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Abstract

Intrinsically Disordered Proteins (IDPs) play fundamental roles in signaling, reg-

ulation and cell homeostasis by specifically interacting with their partners. The

structural characterization of these interacting regions remains challenging and

requires the integration of extensive experimental information. Here we present

an approach that exploits the structural information encoded in tripeptide frag-

ments from coil regions of high-resolution structures. Our results indicate that a

simple building approach that disregards the sequence context provides a good

structural representation of fully disordered regions. Conversely, the description

of partially structured motifs calls for the consideration of sequence-dependent

structural preferences. By using NMR Residual Dipolar Couplings and SAXS

data for multiple IDPs we demonstrate that the appropriate combination of

these two building strategies produces ensemble models that correctly describe

the secondary structural classes and the population of partially structured re-

gions. This study paves the way for the extension of structure prediction and

protein design to disordered proteins.
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1. Introduction

Intrinsically Disordered Proteins or Regions (IDPs/IDRs) play crucial roles

in multiple biological processes and are directly involved in several pathologies,

including cancer and neurodegeneration (Uversky et al., 2008; Csizmok et al.,

2016; Babu et al., 2011). The inherent plasticity of this family of proteins fa-5

cilitates a range of functions that are complementary to those of their folded

counterparts (Xie et al., 2007). In most cases, the activity of IDPs is manifested

when interacting with globular partners to trigger signaling or metabolic cas-

cades (Tompa et al., 2015). These interactions are mediated by Short Linear

Motifs (SLiMs) that recognize regions of the partner surface in a highly specific10

manner (Van Roey et al., 2014). The presence of transiently formed structural

motifs in SLiMs facilitates partner recognition and tunes the thermodynamics

and kinetics of interactions (Mohan et al., 2006; Pancsa and Fuxreiter, 2012;

Schneider et al., 2015). To understand these functional mechanisms, it is piv-

otal to identify and characterize these partially structured elements inserted into15

IDPs.

The relatively flat conformational energy landscape of IDPs has notably

hampered their structural characterization. Experimental data obtained by

Nuclear Magnetic Resonance (NMR) and Small-Angle X-ray Scattering (SAXS)

provide information on conformational trends at the residue level, the presence20

of transient long-range contacts, and the overall size of the ensemble of confor-

mations (Eliezer, 2009). However, the quantitative interpretation of these data

requires the use of computational approaches that account for their ensemble

averaging properties. These computational approaches are based on the con-

struction of large conformational ensembles, which are subsequently refined by25

integrating the experimental data using restrained Molecular Dynamics (MD)

simulations (Dedmon et al., 2005; Silvestre-Ryan et al., 2013), sub-ensemble

selection (Ozenne et al., 2012b; Krzeminski et al., 2013; Bernadó et al., 2007),

or Bayesian statistics (Fisher et al., 2010). Chemical Shifts (CSs) and Residual

Dipolar Couplings (RDCs) measured in partially aligned media are the most30
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sensitive probes to quantify conformational restrictions at the residue level and

to define secondary structural elements (Dyson and Wright, 2004; Jensen et al.,

2009). Conversely, ensembles refined with SAXS data describe the overall prop-

erties of the protein in solution (Bernadó and Svergun, 2012; Receveur-Brechot

and Durand, 2012). Consequently, conformational ensembles that simultane-35

ously describe both sources of complementary information are excellent struc-

tural models of proteins in solution (Sibille and Bernadó, 2012; Cordeiro et al.,

2017).

Multiple computational tools using different levels of description have been

developed to characterize IDPs when no or limited experimental information is40

available. Current disorder prediction tools, which are based on the statistical

analysis of protein sequences, provide rough estimations of partly structured

regions in IDPs (Deng et al., 2015), although the exact secondary structure

classes are poorly defined.

In principle, a more accurate characterization can be provided by MD-based45

methods. However, despite significant advances in the extension of MD meth-

ods to IDPs (Piana et al., 2015; Henriques et al., 2015), their applicability

to exhaustively explore the conformational space of these proteins is still lim-

ited. Knowledge-based approaches have emerged as an alternative to overcome

some of these limitations. These approaches usually describe the conforma-50

tional properties of individual residues using the so-called coil libraries, which

contain residue-specific {φ, ψ} angles from fragments of experimentally deter-

mined protein structures that do not form secondary structural elements (Smith

et al., 1996; Feldman and Hogue, 2000; Jha et al., 2005; Bernadó et al., 2005;

Fitzkee et al., 2005; Ting et al., 2010; Esteban-Martin et al., 2010; Shen et al.,55

