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Observability of Discrete-Time Linear Systems with Communication
Protocols and Dropouts

Aneel Tanwani Raphael Jungers W.P.M.H. (Maurice) Heemels

Abstract— We consider the problem of analyzing observabil-
ity in discrete-time linear systems when the sensors, deployed
in a distributed manner, may not communicate to an observer
at once, and a protocol determines the communication pattern
among different sensors. We use the formalism of automata to
model the sequence of measurements determined by a protocol
and show that the question of observability is decidable for
the resulting system. We give upper bounds on the number of
measurements required for deciding observability. In addition,
we consider the effects of dropouts, which may occur in
communicating the measurements across the channel. Again
using the formalism of automatons to model certain classes
of dropouts combined with the protocol, it is shown that
observability is decidable in finite time for measurements sent
across using a protocol, and subject to dropouts.

I. INTRODUCTION

Analysis and design of control systems in the presence of
networks between the controllers and the plant has attracted
the attention of many researchers in the control community,
and there are several survey articles, which summarize the
contributions made in this regard in different eras, see,
for example, [3], [9], [11]. The importance of fundamental
system properties, such as, controllability and observability
in dynamical systems, and their role in designing controllers
and observers has been well-established. Motivated by these
two research directions, we are interested in studying the
problems related to observability subject to certain uncer-
tainties which result from operating a system over a digital
communication network.

On a system theoretic level, for a system to be observable,
the mapping from the initial state to the output needs to be
injective. We typically think of the output as some partial
information about the state, and in case of communication
over a network, this information about the state is further
limited, and one looks at alternate mappings, from the state
to the measurements received by the receiving node, thereby
taking into account the effects of the network. It is thus
crucial to study how such properties are affected due to
the constraints imposed by the network. In particular, the
mappings to be analyzed are determined by the network
constraints being considered and modeled. In many practical
scenarios, sensors are being equipped with transmitters so
that they can send their data to remote computers wire-
lessly. For large-scale systems, and considering the limited
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bandwidth of the underlying channel, it is often desirable to
transmit data in a sequential manner among these sensors.
Using such scenarios as a motivation, we are interested
in the problem of analyzing observability when the under-
lying algorithms or protocols allow individual sensors to
communicate independently from the rest, and to consider
realistic scenarios, such as measurements being subject to
dropouts. As such, in this article, we study observability
subject to changes in the measurements which result from
introducing both communication protocols and dropouts. In
particular, by using the theory of finite state automatons to
represent the protocols and dropouts, we investigate whether
observability is decidable over all paths generated by the
underlying automatons.

In the related literature focused on studying the structural
properties in the presence of network uncertainties, several
interesting directions have been pursued. From a control
viewpoint, the article [6] proposes optimal control algorithms
with possible loss in communication at certain time instants.
When looking at the constraints arising from communication
protocols, the paper [14] studies linear systems with periodic
scheduling and provides a sufficient condition to preserve
controllability in terms of the eigenvalues of the system
and the communication sequence. A generalization of this
approach to nonlinear systems can be found in [8]. Another
direction is to consider dropouts in communication. The
paper [5] considers single-input single-output systems and
provides a controllability criterion in the presence of so-
called blind periods, or dropouts in communication. More
recently, in [7], controllability and observability are studied
in the case of dropouts. The authors model the resulting
system as a constrained switched system, where in case of
a dropout, the authors consider the output to be null, and it
switches back to the nominal output in case the transmission
is successful.

A. System Class and Problem Overview

In this article, we are interested in discrete-time linear
systems of the form

x(k + 1) = Ax(k) (1a)
y(k) = Cx(k) (1b)

where A ∈ Rn×n, C ∈ Rdy×n, and x(k) ∈ Rn denotes the
state, and y(k) ∈ Rdy denotes the output of the system at time
instant k ∈ N := {0, 1, 2, . . . }. For the sake of simplicity,
we will assume that the matrix C has no zero rows in it.
In the setup of this paper, we consider the scenario where
the sensors are deployed in a distributive manner. Instead



of all the sensors transmitting the output of the system to
an observer/state estimator, only a certain selection of these
sensors transmit their values across the network at a given
time instant. That is, not all the sensors can communicate
their data simultaneously across the channel to an observer.
Such a situation may arise typically when communicating
sensor values across a network, and thus we suppose that a
communication protocol determines which sensors must send
the data at a given time instant. To differentiate between the
output of the plant, and the measurements sent across the
network, the measurements received by the receiving node
(an observer) at time k ∈ N are denoted by z(k) ∈ Rdk , with
dk ∈ N, dk ≤ dy. Here, dk denotes the number of sensors
that communicate across the network at time instant k, as
this number may vary with time.

