of the Altitude Target Acquisition

a) The Control Panel: It is constituted (Fig. 1) of a
knob, a command component (CP_COM) and a monitor-
ing component (CP_MON). CP_COM and CP_MON
share a common clock and starts synchronously. The knob
has 256 positions, or “clicks”, each with tactile feedback.
To select an altitude target the pilot rotates the knob,
in either direction, which in turns emits two signals:
1. A phase-quadrature encoded signal (+1 per click when
turning clockwise, −1 when turning counterclockwise) and

2. An indication of movement (high if movement, low if
no movement). CP_COM sends periodically the count of
clicks modulo 256 to PC_COM through an A429 com-
munication bus [4]. Each time the indication of movement
is high, CP_MON outputs a “high” signal through a
discrete wire. It maintains this signal high for cProl ms
after the indication of movement has fallen (see Figure 3).

b) The Processing Channel: It is constituted of
two components: a command component PC_COM and
a monitoring component PC_MON both implemented
using periodic tasks with different phases, periods and
durations. Each execution of such a task, called a cycle,
starts with atomic reading of its inputs. Outputs are
written atomically at the end of the cycle. PC_COM
and PC_MON communicate asynchronously using the
"sampling port" mechanism of AFDX [5] (i.e. messages are
not buffered).

At each cycle PC_COM computes a target altitude
based on the clicks count received from CP_COM and
sends this target to PC_MON for validation purposes.

PC_MON sets a boolean local variable, alt_change,
each time the current altitude read from its AFDX input
is different from that of the preceding cycle. If the current
altitude equals that of the preceding cycle, alt_change is
set to false. PC_MON also sets a boolean local variable,
mvt_prolong, each time the signal on its discrete wire
input is high. PC_MON sets mvt_prolong to false pProl
ms after the last cycle in which the signal was high.

c) Verification goal: We consider only one fault:
PC_COM computes a new altitude target while the knob
has not moved. Due to asynchrony, PC_MON may miss
a knob movement, or may not see the movement at the
same time as PC_COM . PC_MON , the control panel,
and the communication networks are assumed reliable.
Our verification goal is to prove that the model M of
the system, instantiated for the times Γ = (cProl, pProl),
satisfies the linear time temporal property DETECT
below. If satisfied, then using that pair Γ in the actual
system ensures the detection of faults from PC_COM .

�(alt_change⇒ mvt_prolong) (DETECT)

III. Fiacre and Tina
A. Modeling with the Fiacre language

Fiacre [6] was designed as a joint effort by several
research teams in the context of project TOPCASED [7],
with the purpose of serving as an intermediate language
between user notations like UML, SysML or AADL and
verification tools like Tina [8] or CADP [9], providing a
behavioral semantics and verification capabilities to the
formers. The language has been since developed in several
other projects and put to work in several verification
toolchains, notably [10], [11].

Fiacre is a language in the vein of Promela or BIP.
Fiacre programs are structured into processes, modeling
sequential activities, and components, describing a system
as a composition of processes or other components. Fiacre
supports the two most common coordination paradigms:
by shared variable and by asynchronous message-passing.

We illustrate the main concepts of Fiacre through a
partial modeling of the knob, which is a phase quadrature
encoder, and the processing and filtering of its outputs by
the Control Panel.

Fiacre processes are defined from a set of parameters
and control states, each associated with a set of symbolic
transitions (following keyword from). The initial state is
the source state of the first transition. The transitions
declare how variables are updated, which events may oc-
cur, and when. They are built from standard deterministic
programming language constructs, non-deterministic con-
structs (such as external choice, operator select), com-
munication statements, temporal constraints (construction
wait) and jumps to a state (keyword to or loop). For
example, Fig. 2 shows a Fiacre model of the encoder
movements as a process KNOB with two states. The
transition from state move expresses a synchronization
on port down, to be matched with that occurring in the
transition from state waitdown in process CP_MON. From
state sustain in CP_MON, two transitions are possible,
non-deterministically. The first may only happen if no
synchronization on up occurred for duration cProl.