2018). Despite their simplicity, coil models provide an accurate description of

NMR parameters such as J-couplings (Smith et al., 1996; Shen et al., 2018) and

RDCs (Bernadó et al., 2005; Jensen et al., 2009), and SAXS curves (Bernadó

and Svergun, 2012) for flexible peptides and disordered proteins. To ensure a

large conformational exploration, the most common methods sequentially ap-60

pend individual residues using peptide planes (Bernadó et al., 2005) or Cα atoms
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(Feldman and Hogue, 2000) as building units. These coil models are normally

used as background ensembles for the subsequent refinement using experimen-

tal data (Dedmon et al., 2005; Silvestre-Ryan et al., 2013; Ozenne et al., 2012b;

Krzeminski et al., 2013; Bernadó et al., 2007; Fisher et al., 2010). Therefore,65

they are not supposed to identify secondary structural elements in IDPs, al-

though conformations can be biased by including information from secondary

structure predictors (Feldman and Hogue). This limitation is caused by the

amino acid type specific conformational database that overlooks the sequence

and structural context (Feldman and Hogue, 2000; Jha et al., 2005; Bernadó70

et al., 2005). Consequently, approaches such as TraDES and Flexible-Meccano

provide realistic models for purely random coil regions, but do not capture

structural features involving multiple consecutive residues. The omission of co-

ordinated effects precludes the capacity of current approaches to predict struc-

tural classes and their populations, and hamper their application for advanced75

purposes.

Here we present a new approach to build atomistic models of IDPs that uses

an extensive coil library of three-residue fragments (called tripeptides herein),

which are the minimal fragments containing structural information (Huang

et al., 2013). The exploitation of the structural information encoded in the80

library provides accurate descriptions of RDCs and SAXS datasets for multi-

ple disordered proteins presenting distinct secondary structural motifs. This

observation suggests that, by capturing conformational restrictions in turns, α-

helices, and β-strands inserted in IDPs, our structural ensembles are realistic

models of these proteins. The relative population, the internal coordination85

that transiently stabilizes these secondary structural elements, and the fluctu-

ating behavior of these elements naturally emerge from our strategy. Our study

seeks to extend structure prediction approaches to disordered chains, thereby

enabling the identification of the structural perturbations that deleterious point

mutations or alternative splicing exert on IDPs and IDRs.90
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2. Results

2.1. Computational models

A tripeptide coil database was built from high-resolution, experimentally

determined protein structures (see Method Details). Tripeptides capture the

conformational variability of the 20 proteinogenic amino acids while account-95

ing for the effects of the closest neighboring residues. Using this tripeptide

database and a simple steric term to avoid atom overlap, we generated en-

sembles of 100,000 conformations for several IDPs using the different building

strategies explained below. N-HN RDCs and SAXS curves were computed from

the resulting ensembles using standard methods (see Method Details) and were100

compared with the experimental datasets. RDCs for MAPK Kinase 7 (MKK7)

(Kragelj et al., 2015), the fragment 955-1097 of the Erythrocyte binding anti-

gen 181 (eba181) (Blanc et al., 2014), p15 (De Biasio et al., 2014), sic1 (Mit-

tag et al., 2010), Measles virus ntail (ntailMV) (Jensen et al., 2011), Sendai

virus ntail (ntailSV) (Jensen et al., 2008), the unique domain of the src kinase105

(src) (Pérez et al., 2009), K18 fragment of Tau protein (K18) (Mukrasch et al.,

2007), and full-length Tau protein (Schwalbe et al., 2014) were used to probe

the residue-specific sampling of the models, including the presence of partially-

formed secondary structural elements. The agreement of the different building

strategies with the experimental data was quantified using Q-factors (Cornilescu110

et al., 1998) (Table S1). Moreover, SAXS curves for p15 (De Biasio et al., 2014),

src (Arbesú et al., 2017), and Tau (Mylonas et al., 2008) were used to probe the

overall size and shape of the ensembles constructed.

2.2. The coil model describes disordered regions in IDPs

As a first approach, we built the conformations by randomly selecting {φ, ψ}115

values from the database in a residue-specific manner without taking into ac-

count the neighboring residues. Only residues preceding prolines were specifi-

cally selected from the database, since the Ramachandran distributions of these

residues differ considerably (MacArthur and Thornton, 1991; Ting et al., 2010).
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This building mode, which we call single-residue-based sampling (SRS), can120

be considered a Flory model since the sequence context of the building units

is not used. The RDC profiles computed using the SRS strategy nicely re-

produced the experimental ones for large sections of all the proteins (Fig. 7,

blue lines). Conversely, other regions displaying large (positive or negative)

RDCs were not properly reproduced by SRS ensembles. Not surprisingly, this125

lack of agreement was observed in known α-helical regions with positive RDCs

(ntailMV, ntailSV and MKK7), extended regions with strongly negative N-HN

RDCs (p15), and turns displaying sharp positive peaks (eba181, K18 and Tau).

Note that inaccuracies in the representation of partially structured regions have

also been observed when using similar building strategies, such as Flexible-130

Meccano (Bernadó et al., 2005; Ozenne et al., 2012a). The proteins with highly

populated secondary structural elements, such as ntailMV, ntailSV and MKK7

present large Q-factors (around 100).