B. Motivation and Examples

The need for studying observability within the setup of
distributed communication can be motivated in several ways.
The questions studied in this paper are motivated by the fact
that that the observability is not necessarily preserved when
the transmission of measurements is affected by some pro-
tocol. For instance, consider system (1) with the observable
pair (A,C) described by

A =

[
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
; C = [ 1 0 0 0

0 0 1 0 ] .

Assume that, a round-robin protocol is used to transmit
output data to an observer, which sends z(2`) := y1(2`) =
x1(2`), and z(2` + 1) := y2(2` + 1) = x3(2` + 1), for
each ` ∈ N. It turns out that it is not possible to compute
x(0) under this communication protocol. This can be seen by
constructing the map from x(0) to the value of z(k), k ∈ N,
and noticing that A2 = I for this particular example. Thus,
it is of interest to be able to decide whether a given protocol
model allows us to reconstruct the state. If so, then what
is the maximum number of measurements which guarantee
reconstruction of the state. Another related question we ask
ourselves is when and how can we construct arbitrarily
long sequences of measurements, which do not allow us to
reconstruct the state. The proof techniques used in the main
results precisely address this kind of questions.

C. Our Contribution

Observing these interesting aspects of distributed com-
munication via examples, we propose an automaton-based
approach for modeling the protocols. The mapping from
the initial state x(0) to the function z varies with time,
and by using the properties of the automaton to describe
the time-varying map x(0) 7→ z, we address the question
whether this mapping is invertible along all paths of an
automaton which describes protocols and dropout signals. As
we remarked, the mapping x(0) 7→ z is time-varying under
the communication constraints and the overall system can
be seen as a switched system, with switching measurement
matrices. The approach adopted in [1], [2] provides conser-
vative lower bounds (using tools from number theory) on

the time it takes to decide observability, without associating
any model to how the measurement matrices change. On the
other hand, the approaches adopted in [13], [15] propose
observability conditions for a given switching path. This
paper, however, takes an intermediate approach between the
two, where we provide conditions for deciding observability
in finite time over a class of switching paths described
by non-deterministic automata. Such partially constrained
switched systems have been studied in the context of stability
problem recently [4], [10].

II. MEASUREMENT MODELS WITH COMMUNICATION
PROTOCOLS

In this section, the setup of distributed communication is
introduced, which is governed by a certain protocol and is
affected by dropouts. We make use of a finite state automaton
to represent both the protocols and the dropout signals.
The underlying properties of the automata are then used to
analyze observability related questions.

Definition 1. An automaton is a pair A = (M,v) ∈
{0, 1}N×N × VN , where N is the number of nodes (or
states), M ∈ {0, 1}N×N is the transition matrix, and v =
(v1 v2 . . . vN )> ∈ VN is the vector of node labels, so that
vi ∈ V , for each i ∈ {1, . . . , N}.

Some basic terminology associated to finite state automata,
which we use in the paper, now follows: A path p of
length ` is a sequence of node labels vi1vi2 . . . vi` , such
that M(ij , ij+1) = 1, for each j = 1, . . . , ` − 1. A path
may be of finite or infinite length. A cycle is a path where
vi1 = vi` . The restriction of a path p, described as p[1:k] =
vi1vi2 . . . vik , k ≤ `, is also a path. If we have two paths
a and b given by va1v

a
2 . . . v

a
`a , and vb1v

b
2 . . . v

b
`b , then we

can define their concatenation to construct a feasible path
if va`a = vb1, and the resulting concatenated path of length
`a+`b−1 is ab := va1v

a
2 . . . v

a
`av

b
2 . . . v

b
`b . We use the notation

a(m) to represent a path, where a is concatenated m times
with itself. Clearly, this applies to the case where a is a cycle.
We now use these notions to describe the communication
model for the sensors.