type Clicks is union Change | NoChange end

process KNOB [up ,down:sync] (& ck: Clicks) is
states idle ,move
from idle

up; ck := Change ; to move
from move

down; ck := NoChange ; to idle

process CP_MON [up ,down:sync] (& cMvt:bool) is
states idle ,sustain , waitdown
from idle

up; cMvt := true; to waitdown
from waitdown

down; to sustain
from sustain

select
wait [cProl , cProl]; cMvt := false ; to idle

[] up; cMvt := true; to waitdown
end

component CONTROL_PANEL (& cMvt: bool) is
var ck: Click := NoChange
port up ,down:sync
par * in

KNOB [up ,down] (& ck)
|| CP_MON [up ,down] (& cMvt)
|| CP_COM (& ck)
end

Fig. 2: Fiacre model of the Control Panel

Components are built as parallel compositions of pro-
cesses and/or other components (by operator par P0 ||
. . . || Pn end). Compositions specify both the process
or component instances and their interactions. Shared
variables and communication ports are within components.
Communication ports may be associated with time con-
straints, applying to all interactions through that ports
and with priorities. The ability to express timing con-
straints in programs is a distinguishing feature of Fiacre.

Finally, Fiacre comes with a rich language for express-
ing linear time properties. For improved readability, the
properties can make use of the specification patterns as in
[12] and of a realtime extension of them discussed in [13].

B. Behavioral verification with Tina
Tina(TIme Petri Net Analyzer) [8] is a software en-

vironment to edit and analyze enriched Time Petri Nets.
The core of the Toolbox is an exploration engine generating
state space abstractions; these abstractions are then fed to
model-checking or equivalence checking tools. The front-
end converts models into an internal representation —
Time Transition Systems (TTS) — an extension of Time
Petri Nets with data and priorities. A compiler, frac, con-
verts Fiacre description into TTS descriptions, therefore
enabling model-checking of Fiacre specifications by Tina.

A TTS example specification is shown in Fig. 3. It
corresponds to the interpretation of the Fiacre process
CP_MON from the control panel modeled in Sect. III-A.
A TTS can be viewed as a Time Petri Net where transi-
tions are decorated with guards (pre) and actions (act) on
data variables. Compared to Time Petri nets, a transition
in a TTS is enabled if both: (1) its preconditions are
fulfilled, in terms of tokens in its input places; and (2)
the predicate pre is true for that particular transition.
When a transition fires, the store is updated atomically
by executing the corresponding action act.

The TTS in Fig. 3 models the prolongation of the move-
ment signal by CP_MON . Transition t0 is synchronized
through the label up with a transition from the model of
the knob (not shown here). When the knob starts moving,
t0 fires and sets cMvt. This variable models the prolonged
signal. When the knob stops moving, t1 fires. From state
sustain, and if no knob movement occurs within interval
[cProl, cProl] then t2 fires and cMvt is reset, else t3 fires.
The signal is thus prolonged for cProl.

t0

up,[0,∞[

act: cMvt := trueidle

waitdown

t2

[cProl, cProl]

act: cMvt := false

t1

down,[0,∞[sustain

t3

up,[0,∞[

act: cMvt := true

Fig. 3: CP_MON behavior
Time is assumed dense, so TTS typically have infinite

state spaces; model-checking them require finite abstrac-
tions. Tina offers several such state space abstractions,
based on so-called state classes, preserving specific families
of properties like absence of deadlocks, state reachability,
or formulas of some temporal logics. The properties are
checked on the abstraction computed. One of the tools
provided by Tina for this is selt, a model-checker for
State/Event-LTL, a linear time temporal logic supporting
both state and transition properties. For the properties
proved false, a timed counter example is generated that
can be replayed in the TTS simulator.

IV. Modeling the altitude target acquisition
function

This section discusses the modeling of the use case.
Due to the lack of space, we do not detail the modeling of
synchronous components nor communication mechanisms.
Instead we present modeling techniques that, put together,
yield a tractable state space, allowing to check the effects
of choice of constants Γ on property DETECT .