2.3. Structural information encoded in the tripeptide database identifies partially

formed secondary structural elements135

We generated large conformational ensembles using a three-residue-based

sampling strategy (TRS) that selects {φ, ψ} values for each residue i, taking into

account the amino acid type and the conformation of the neighboring residues

i − 1 and i + 1 (see Method Details). In general, RDCs derived from the TRS

strategy adopted less negative or even positive values compared to those ob-140

tained from the SRS strategy (Fig. 7, green lines). In some cases, such as for

eba181 and ntailMV, almost the entire RDC profile remained positive. We

attribute this systematic deviation towards positive values to an overpopula-

tion of α-helical conformations in the tripeptide database, as previously ob-

served when using coil libraries derived from globular proteins (Jha et al., 2005;145

Schweitzer-Stenner and Toal, 2016). Interestingly, some local features observed

in the experimental profiles, which were not reproduced by the SRS strategy,

were captured by the TRS strategy. Theoretical RDCs for α-helical regions

in ntailMV, ntailSV and MKK7 were systematically more positive than those
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Figure 1: Experimental N-HN RDCs (black solid lines) for the nine proteins analyzed com-

pared with the theoretical RDCs computed using the SRS (blue solid line) and TRS (green

solid line) sampling strategies. To facilitate visual analysis, RDCs from the SRS method were

scaled considering only the regions defined as random coil in the hybrid approach

.

corresponding to their flanking regions. In fact, these were the only three cases150

for which the Q-factor for the TRS was better than that of the SRS. Moreover,

turns in K18 and Tau were naturally pinpointed by the TRS strategy, producing

sharp peaks in the RDC profile. Note that more negative RDC values were also

observed in some cases, such as the N-terminus of p15. These observations in-

dicate that some tripeptide sequences in the database are enriched in particular155

conformational classes that are present in solution.

2.4. A hybrid sampling strategy simultaneously describes structural properties of

disordered and partially ordered regions

The satisfactory description of disordered and partially structured regions

achieved with the SRS and TRS strategies, respectively, prompted us to apply160
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Figure 2: Experimental N-HN RDCs (black solid lines) for the nine IDPs studied compared

with those computed using the hybrid SRS-TRS sampling strategy (red solid lines). Fragments

highlighted in orange correspond to regions considered partially structured, for which the TRS

was applied (see Table S2 for details).

a hybrid building approach. In this approach, residues belonging to a partially

structured region defined a priori were incorporated into the model using the

TRS strategy, while the rest of the chain was built with the SRS strategy. For

the nine proteins tested, we defined the partially structured regions on the basis

of the experimental N-HN RDCs and previously reported structural analyses165

(see Table S2). In this regard, SRS-derived RDCs were compared with the

experimental ones, and those regions presenting a systematic deviation were

initially assigned as partially structured. The exact borders of these regions

were subsequently refined by testing multiple alternatives. The Q-factors, re-

vealed excellent agreement between the simulated and the experimental RDC170

profiles for all the proteins tested (Fig. 8 and Table S1). This metric thereby

indicates that the hybrid strategy, which simultaneously describes disordered

and partially structured regions, notably improved the SRS and TRS chain
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building approaches. However, the level of Q-factor improvement depended on

the percentage of the sequence involved in secondary structural elements (Ta-175

ble S1). In highly disordered proteins such as eba181, the improvement of the

hybrid method with respect to the SRS approach was modest, with Q-factors

of 56.01 and 46.90 for the SRS and hybrid strategies respectively. Conversely,

a considerable improvement in the Q-factor was observed in proteins with long

and highly populated α-helices, such as MKK7, ntailMV and ntailSV, whose180

Q-factors decreased from 100.36, 98.89 and 110.62 for SRS to 45.20, 47.23 and

43.97 with the hybrid strategy, respectively.

Computed RDCs for the α-helical regions of MKK7, ntailMV and ntailSV

nicely reproduced the experimentally observed bell-shape and the saw-teeth.

Importantly, the description of the positive RDCs did not compromise that of185

the disordered regions as the model captured their relative intensity. Other

characteristic features observed in the experimental RDC profiles, such as turns

in eba181, K18 and Tau (see below), the broken helix in the 60-75 fragment

of src caused by two consecutive glycine residues (Pérez et al., 2009), and the

sharp inverse γ-turn of W61 of p15 (De Biasio et al., 2014), naturally emerged190

when using the hybrid approach. Remarkably, this building method did not

require the specification of either the type or the population of secondary struc-

tures. Protein Tau is a particularly challenging example due to its size and the

presence of multiple structural features, which have been extensively studied

by NMR (Mukrasch et al., 2007; Ozenne et al., 2012b; Schwalbe et al., 2014).195

Seven regions of Tau were defined as structured using the hybrid approach, four

of them being the well described turns found in the repeat region corresponding

to the K18 construct (Mukrasch et al., 2007; Ozenne et al., 2012b). The pres-

ence of highly positive RDC values found in these four turns were captured by

the hybrid approach in both proteins (Fig. 8), thereby indicating the realistic200

conformational representation of their sub-sequences in the database.