A. Protocol Description

In our setup of distributed communication, a protocol
makes a selection, at each time instant k ∈ N, to send
the values measured from some subset of the sensors. To
formally define the class of protocols in this paper, consider
the P subsets S1, . . . ,SP with distinct elements, so that
Sj ⊂ {1, 2, . . . , dy} and card(Sj) =: dj , j = 1, . . . , P . That
is, we choose P elements from the power set of {1, . . . , dy}.
We do not require the subsets Sj , j = 1, 2, . . . , P , to be
distinct. Each Sj indicates the set of indices of the sensors
that a protocol may select at a given time instant. A protocol,
as considered in this paper, specifies a scheduling signal
S : N → {S1, . . . ,SP }, so that the measurement z(k)
sent across the channel at time instant k ∈ N is the vector
composed of yi(k) with i ∈ S(k).



Here, we emphasize that a protocol may allow different
scheduling signals S due to nondeterministic transition rules
for switching among sensor values. This phenomenon is
appropriately captured by using an automaton to model all
the possibilities described by a protocol.

Definition 2. A protocol automaton is a pair Ap =
(Mp, s) ∈ {0, 1}P×P × {S1, . . . ,SP }P , where the vector
s = (s1 s2 . . . sP )> ∈ {S1, . . . ,SP }P . A scheduling
signal S : N→ {S1, . . . ,SP } is considered admissible with
respect to Ap if there exists wp : N → {1, . . . , P} such
that Mp(wp(k), wp(k + 1)) = 1 and S(k) = Swp(k), for all
k ∈ N.

We introduce the matrices Sj ∈ Rdj×n associated to the
node Sj , whose rows are exactly the rows of matrix C
represented by Sj . In other words, i ∈ Sj if and only if the
i-th row of C is a row of Sj . With an admissible scheduling
signal S, we associate a measurement signal RS : N →
{S1, . . . , Sp}, such that RS(k) = Sik if S(k) = Sik k ∈ N.

For a path p = Si1Si2 · · · Si` , of the automaton Ap, we
define its rank, denoted rank(p), as1

rank(p) = rank
(
col(Si1 , Si2A, . . . , Si`A

`−1)
)
,

where the matrix on the right-hand side is understood to have
n columns, and the number of rows depends on the path p.

Example 1 (Round-robin protocol with y ∈ Rdy ). Consider
the case when there are dy sensors and yi = xi, i =
1, . . . , dy, and x ∈ Rn, with n ≥ dy. We choose P = dy,
and Si = {i}, that is, each sensor sends the value of one of
the state components. A round-robin protocol, that chooses,

z(dy`+ j) = yj(dy`+ j), j = 1, . . . , dy,

falls in this framework. The corresponding automaton is
described by choosing sj = Sj , j = 1, . . . , P , and the
nonzero entries of Mp are given by Mp(i, i + 1) = 1, for
i = 1, . . . , P − 1. The resulting automaton is a simple cycle
as shown in Figure 1, where we draw an edge from Si to Sj
only if Mp(i, j) = 1.

{1} {2}

{3}{P}

Fig. 1: An automaton for round-robin protocols.

Example 2 (Protocol with limited tokens). Consider the case
where y ∈ R2, and the protocol under consideration is such
that, at each time instant, it chooses to send yi, i = 1, 2, but
the constraint is that it can not send the value from the same
sensor more than two times consecutively. That is, neither y1,
nor y2, can be sent more than twice in a row. This protocol

1Given the matrices M1, . . . ,Mk with same number of columns, we use
the notation col(M1, . . . ,Mk) :=

[
M>

1 . . . M>
k

]>.

rule introduces non-determinism which can be modeled by
choosing P = 4, and S1 = S2 = {1}, and S3 = S4 = {2},
where the corresponding automaton is given in Fig. 2.

{1} {1}

{2}{2}

Fig. 2: A protocol automaton with limited tokens assigned to each sensor.

B. Modeling Dropouts

So far, we considered the fact that the presence of a
communication channel does not allow all the sensors to
communicate at once, and different sensors transmit their
measurements at different times according to the scheduling
constraints governed by a protocol. In addition, we also
want to study the case where a transmitted packet drops
before reaching the destination. We again use a finite state
automaton to model certain classes of dropouts and will
subsequently analyze observability for such cases.

Definition 3. A dropout automaton is an automaton
Ad = (Md, v) ∈ {0, 1}N×N × {0, 1}N , where v =
(v1 v2 . . . vN )> ∈ {0, 1}N is such that vi = 0 represents a
dropout in communication, and vi = 1 denotes a node with
successful transmission. A data loss signal σ : N → {0, 1}
is said to be admissible with respect to a dropout automaton
Ad = (Md, v) with N nodes, if there exists a sequence of
states wd : N → {1, 2, . . . , N} such that for all k ∈ N it
holds that M(wd(k), wd(k + 1)) = 1 and σ(k) = vwd(k).