We observe that DETECT is insensitive to specific
altitude target values. The model may reflect this by con-
sidering change of altitude only. Recall from Section II that
altitude increments are sent periodically from CP_COM
as an integer modulo 256. We abstract these distinct alti-
tude values as a boolean data type {Change,NoChange}.
This classical abstraction is quite effective in decreasing
the number of discrete states of the system.

Next, from this data abstraction we derive a temporal
abstraction. First we abstract the knob’s direction of
rotation. Second, we abstract the quadrature-phase signal
into a signal with two levels (high or low).

Quad. Phase
Abstraction

x δ

Fig. 4: Knob movement abstraction

In Figure 4, the first chronogram shows a possible
behavior of the quadrature phase signal, neglecting the
direction of this signal, where x represents a sequence of
3 knob clicks; δ is the duration of a click. Recall that it
is always possible for the pilot to move the knob. The
problem is that the PC_COM period is much longer than
δ and that the PC_COM task may be executed infinitely
often: this difference of temporal scales is a major source
of combinatorial explosion. Intuitively, many knob moves
may occur between two PC_COM executions.

Our abstraction is illustrated in Figure 4. Instead of
modelling the knob clicks (top chronogram), we just model
knob moves (bottom chronogram), and without time con-
straints between successive moves. This abstraction comes
at the cost of a Zeno behavior however: infinitely many
moves are allowed to occur in a finite amount of time.
Our safety property DETECT is insensitive to such Zeno
behaviors, however. This abstraction simplifies the time
constraints involved when computing the system state
classes with Tina and consequently greatly decreases their
number.

From the globally asynchronous nature of the system
arises two classical asynchrony problems: clock deviation
and asynchronous initialization of components. 1) Time
Petri Net based models cannot natively represent clock
deviations. We make the assumption that the system’s
up-time is sufficiently small to not introduce erroneous
behaviors. This is a commonly accepted engineering as-
sumption, and clocks are monitored in flight to ensure the
assumption holds. 2) Asynchronous initialization leads to
phase shift between components. Obviously phase shifts

are a major cause of combinatorial explosion. We adopt
a divide-and-conquer strategy for this problem. Instead of
one model encompassing all possible initialization orders
and phase shift combinations, we consider one model per
initialization order expressing all possible phase shifts
given that order.

Finally, since DETECT is a safety property, it can
be checked in Tina using a construction preserving only
discrete states (rather than states and traces), which
typically yields considerably smaller behavior abstractions.
Intuitively, this construction attempt to agglomerate sets
of states related by entailment of their timing constraints.
It proved to be very efficient in out experiments.

V. Experimental results
As briefly discussed in the previous section we have

parameterized our model, ending with a template model
which can be instantiated according to some parameters:
pProl, cProl, initialization orders, component periods and
durations, networks latencies, etc.

The concrete parameter values are extracted from the
specifications of the system. pProl and cProl ranges from
1 to 6 cycles of PC_MON ; 4 possible initialisation orders
are considered. Thus we had to generate 144 models. For
each model we computed its set of discrete states using
the Tina construction discussed above. Their sizes are 2
millions states on average, occupying 2 Mb on disk. The
overall verification for the 144 models run in less than 2
hours on a typical workstation.

2 3 4 5
3

4

5

6

cProl

p
P
ro
l

Fig. 5: Configurations for which DETECT is satisfied.

Figure 5 pictures the results of our experiment. Each
dot represents a value of (cProl, pProl) for which the
model satisfies DETECT , whatever the initialization or-
der is. These are expressed in periods of PC_MON . The
value pairs investigated include those found analytically
by experienced engineers.