CSs were used to further validate the conformational ensembles built with

the hybrid SRS-TRS strategy. In this regard, averaged Cα, Cβ, CO and NH CSs

for ntailMV were computed from the ensembles using the program SPARTA+
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(Shen and Bax, 2010) and then compared with the experimental ones (Fig. S4).205

The simulated CSs were in good agreement with the experimental ones, and they

clearly captured deviations from the purely random coil behavior represented by

the SRS ensemble. These observations substantiate the results obtained when

using RDCs.

2.5. Comparison to SAXS data210

SAXS accurately probes the overall properties of conformational ensembles

in solution, thus complementing the residue-specific information provided by

RDCs and CSs (Cordeiro et al., 2017; Sibille and Bernadó, 2012). Simulated

SAXS profiles were computed from the ensembles using standard procedures

(see Method Details). Overall, excellent agreement between experimental and215

simulated profiles was observed for the three proteins, with χ2 of 1.93, 1.04,

and 1.52 for src, p15 and Tau, respectively (Fig. S1). For src and Tau, these

values were notably better than those obtained with the SRS (χ2 of 2.70 and

2.02) and the TRS (χ2 of 2.58 and 2.15) sampling approaches. For p15, the

profiles achieved the three sampling strategies showed an excellent correlation220

with the experimental profile, with χ2 near 1.0. These results strongly suggest

that the ensembles built with the hybrid approach properly describe the overall

properties of IDPs.

2.6. Prediction of local conformations and secondary structural elements

The previous sections demonstrate that the ensembles built with the hybrid225

approach are realistic models of IDPs in solution. Next, we explored the struc-

tural features of the resulting models using the helical region in ntailMV, the

extended region at the N-terminus of p15, and the turns in eba181 and K18 as

examples.

For ntailMV, the hybrid strategy notably enriched the structured region in230

α-helical conformations while it was depleted in extended (β-S) and polyproline-

II (β-P) (Fig. 9a). This structural enrichment in helical conformations induced
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Figure 3: Experimental (black) and hybrid building model (green) N-HN RDCs for two frag-

ments of (a top) ntailMV and (b top) p15. Fragments highlighted in orange were consid-

ered partially structured and built using the TRS strategy. In bottom panels, the per-

centage of enrichment of secondary structure classes present in the ensemble built with

the hybrid strategy compared with that built with the SRS strategy. Secondary struc-

ture classes were identified using definitions in related work (Ozenne et al., 2012b). Con-

cretely, [βS : −100 > φ;−120 > ψ > 50], [βP : 0 > φ > −100;−120 > ψ > 50],

[αR : 0 > φ; 50 > ψ > −120], [αL : φ > 0].

positive RDC values in this region. The conformational analysis of the ensem-

ble built for the N-terminus of p15 indicated a strong enrichment in extended

conformations, β-S and β-P, whereas α-helical ones were depleted (Fig. 9b).235

Interestingly, neither β-S nor β-P were homogeneously populated along the seg-

ment, and either one or the other became dominant depending on the specific

sequence.

A highly relevant feature of the hybrid strategy is its ability to identify turns

from sequences. Four turns have been localized in eba181 based on their positive240

RDCs (Blanc et al., 2014), however the sizes of these RDCs differed (Fig. 8).

While turns 3 (DASL) and 4 (DDAK) presented highly positive values, turns 1

(DPEK) and 2 (DPNT) were only slightly positive thereby suggesting distinct

structural features. Fig. 10 shows the conformations adopted by the residues

involved in the four turns. In all turns, residue i + 1 adopted an α-helical245

conformation. However, while residue i in turns 1 and 2 was mainly extended
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Figure 4: Conformational sampling for the four turns identified in eba181. Each column

displays the Ramachandran plots for the three first residues in turns 1 to 4 when using the

SRS (blue) or the hybrid (green) sampling approaches.

due to the following proline, it was α-helical in turns 3 and 4. This structural

difference most probably explains the different RDC values of the four turns.

According to current definitions (de Brevern, 2016), the four turns can be con-

sidered β-turns, types I and VIII being compatible with the conformation of the250

residue i+1. Nevertheless, the sequence composition clearly suggests that turns

1 and 2 with D and P in positions i and i + 1, respectively, are type I β-turns

(de Brevern, 2016). In another example, the four turns identified in K18 were

enriched in α-helical conformations in their two central residues (Fig. S2), an

observation that is in line with the original study (Mukrasch et al., 2007). How-255

ever, residues in position i+ 1 (L253, L248, L315 and F346) sampled the region

{φ = −90, ψ = 0} whereas residues i+2 (K254, N285, S316, and K347) adopted

mainly an α-helical conformation with {φ = −60, ψ = −30}. Although resem-

bling type I β-turns, they did not adopt the canonical conformation (de Brevern,

2016).260
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2.7. Coordinated formation of structural elements

