
HAL Id: hal-01955200
https://laas.hal.science/hal-01955200

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining symbolic and geometric planning to
synthesize human-aware plans: toward more efficient

combined search.
Mamoun Gharbi, Raphaël Lallement, Rachid Alami

To cite this version:
Mamoun Gharbi, Raphaël Lallement, Rachid Alami. Combining symbolic and geometric planning to
synthesize human-aware plans: toward more efficient combined search.. 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep 2015, Hamburg, Germany. �hal-01955200�

https://laas.hal.science/hal-01955200
https://hal.archives-ouvertes.fr


Combining Symbolic and Geometric Planning to synthesize
human-aware plans: toward more efficient combined search.

Mamoun Gharbi1,2, Raphaël Lallement1,2 and Rachid Alami1,3

Abstract— We are combining symbolic and geometric plan-
ning to synthesize human-aware plans in order to deal with
the complex and highly intricate planning problems induced
by Human-Robot collaborative object manipulation.

In this paper, we summarize our previous contributions –
refining symbolic actions at geometric level, during the symbolic
planning, in order to assess their feasibility and computing the
geometric side effects–, then we present the current contribu-
tions meant to tighten the cooperation between the symbolic
planning and the geometric planning: the symbolic planner
helps the geometric one by providing it with constraints and
domain-expert knowledge making the geometric planner more
efficient, and the geometric planner helps the symbolic one to
find the best plan based on social costs computed at geometric
level.

We also propose different examples, highlighting the interest
of such cooperation between the planners in simulation and on
our PR2 robot.

I. INTRODUCTION

We are developing a symbolic-geometric planner in the
context of fetch & carry and collaborative human-robot
object manipulation [1]. Besides, we would like the planner
to be used in the context of situated dialogue [2], [3]. We
argue that such a context is very challenging and opens
interesting and “subtle” issues to the Combined Task and
Motion Planning problems.

In such a context and perhaps more than in standard
robotic manipulation problems (the block world problem
and its robotics variants, for instance), there is a need for
a more sophisticated reasoning since actions and motions
are far more intricate, and the contexts in which they are
performed, as well as how they have to be performed, can
induce complex and highly interdependent decisions.

The planner should be able to synthesize plans for every
agent, while taking into account the intricacy induced by
having them sharing the same space and task. One difficulty
comes from our intention to reason and consider affordances
and perspective taking from both human and robot sides and,
based on this, to produce collaborative actions where every
agent has to act.

Fig. 1 shows an example of such a problem, where a
robot needs to take decisions and computes plans in a
human populated space. The bottom part corresponds to a
plan automatically synthesised by our planner (containing

*This work was conducted within the EU SAPHARI project funded by
the E.C. division FP7-IST under contract ICT-287513.

1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
firstname.lastname at laas.fr

2Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
3Univ de Toulouse, LAAS, F-31400 Toulouse, France

Fig. 1. The robot needs to bring two processed objects to the green human.
A processed object O1 is available at A, and two unprocessed objects O2
and O3 are available at B and C (the blue human can process them). To
pick O2 the robot needs to move out the orange box, and to reach O3 the
robot needs to navigate behind the red human. Our planner is able to find
a solution to this problem while taking into account humans preferences,
affordances and comfort. The bottom figure shows the solution plan.

both the action sequence for every agent and the geometric
information needed, such as the trajectories, the grasps, and
the object placements). The plan takes also into account a
number of human-aware constraints such as minimising the
humans efforts or avoiding to disturb them.

In a multi-agent, human-aware context, the action effects
and their costs cannot be computed at symbolic level,
especially while taking into account the human comfort
and preferences [4]: the interleaving between symbolic and
geometric planning becomes mandatory.

This paper reports on the extensions of a planner we have
already presented in [5], [6]. We provide details on how
the ramification problem is tackled and present a number
of extensions specially dedicated to the improvement of the
plan search: (1) a set of high level geometric constraints,
(2) the ability to encode domain-expert knowledge at both
levels, (3) well-informed cost estimation of actions and
(4) the ability of the geometric planner to provide several
instantiations of the same action. This permits to address
more challenging problems and to integrate human-aware
planning considerations.