One can check that, several dropout models can be en-
coded using the formalism of automatons and we refer the
reader to [7] for several examples.

C. Measurement Model and Observability Notions

For the communication setup considered in this paper, the
effect of the channel on the measurements is described by
the protocol automaton Ap and the dropout automaton Ad.
For a scheduling signal S admissible with respect to Ap, and
a data-loss signal σ admissible with respect to Ad, we can
now consider the system

x(k + 1) = Ax(k)

z(k) = σ(k)RS(k)x(k),
(2)

where we recall that RS is the matrix-valued measurement
signal associated to S. The observability question of interest
is formulated as recovering the state x using the network-
affected measurements z, which are described by equation
(2).

Definition 4. The system defined by the quadruple
(A,C,Ap,Ad) is called observable if for each scheduling



signal S and each data-loss signal σ that are admissible with
respect to Ap and Ad, respectively, the implication

z ≡ 0 ⇒ x0 = 0 (3)

holds, where z is obtained from (2) with the initial condition
x(0) = x0.

Because of the linearity of system under consideration, the
above implication is equivalent to

z1 ≡ z2 ⇒ x1(0) = x2(0),

where z1 and z2 are the measurements sent across the
channel when system (1) is initialized with x1(0) and x2(0),
respectively. Checking observability boils down to checking
whether the matrix

col (σ(1)RS(1), σ(2)RS(2), . . .)

has rank n for all possible signals S, σ generated by the
automata Ap and Ad, respectively, which is a question
addressed in next two sections.

III. OBSERVABILITY WITHOUT DROPOUTS

Observability of the system using the network-affected
measurements introduced in the previous section is now in-
vestigated. For the sake of clarity, we first present our results
in this section without the dropouts and then prove similar
results including dropouts in Section IV. When talking about
system without dropouts, we say that the system (A,C,Ap)
is observable if (3) holds for each S admissible to Ap while
fixing σ ≡ 1 in (2). Our strategy to address this question is
to first look at the case of simple cyclic automata Ap, which
we present in Section III-A. We then build on this result to
show that observability over all paths in a protocol automaton
Ap can be checked by looking at the rank of finitely many
matrices.

A. Observability for Simple Cyclic Automatons

To present conditions for observability, we introduce some
notation. For a given pair (A,C), with A ∈ Rn×n, we
introduce the matrix O(A,C) to be

O(A,C) := col(C,CA, · · · , CAn−1).

The pair (A,C) is called observable in the classical sense if
O(A,C) has full column rank.

We first consider the case of cyclic protocol automata
without dropouts. For this case, we introduce the notation:

C̃ := diag(S1, S2, . . . , SP )

and let Ã := Π>P ⊗ A, with ΠP being the canonical
cyclic permutation matrix on P elements, and ⊗ denotes
the Kronecker product of matrices.

Proposition 1. The system defined by the triplet (A,C,Ap)
with cyclic protocol automaton Ap is observable if and only
if

rankO(Ã,C̃) = nP. (4)

Proof. Assume that (4) holds. Let us consider the measure-
ments of system (2) over the interval [0, P − 1], denoted by
z[0,P−1], that is, z[0,P−1] := col(z(0), z(1), · · · , z(P−1)) =
Rx(0), where R := col(R(1), R(2)A, . . . , R(P )AP−1).
This leads to

z[0,P−1]
z[P,2P−1]

. . .
z[(n−1)P,nP−1]

 =


R

RAP

· · ·
R(AP )n−1

 x(0) (5)

On the other hand, the matrix O(Ã,C̃) has nP columns and
hence each set of n columns is linearly independent. In
particular, for each k = 0, · · · , P − 1, the submatrix formed
by taking the columns kn+1, kn+2, . . . , kn+n has rank n.
But, by construction, one of these submatrices corresponds
to the matrix appearing in the right-hand side of (5). This
shows that (2) is observable if (4) holds.

We prove the other implication by contradiction. Assume
that the matrix O(Ã,C̃) has rank less than nP . There exists x̃
such that O(Ã,C̃)x̃ = 0. The structure of O(Ã,C̃) is such that,
for some k = 0, · · · , P − 1, the subvector x̃[kn+1:kn+n] 6= 0
is in the null space of the matrix formed by the columns
kn+ 1, kn+ 2, . . . , kn+n. Hence, it is possible to generate
a measurement signal R compatible with Ap such that
the right-hand side of (5) equals zero by taking x(0) =
x̃[kn+1:kn+n]. This makes (2) unobservable, which proves
the necessity of (4).