We further studied how secondary structural elements are formed within

the conformational ensembles using the helical region in MKK7 as an exam-

ple (Fig. 11a). The Secondary Structure-map (SS-map) (Iglesias et al., 2013),

which allows the quantification of multiple structured elements within confor-265

mational ensembles, was used for this analysis. According to the SS-map, the

ensemble of the N-terminal region of MKK7 presented scarcely populated he-

lical regions of virtually all sizes from 4 up to 28 residues. Although the helix

encompassing the whole 28-residue-long region was found in the ensemble, its

population was extremely low, and shorter α-helices were preferred. In this re-270

gard the most populated helices (around 5%) involved eight and nine residues

in non-overlapping segments of the protein. Interestingly, the N-terminal region

of this fragment seemed more prone to form long α-helices expanding up to 15

residues. The continuum of multiple overlapping helical sections observed in the

ensemble of MKK7, which induces the bell-shape of the resulting RDC profile,275

highlights the conformational complexity of helical regions in IDPs.

We tested two alternative procedures to introduce helicity into ensembles

generated using a Flory model (i.e. the SRS strategy in our implementation)

that are frequently used to describe NMR data (De Biasio et al., 2014; Ozenne

et al., 2012b; Pérez et al., 2009; Wells et al., 2008; Bernadó and Blackledge,280

2009). Firstly, a 25% increase in α-helical conformations was imposed for each of

the residues within the region, but no structural coordination between residues

was forced (Fig. 11b). Secondly, a canonical α-helix spanning the 28-residue-long

region was introduced in 25% of the conformations (Fig. 11c). When the helical

tendency was increased at the residue level, the resulting ensemble displayed285

multiple short helices spanning the whole region. However, the population of

longer helices decreased dramatically. Consequently, resulting RDCs were pos-

itive but with values close to zero and they did not display residue-specific

features. When a canonical α-helix was forced within the complete region no

shorter helices spontaneously formed in the remaining 75% of the ensemble.290

As a result of this conformational homogeneity, the RDC profile adopted large
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Figure 5: Structural analysis of the helical region in MKK7. (Top panels) Length and encom-

passing residues of the α-helices found in ensembles computed using (a) the hybrid sampling

and two theoretical models imposing (b) 25% of enhanced helicity per residue, and (c) 25%

population of a canonical α-helix in the 28-residue long segment. Colors from white to red

indicate the population of helical segments found in the ensembles. (Bottom panels) Theo-

retical RDCs calculated from the above described ensembles (red lines) compared with the

experimental ones (black lines).

positive values with the saw-teeth shape induced by the continuous α-helix.

However, RDCs did not present the overall bell-shape observed experimentally.

To further evaluate the ensembles generated with the aforementioned proce-

dures, we also used two-dimensional plots that display the deviation with respect295

to a canonical α-helix (see Fig. S3 and the associated explanations in SI). In

these plots, each conformation is represented by a point with the x coordinate

corresponding to the distance between the first N and last C backbone atoms

of the 28-residue fragment, and the y coordinate corresponding to the average

distance between H-bond donor and acceptor atoms within this fragment. The300

wide structural heterogeneity found in ensembles built with the hybrid approach

was clearly highlighted using this representation. In contrast, distributions pro-

duced by the two other approaches were less likely from a physical point of view.
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length and the composing residues of the α-helices found in ensembles generated with the

hybrid sampling strategy for both proteins. Color from white to red indicates the population

of these helices. Vertical lines indicate aspartic acids and serines in the sequence that act as

helix N-capping residues. Concretely, D484, D487, S488, S491, and D493 are highlighted for

ntailMV, and D473, D475, S477, and D478 and highlighted for ntailSV.

In particular, the discontinuity in the conformational space produced by impos-

ing a given percentage of a canonical helix is unrealistic. Indeed, although this305

last procedure can yield good agreement between computationally generated

ensembles and experimental data in some cases, these ensembles are inaccu-

rate representations of the conformational heterogeneity expected in partially

structured regions in IDPs.

A SS-map analysis was also performed in the helical regions of ntailSV and310

ntailMV (Fig. 12). As in the case of MKK7, the co-existence of multiple over-

lapping short α-helices was observed. However, in contrast to MKK7, these two

proteins displayed a triangular shape in the SS-map, in agreement with their

similar amino acid sequence and function. This shape arises from the presence

at the N-terminus of the motif of multiple residues with a strong tendency to315

trigger the formation of α-helical segments. The most prevalent initial residues

of the detected helices in our ensembles were aspactic acid and serine. These

two amino acids have been identified as helix N-capping amino acids, which sta-

bilize α-helices with their side chain by forming a hydrogen bond at positions

2 or 3 in the helix (Jensen et al., 2008; Lovell et al., 2003). This observation320
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suggests that the N-capping properties of these amino acids are encoded in the

tripeptide database and that their capacity to initiate helical motifs naturally

emerges in ensembles built with the hybrid strategy.