We then explored pairs (cProl, pProl) for which the
property is not satisfied, in order to obtain counter-
examples. These constitute a crucial information for the
engineers as testing methods could not necessarily uncover
these scenarios. For this, we used the default state class
construction of Tina, preserving discrete states and traces.
The state spaces obtained average in this case 20 millions
states in size, occupying about 60 Mb on disk. Using the
Tina tools suite, we could then obtain the shortest timed
counter-examples. These average 200 states in length, and
so can still be analyzed by hand. It must be noticed that
these counter-examples cover real errors found late in the
system life cycle during the validation phase.

VI. Conclusion
We summarized in this paper an experiment on mod-

eling a real time system and verification of non-functional
properties using Fiacre/Tina. From this model, extracted
from the actual specifications of the system, we exhibited
error scenarios corresponding to real errors found late in
the system’s development lifecycle, the validation phase.
Moreover, we could use this model to check a crucial non-
functional condition ensuring the detection of faults. It
took two man-month of work to conduct the whole exper-
iment; most of this time being devoted to the extraction
of relevant information from a text-based industrial spec-
ification. A necessary improvement of our work would be
to include availability issues such as Failsafe COM/MON
since crucial non-functional properties arise from this
architecture pattern. Nevertheless our work demonstrate
that formal verification is readily applicable to industrial
problems using out-of-the-box available tools.

References
[1] P. Traverse, I. Lacaze, and J. Souyris, “Airbus fly-by-wire: A

total approach to dependability,” in Building the Information
Society. Springer, 2004, pp. 191–212.

[2] S. Miller, D. Cofer, L. Sha, J. Meseguer, and A. Al-Nayeem,
“Implementing logical synchrony in integrated modular avion-
ics,” in Digital Avionics Systems Conference, IEEE/AIAA
28th, oct. 2009, pp. 1.A.3–1 –1.A.3–12.

[3] A. Gamatié, C. Brunette, R. Delamare, T. Gautier, and J.-P.
Talpin, “A modeling paradigm for integrated modular avionics
design,” in Soft. Engineering and Advanced Applications, 32nd
EUROMICRO Conference on. IEEE, 2006, pp. 134–143.

[4] Aeronautical Radio Inc., ARINC specification 429-ALL: Mark
33 Digital Information Transfer System Parts 1,2,3, 2001.

[5] ——, ARINC 664, Aircraft Data Network, Part 1: Systems
Concepts and Overview, 2002.

[6] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel,
P. Gaufillet, F. Lang, F. Vernadat et al., “Fiacre: an inter-
mediate language for model verification in the TOPCASED
environment,” in Embedded and Real-Time Software, Toulouse,
2008.

[7] F. Vernadat, C. Percebois, P. Farail, R. Vingerhoeds, A. Rossig-
nol, J.-P. Talpin, and D. Chemouil, “The TOPCASED Project -
A Toolkit in OPen-source for Critical Applications and SystEm
Development,” in Data Systems In Aerospace (DASIA), Berlin,
Germany. ESA Publications, may 2006.

[8] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool TINA–
construction of abstract state spaces for Petri nets and time
Petri nets,” International Journal of Production Research,
vol. 42, no. 14, pp. 2741–2756, 2004.

[9] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “Cadp
2010: a toolbox for the construction and analysis of distributed
processes,” in Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2011, pp. 372–387.

[10] B. Berthomieu, J.-P. Bodeveix, S. Dal Zilio, P. Dissaux, M. Fi-
lali, P. Gaufillet, S. Heim, F. Vernadat et al., “Formal verifica-
tion of AADL models with Fiacre and Tina,” Embedded Real-
Time Software and Systems, Toulouse, pp. 1–9, 2010.

[11] S. Rangra and E. Gaudin, “SDL to Fiacre translation,” Embed-
ded Real-Time Software and Systems, Toulouse, 2014.

[12] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in Interna-
tional Conference on Software Engineering, 1999, pp. 411–420.

[13] N. Abid, S. Dal Zilio, and D. Botlan, “Real-time specification
patterns and tools,” in Formal Methods for Industrial Critical
Systems, Springer LNCS 7437, 2012, pp. 1–15.