The lifting technique adopted in Proposition 1 allows us
to formulate the observability question for the system with
switching measurement matrices in terms of the observability
of a linear time-invariant system. This result also contains the
idea needed to solve the case of more general protocols.

B. Observability with Arbitrary Protocol Automatons

We next move to analyzing observability under protocols,
where the representative automaton may include nondeter-
ministic transitions. The statement of Proposition 1 reveals
that in case of a simple cycle, deciding whether a given path
is observable is relatively straightforward and can be done by
looking at a string of length nP generated by the automaton
Ap. For more complex automata, we can build on this result
to address the question whether observability can be decided
in finite time for all possible strings that can be generated by
Ap. The answer to this question is provided in the affirmative
in Theorem 1.

The basic idea of the proof is the following observation: if
each node in the automaton Ap corresponds to a nontrivial
measurement, then a path of length 1 ensures that the
corresponding rank of the observability matrix is at least
1. Next, if we consider a path of length P + 1, with P
being the number of nodes, it follows from the Pigeon Hole
principle that at least one node must appear twice, and hence
there is at least one cycle in that path. If there is a path
containing this cycle such that the rank of the observability
matrix corresponding to that path is again 1, it can be shown
that going around that cycle does not increase the rank of the
observability matrix. If we now construct paths of arbitrary



length by repeating this cycle (by the so-called pumping
lemma in Automata theory) such paths are still feasible but
the rank of the observability matrix does not increase. In
other words, just by checking if the rank of the observability
matrix is less than 2 in a cycle of length less than P + 1,
we can construct paths of arbitrary length where the rank of
the observability matrix stays less than 2.

Extending this line of thought, we can find a positive
integer η∗ such that it suffices to check if the observability
matrices corresponding to all paths of length η∗ have rank
n. If not, then there is a cycle (not necessarily simple) in
the path, which can be used to construct paths of arbitrary
length resulting in unobservability. With this motivation let
us introduce the following sequence of numbers:

η(1) = 1

η(`) = η(`− 1) + L(η(`− 1)), 2 ≤ ` ≤ n,

where L(η) denotes the number of paths of length η which
can be generated by Ap.

Theorem 1. The system (A,C,Ap) is observable if and only
if every path of Ap, with length at least η(n), has rank n.

Remark 1. For simple cyclic automatons with P nodes, it
is readily checked that L(k) = P for all k ∈ N≥1, and so
η(n) = nP + 1, which is very close to the number given in
Proposition 1. For more complex graphs, the number η(n)
may be very large and only provides a conservative estimate
on the length of the paths for which we need to check the
rank. Getting tighter lower bounds for lengths of paths for
which we need to check observability for particular classes
of automatons is an interesting question that requires further
investigation.

The following lemma is used in the proof of Theorem 1.

Lemma 1. If s denotes a path in an automaton Ap, and srs
is a path such that

rank(srs) = rank(s) (6)

then for any arbitrary integer m ≥ 1, the path s(rs)(m) has
the same rank as the path s.

Proof. Let s be a path of length s` and r be a path of length
r`. The equality in (6) says that

rank

 Os

OrA
s`

OsA
s`+r`

 = rankOs, (7)

where Os := col
(
Cs1 , Cs2A, · · · , Cs`As`−1

)
, and Or :=

col
(
Cr1Cr2A · · ·Cr`Ar`−1

)
. Let us now look at the matrix

associated with the path s(rs)(2). To establish that the rank
of the path s(rs)(2) is the same as that of s, we show that

rank


Os

OrA
s`

OsA
s`+r`

OrA
2s`+r`

OsA
2s`+2r`

 = rankOs, (8)

from where the statement of the lemma follows by induction.
To prove the foregoing equality, the lower portion of the
matrix on left-hand side is written as OsA

s`+r`

OrA
2s`+r`

OsA
2s`+2r`

 =

 Os

OrA
s`

OsA
s`+r`

As`+r`
and hence

range

 OsA
s`+r`

OrA
2s`+r`

OsA
2s`+2r`

> = (As`+r`)> range

 Os

OrA
s`

OsA
s`+r`

> .
It follows from (7) that

range

 Os

OrA
s`

OsA
s`+r`

> = rangeO>s , (9)

which gives

range

 OsA
s`+r`

OrA
2s`+r`

OsA
2s`+2r`

> = (As`+r`)> rangeO>s . (10)

Since the matrix on the right-hand side of (10) is contained
inside the matrix appearing on the left-hand side of (9), the
desired relation in (8) thus follows.