3. Discussion

Partially structured motifs are key elements to trigger signaling events and325

to regulate transcription and metabolic pathways (Tompa et al., 2015). The

localization and characterization of these motifs inserted within fully disordered

fragments have been the focus of intense research (Tompa et al., 2015; Van Roey

et al., 2014; Mohan et al., 2006). Here we present an approach that exploits

the structural information encoded in tripeptide fragments extracted from coil330

regions of experimentally determined protein structures to build realistic struc-

tural ensembles of IDPs/IDRs, including scarcely populated structured motifs.

Although Flory models, which do not consider the sequence context, generate

conformational ensembles with the capacity to reproduce diverse experimen-

tal data for disordered chains, they fail to predict and model partially struc-335

tured elements. Our results demonstrate that the tripeptide database, which

accounts for this sequence context, contains structural features that are sub-

sequently found experimentally in solution. Whereas libraries involving larger

fragments have been shown to be powerful tools for the prediction of proba-

ble (stable) conformations of globular proteins and peptides (Han and Baker,340

1996; Kolodny et al., 2002; Rohl et al., 2004; Baeten et al., 2008; Shen et al.,

2014; Mackenzie et al., 2016), our results highlight that our extensive database

of three-residue fragments is enough to represent the conformational variability

and local structural propensities in IDPs. Moreover, representing the conforma-

tional variability of disordered chains requires a broad sampling of structures,345

which would not be guaranteed using databases of larger fragments. In this

regard our tripeptide database emerges as optimal for this purpose.

The general agreement between experimental and simulated RDCs implies

that the residue-specific structural information encoded in our tripeptide database
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is coherent with the conformational behavior of IDPs in solution. This is a350

remarkable observation as the database has been derived from coil regions of

crystallographic structures, which are susceptible to experience packing contacts

and/or reduced mobility. Therefore, the sequence context is a major determi-

nant of structural propensities, regardless of the state (globular/disordered) or

the environment (crystal/solution). However, for some sequences, a less ac-355

curate agreement between the experimental and simulated RDC profiles has

been observed. We attribute this local lack of agreement to the limited con-

formational coverage of these sequences in our database. With the increasing

number of experimentally determined high-resolution protein structures, we ex-

pect that more extensive and higher quality tripeptide databases will be built in360

the future, which will further improve the quality of conformational ensembles

generated with our method.

Our approach relies on the discrimination between disordered and partially

structured regions to subsequently apply the SRS and TRS sampling strategies,

respectively. Here we have used the experimental RDCs and previous studies of365

the considered proteins to define both regions. In the absence of RDCs, other

experimental data and bioinformatics predictions can be used to identify par-

tially structured motifs. CSs, which are the primary information derived from

NMR, are also very sensitive to small conformational bias at the residue level

(Tamiola et al., 2010; Schwarzinger et al., 2001). Partially structured motifs370

can also be discriminated from fully disordered regions by their faster NMR

transverse relaxation rates (Jensen et al., 2011; De Biasio et al., 2014). Multi-

ple bioinformatics tools based on different principles identify regions prone to

forming structures (Deng et al., 2015). Another interesting source to distinguish

structured elements is sequence conservation analysis. In IDPs, motifs involved375

in protein-protein interactions present slower mutational rates when compared

to non-functional regions (Ota and Fukuchi, 2017). The tripeptide database can

also be used to identify structured regions. In several examples, such as ntailSV,

MKK7, and p15, the TRS sampling strategy pinpointed partially structured re-

gions and turns when yielding larger RDC values (either positive or negative)380
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than the rest of the chain. This observation is caused by the conformational

enrichment that these sequences present in the database, which biases the sam-

pling and narrows the RDC averaging. In this context, and in the absence

of experimental information, a simple TRS ensemble can provide insights into

structurally relevant motifs within IDPs.385

Partially structured motifs are not permanently folded in IDPs. They can

be seen as an equilibrium between conformations hosting distinct smaller struc-

tured elements that are in continuous exchange driven by their extension or

shortening. In other words, these sequences lack the internal coordination to

form permanent secondary structural motifs and, as a consequence, are suscepti-390

ble to partial unfolding events. Recognition processes exploit this structural het-

erogeneity to efficiently achieve the desired biological tasks. Binding affinities of

the co-existing conformers are modulated by the entropic penalty caused by the

folding of the recognition motif fragment that remains disordered in the unbound

state (Pancsa and Fuxreiter, 2012). Moreover, recognition kinetics studies have395

demonstrated the existence of transiently populated encounter complexes, and

different conformational states of the recognition element most probably present

distinct energy barriers to achieve the final bound form (Schneider et al., 2015;

Sugase et al., 2007; Delaforge et al., 2018). In the context of RDCs, the coex-

istence of multiple partially folded helical elements in the same region leads to400

the bell-shaped RDC profile and the saw-teeth, which report on the prevalence

of the different helical fragments. Importantly, this structural heterogeneity

is nicely captured by our hybrid sampling strategy, thereby highlighting the

correspondence between the information encoded in the database and the con-

formational sampling of IDPs in solution. This feature is exemplified by the405

helix N-capping properties that we observed in the ensembles of ntailMV and

ntailSV.