Proof of Theorem 1. Consider a path p of length greater
than or equal to η(n) generated by the automaton Ap. For
any integer ` ∈ {1, . . . , n}, we show that either

rank(p[1:η(`)]) ≥ `,

or there exists a path q of arbitrary length such that

rank(p̃q) < n

where p̃ is some restriction of the path p. Let us start
by looking at p[1:η(2)] whose length2 is η(2). There exist
1 ≤ i < j ≤ η(2) such that p[i] = p[j]. If rank(p[1:η(2)]) <
2, then by invoking Lemma 1 (with s = p[i], and r =
p[i:j]), and letting q = (p[i:j])

(m), p̃ = p[i], we see that
rank(p̃q) = 1. Thus, we continue with rank of p[1:η(2)] at
least rank 2.

For the sake of induction, assume that p[1:η(`)] has at least
rank `, 2 ≤ ` < n, and consider the path p[1:η(`+1)]. Assume
that p[1:η(`+1)] has rank `. By the Pigeon Hole principle,
there exists 1 ≤ i < j < L(η(`)) such that p[i:i+η(`)] =
p[j:j+η(`)] and rankp[i:j+η(`)] = rankp[i:i+η(`)]. Applying
Lemma 1 with s = p[i:i+η(`)], r = p[i+η(`):j], we can then
let p̃ = p[1:i+η(`)], and

q = p
(m)
[i+η(`):j+η(`)]

to deduce that rank(p̃q) = `. This means we have either
constructed a path of arbitrary length with rank equal to
` < n, or the path p[1:η(`+1)] must at least have rank `+ 1.
Proceeding inductively and arriving at ` = n − 1 establish
the proof of the desired result. �

2Note that η(2) = 1 + L(1), and the total number of paths of length 1,
that is L(1), is just the number of nodes.



IV. OBSERVABILITY WITH DROPOUTS

We now state our main result for observability of sys-
tem (2) with R and σ generated by any given automaton Ap
and Ad. We aim to seek the same kind of results as in the
previous section, that is, whether the problem is decidable or
not. The basic idea behind our approach is to first construct
a single automaton from Ap and Ad, and then study the
observability question for this resulting automaton in the
same manner as done in Theorem 1.

A. Construction of Augmented Automaton Ã
The main algebraic ingredient in this first step resides

in taking the Kronecker product of the matrices from the
two automata, pairwise. Toward this end, we represent the
automata via the adjacency matrices corresponding to their
different nodes. That is, Ad contains two matrices M0,M1 ∈
{0, 1}N×N , where N is the number of nodes in the dropout
automaton, and the (i, j)-entry of M0 (resp. M1) is equal
to 1 if and only if, in Ad, there is an edge from node i to
node j and the label of node j is equal to zero (resp. one).
Similarly for Ap, which is an automaton on P nodes: the
matrix MSi ∈ {0, 1}P×P describes the edges of Ap that
point to a node with label Si.

Now, we describe our new automaton Ã via its matrices.
The automaton has N · P nodes, and the matrices M̃Si are
given by the Kronecker product

M̃Si := MSi ⊗M1 ∈ {0, 1}NP×NP ,

while the matrix M̃0 is given by

M̃0 := Mp ⊗M0 ∈ {0, 1}NP×NP ,

where Mp is the adjacency matrix describing all the edges
of Ap. One can verify that this construction provides the au-
tomaton Ã described by the pair (M̃, ṽ), where M̃ := M̃0 +∑P
i=1 M̃Si is the transition matrix, and ṽ ∈ {S1, . . . ,SP }P×

{0, 1}N is the vector of node labels. This automaton Ã
indeed generates all the signals that are compliant, both with
the protocol and the dropout automata. That is, for example,
an observability matrix

col(0, Si4 , 0, 0, Si1)

is admissible if and only if the corresponding product
M̃0M̃Si4 M̃0M̃0M̃Si1 is nonzero.

B. Decidability Result

As done before, we associate a sequence of numbers with
this augmented automaton Ã to decide observability. We let
µ be a sequence of numbers defined as:

µ(1) = N + 1,

µ(`) = µ(`− 1) + L(µ(`− 1)),

where L(µ) denotes the total number paths of length µ that
can be generated by the automaton Ã.

Theorem 2. The system described by the quadruple
(A,C,Ap,Ad) is observable if and only if every path of
the automaton Ã, with length at least µ(n), has rank n.

The proof of Theorem 2 essentially follows the same
arguments as Theorem 1. One notable difference arises due
to the construction of the sequence µ for the automaton
Ã, compared to the sequence η used for Ap. Since the
automaton Ã contains possible N nodes with 0 matrix
associated to them, one needs to look at paths of length
N+1 to obtain an observability matrix of rank 1 along such
paths. The remainder of the proof then follows in an identical
manner.

V. CONCLUSIONS

One can build on this work to obtain more constructive
algorithms for decidability and reduce the bound on the
number of measurements that are required for checking
observability with given automata. The question of recon-
structing the state in optimal time for control purposes is
also of practical relevance.

REFERENCES

[1] M. Babaali and M. Egerstedt. Pathwise observability and controllabil-
ity are decidable. In Proc. 42nd IEEE Conf. on Decision and Control,
5771–5776, 2003.

[2] M. Babaali and M. Egerstedt. Observability of switched linear systems.
In R. Alur and G.J. Pappas, editors, Hyb. Sys. Computation & Control,
Lecture Notes in Computer Science, pages 48–63. Springer, Berlin-
Heidelberg, 2004.

[3] A. Bemporad, M. Heemels, and M. Johansson, editors. Networked
Control Systems, volume 46 of Lecture Notes in Control and Infor-
mation Sciences. Springer-Verlag, Berlin, 2010.

[4] X. Dai. A Gelfand-type spectral radius formula and stability of linear
constrained switching systems. Linear Algebra and its Applications,
436:1099–1113, 2012.

[5] A. D’Innocenzo, M. Di Benedetto, and E. Serra. Fault tolerant control
of multi-hop control networks. IEEE Transactions on Automatic
Control, 58(6):1377–1389, 2013.

[6] O. Imer, S. Yuksel, and T. Basar. Optimal control of LTI systems
over unreliable communication networks. Automatica, 42(9):1429–
1439, 2006.

[7] R. Jungers, A. Kundu, and W.P.M.H. Heemels. Observability and
controllability analysis of linear systems subject to data losses.
to appear in IEEE Transactions on Automatic Control; Online:
https://arxiv.org/abs/1609.05840.

[8] M. Ljesnjanin, D.E. Quevedo, and D. Nesic. Controllability of
discrete-time networked control systems with try once discard pro-
tocol. In Proc.19th IFAC World Congress, pages 3758–3763, 2014.

[9] M. Pajic, S. Sundaram, G.J. Pappas, and R. Mangharam. The wireless
control network: A new approach for control over networks. IEEE
Transactions on Automatic Control, 56:2305–2318, 2011.

[10] M. Philippe, R. Essick, G. Dullerud, and R.M. Jungers. Stability of
discrete-time switching systems with constrained switching sequences.
Automatica, 72:242–250, 2015.

[11] L. Schenato, M. Francesschetti, K. Poolla, and S.S. Sastry. Founda-
tions of control and estimation over lossy networks. Proceedings of
the IEEE, 95:163–187, 2007.

[12] T. Skolem. Ein verfahren zur behandlung gewisser exponentialer gle-
ichungen und diophantischer gleichungen. Mathematica Scandinavica,
163–188, 1934.

[13] Z. Sun and S.S. Ge. Switched Linear Systems: Control and Design.
Springer-Verlag London, 2005.

[14] T. Suzuki, M. Kono, N. Takashi, and O. Sato. Controllability and sta-
bilizability a networked control system with periodic communication
constraints. System & Control Letters, 60(12):977 – 984, 2014.

[15] A. Tanwani, H. Shim, and D. Liberzon. Observability for switched
linear systems: characterization and observer design. IEEE Trans.
Automatic Control, 58(4):891 – 904, 2013.

[16] E.P. van Horssen, A.R.B. Behrouzin, D. Goswami, D. Antunes,
T. Basten, and W.P.M.H. Heemels. Performance analysis and controller
improvement for linear systems with (m, k)-firm data losses. In Proc.
of the European Control Conference, 2016.