In summary, we have developed a method to build realistic conformational

ensembles of IDPs and IDRs that describes scarcely populated secondary struc-

tural elements embedded in otherwise fully disordered regions. Our strategy410

is based on an extensive database of tripeptide structures and on the sepa-
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ration between disordered and partially structured regions within the chain.

Conformationally-biased ensembles generated with our approach will be bet-

ter starting models for programs that integrate experimental data to derive

structural models of IDPs. This will be specially relevant for strategies such415

as those based on the maximum entropy principle, aiming at minimizing the

structural perturbation exerted to the initial ensemble to fit the experimental

data (Esteban-Martin et al., 2010; Rozycki et al., 2011). Moreover our approach

detects binding motifs involved in partner recognition that are, in most cases,

linked to biological tasks. Our approach has the potential to anticipate struc-420

tural effects caused by point mutations with an eventual role in disease, and

the insertion or deletion of disordered fragments originating from alternative

splicing processes. In this regard, we believe that our approach is the first step

towards extending structural bioinformatics and protein design to disordered

proteins.425
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STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be di-

rected to and will be fulfilled by the Lead Contact, Pau Bernadó (pau.bernado@cbs.cnrs.fr).

Method Details445

Experimental NMR and SAXS data

Details on the RDCs and SAXS data analyzed in this study can be found in

the original articles cited in Section 2.1.

Structural database

The tripeptide database was built from a curated database of high-resolution450

experimentally determined protein structures. We used the SCOPe (Fox et al.,

2014) 2.06 release, with entries having less than 95% sequence identity to each

other. A total of 8,907,065 of three-residue fragments were extracted from these

protein structures and classified on the basis of their sequence (8,000 tripeptide

classes).455

Conformations sampled by residues were assigned using the program DSSP

(Kabsch and Sander, 1983), which allowed us to filter out fragments correspond-

ing to α-helices and β-strands.

More precisely, we removed all tripeptides containing at least one residue

involved in these types of secondary structures (i.e. DSSP types H, G, I, E and460

B) from the database. This applied to approximately 60% of the total number

of tripeptides extracted from the SCOPe database. The remaining 40% of the

tripeptides (3,645,381), which contained residues in loop/coil regions (i.e. DSSP

types L, T, S), were included in the coil database.
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Sampling methods465

Conformations were built incrementally from N- to C-termini in a residue-

by-residue manner. When placing a new residue, its backbone angles {φ, ψ, ω}

were extracted from the coil database. An all-atom model was used for the

backbone, whereas a simplified model was used for the side-chains, considering

a pseudo-atom placed at the Cβ position for each residue, as previously proposed470

(Levitt, 1976; Bernadó et al., 2005; Ozenne et al., 2012a).

When placing a new residue, collisions with the previously built residues

were tested.

In case of collision, a new configuration of the residue was sampled and

tested. This was repeated until a valid configuration was found or a maximum475

number trials of 100 (ncolfail = 100) was reached. In these cases a backtracking

search process was applied, which consisted of removing the last three residues

and restarting sampling from this point. When the backtracking process resulted

unsuccessful, the chain construction was restarted from the beginning.

Single-residue-based sampling (SRS): This strategy is similar to the one used480

in Flexible-Meccano (Bernadó et al., 2005; Ozenne et al., 2012a). The backbone

angles of each residue are sampled disregarding the neighboring residues. In

this strategy, when the residue type is alanine, the angles are randomly selected

among all tripeptide conformations of type X-Ala-Z, X and Z being any of the

20 amino acid types (i.e. 400 tripeptide sequence types). The process is slightly485

different when the Z residue is a proline. In this case, the conformation is

selected from sequences X-Ala-Pro.

Three-residue-based sampling (TRS): This strategy takes into account the

sequence of the neighboring residues i − 1 and i + 1 when sampling the con-

formation of residue i. In other words, when the amino acid types of residues490

i− 1, i, i+ 1 are X, Y, Z, respectively, the conformation of residue i is sampled

from the corresponding class X-Y-Z in the tripeptide database. In addition, the

conformation of these two neighbors is considered in order to restrict sampling

to the most structurally probable regions. For this purpose, sampling of residue

i is constrained to a subset of conformations of the tripeptide class X-Y-Z, such495
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that the backbone angles of residue i−1 are within a given angular range (±20◦)

around its current conformation, which was built in the previous step. Since the

conformation of residue i+ 1 is not sampled in this building step, the structural

restriction requires a back-step test. Once the conformation of residue i has

been built, the conformation of the tripeptide formed by residues i − 2, i − 1,500

and i is checked to be present in the database of the corresponding sequence,

considering the aforementioned angular tolerance. As for collision tests, this

structural test can also fail. In this case, a backtracking process is also applied,

with nstrfail = 250.

Hybrid Sampling: The two sampling strategies SRS and TRS were combined505

in the hybrid strategy. Based on experimental RDCs and on additional infor-

mation from previous studies, TRS is applied to sample partially structured

regions while SRS is used for the disordered regions.

Computation of experimental properties from ensembles

Alignment properties and associated RDCs for each conformation were com-510

puted by exploiting the similarity between the radius of gyration and the align-

ment tensors as previously described (Almond and Axelsen, 2002; Bernadó et al.,

2005). Reported RDCs correspond to averages over 100,000 conformations of

each ensemble. Computational RDCs were homogeneously scaled to minimize

discrepancy with the experimental ones. The agreement of the resulting RDCs515

with the experimental ones was evaluated using the Q-factor (Cornilescu et al.,

1998): Q = rms(Dmeas − Dcalc)/rms(Dmeas), where Dmeas and Dcalc are the

experimental and computed RDCs, respectively.

Ensemble-averaged SAXS data were computed from 2,000 randomly se-

lected conformations from the ensembles generated with the three sampling520

strategies. Side-chains for each conformation were introduced with SCWRL4

(Krivov et al., 2009) before computation of its associated theoretical SAXS

profile with CRYSOL (Svergun et al., 1995) using default parameters. The

ensemble-averaged curve was compared with the experimental one by optimiz-

ing a scaling and a shift parameter, using χ2 as a figure of merit. Averaged525
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Cα, Cβ, CO and NH chemical shifts were computed from ensembles of 5,000

conformations with SPARTA+ (Shen and Bax, 2010). Side-chains for each con-

formation were introduced with SCWRL4 (Krivov et al., 2009) before the cal-

culation. Random coil chemical shifts were computed using POTENCI (Nielsen

and Mulder, 2018) and subtracted from the computed ones to facilitate the530

interpretation.

Declaration of Interests

The authors declare no conflict of interest.

24



References

Almond, A., Axelsen, J.B. (2002). Physical interpretation of residual dipolar535

couplings in neutral aligned media. J. Am. Chem. Soc. 124, 9986–9987.
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Figure 7: Experimental N-HN RDCs (black solid lines) for the nine proteins analyzed com-

pared with the theoretical RDCs computed using the SRS (blue solid line) and TRS (green

solid line) sampling strategies. To facilitate visual analysis, RDCs from the SRS method were

scaled considering only the regions defined as random coil in the hybrid approach.

Figure 8: Experimental N-HN RDCs (black solid lines) for the nine IDPs studied compared

with those computed using the hybrid SRS-TRS sampling strategy (red solid lines). Fragments

highlighted in orange correspond to regions considered partially structured, for which the TRS

was applied (see Table S2 for details).

Figure 9: Experimental (black) and hybrid building model (green) N-HN RDCs for two frag-

ments of (a top) ntailMV and (b top) p15. Fragments highlighted in orange were consid-

ered partially structured and built using the TRS strategy. In bottom panels, the per-

centage of enrichment of secondary structure classes present in the ensemble built with

the hybrid strategy compared with that built with the SRS strategy. Secondary struc-

ture classes were identified using definitions in related work (Ozenne et al., 2012b). Con-

cretely, [βS : −100 > φ;−120 > ψ > 50], [βP : 0 > φ > −100;−120 > ψ > 50],

[αR : 0 > φ; 50 > ψ > −120], [αL : φ > 0].

Figure 10: Conformational sampling for the four turns identified in eba181. Each column

displays the Ramachandran plots for the three first residues in turns 1 to 4 when using the

SRS (blue) or the hybrid (green) sampling approaches.

Figure 11: Structural analysis of the helical region in MKK7. (Top panels) Length and

encompassing residues of the α-helices found in ensembles computed using (a) the hybrid

sampling and two theoretical models imposing (b) 25% of enhanced helicity per residue, and

(c) 25% population of a canonical α-helix in the 28-residue long segment. Colors from white

to red indicate the population of helical segments found in the ensembles. (Bottom panels)

Theoretical RDCs calculated from the above described ensembles (red lines) compared with

the experimental ones (black lines).

775

34



Figure 12: SS-map analysis for the helical regions in ntailMV and ntailSV displaying the

length and the composing residues of the α-helices found in ensembles generated with the

hybrid sampling strategy for both proteins. Color from white to red indicates the population

of these helices. Vertical lines indicate aspartic acids and serines in the sequence that act as

helix N-capping residues. Concretely, D484, D487, S488, S491, and D493 are highlighted for

ntailMV, and D473, D475, S477, and D478 and highlighted for ntailSV.
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