II. RELATED WORK

Merging symbolic and geometric planning is a growing
field that has been a focus to a number of researchers over
the few last years. Various approaches are pursued, some
are similar to our previous work, such as [7] where the



Fig. 2. A snapshot of the planner during the planning process. This plan is a “multi-stream” plan: human and robot actions. The robot has to place an
object so the human can paint it and then the robot will transfer it to another place. The plan is built incrementally: the symbolic plan is maintained by the
HTN planner while its geometric counterpart –the geometric plan–, the geometric refinement of some actions (the others are purely symbolic), is maintained
by the geometric planner. When an action preconditions are not respected (Paint here), the HTN planner backtracks to the previous backtracking point,
(the refinement of Place here) and tries alternatives to this action (the different refinements of Place in the geometric planner layer). The preconditions
can be purely symbolic or computed by the geometry (predicates such as is on, is Reachable by) which enable us to tackle the ramification problem. The
planner tries 3 different action instantiations (called alternatives) before finding the right object placement that will allow the human to paint it.

authors guide the search at geometric level with the symbolic
planning. Others focus on different aspects, such as [8],
where the authors construct a graph (the nodes are robots
positions linked to feasible actions at task level, and the
edges are collision free paths) and use a Satisfiability Modulo
Theories to find a path in it. Similarly, [9] also builds a graph
representing different configurations reachable by the robot
and the FastForward algorithm is used to find a solution.

In [10] and [11], the authors use semantic attachments,
which are external procedures called by the task planner to
assess the feasibility of an action at the geometric level (e.g.
if a collision free path exists between two positions). [12]
extends this approach by adding a geometric backtracking:
in order to assess an action feasibility, the geometric planner
can change the choices made for the previous actions without
acknowledging the symbolic planner.

In [13], the authors use a goal driven task planner that
enables calls to external procedures during the planning
phase. In case of failure, this procedure provides a reason to
the planner which enables it to find an alternative plan. Using
failure reasoning to guide task planning is also stressed out
in [14] where a causal reasoner is used to find a plan, then a
motion planner tries to solve the underlying motion problem,
and if the latter fails, a constraint is added to the symbolic
domain and the causal reasoner tries to find a new plan. [15]
uses off-the-shelf planners and formulates a representational
abstraction enabling to combine them: each action in the
symbolic plan can have multiple instantiations at geometric
level corresponding to the different geometrical choices.

The authors in [16] compute a task-plan, and use interval
bounds which are constraints on object/robot positions to
prune out geometric choices. Another approach, proposed in
[17], is to formalise the problem as geometric constraints be-
tween agents and objects, and to use a Constraint Satisfaction
Problem solver to find the solution.

III. SYMBOLIC-GEOMETRIC PLANNING
PROBLEM

We define a problem combining the symbolic and geomet-
ric planning as the 6-tuple 〈Ds, Dg, Ss0, Sg0, g, E〉 where Ds

stands for the symbolic domain, containing all the symbolic

tasks, while Dg is the geometric domain that contains all the
geometric actions. Ss0 and Sg0 are respectively the symbolic
and the geometric initial states (they represent the SAME
world state). g refers to the goal to achieve and E represents
all the elements of the environment: the agents, the pieces of
furniture, the objects and so on; they are called entities. The
agents are treated as first-order entities since they correspond
to robots and humans for which it will be necessary to
compute motions. Entities are referred to, on both systems,
with the same name to keep the correspondence. Their
representation changes depending on the planner: at the
symbolic level, attributes are associated to an entity in the
form of predicates, whereas at the geometric level the same
entity is described by its shape and its configuration space.

The geometric reasoning system is able to compute spatial
relations between entities, such as between objects (in, on-
top-of, ...) or between agents and objects (visibility, reacha-
bility, ...) [18]. This can be related to well known need to deal
with the anchoring problem in order to fill the gap between
the levels [19]. Those relations are named “Shared Literals”
(as in [6]) since they are generated by the geometric level
and exploited by the symbolic planner.

The solution to this kind of problem is a set of feasi-
ble actions, where an action is defined by the agents and
their motions. The different actions are sequenced thanks to
causal links –computed at the symbolic level from the HTN
hierarchy– forming the plan.

IV. ALGORITHMS AND EXTENSIONS

A. Previous algorithms

We have proposed various contributions to the problem
of combining symbolic and geometric reasoning in order to
produce pertinent and feasible robot plans.

In Asymov [20], [21] we essentially proposed a principled
way to link the two planners thanks to a geometric level able
to tackle the so-called “manipulation planning problem” [22]
and that allows to explicitly take into account the topological
changes occurring in the configuration space, when a robot
grabs or releases an object. Asymov provided a well founded
translation of pick and place actions (and similar actions)



into ’transit’ and ’transfer’ motion planning requests even in
multi-object and multi-robot contexts.

More recently we focused on a complementary approach
[5], [6]: exploiting the capacity of the Hierarchical Task
Network (HTN) [23] techniques to encode domain knowl-
edge and developing a geometric planner capable of planning
actions with several levels of abstractions, opening to more
elaborate action instantiations. Such a combination provides
several key features: a clean interface which corresponds to
the anchoring problem and allows to better exhibit and mas-
ter the links between the incremental processes of producing
the symbolic plan and its geometric counterpart.

In [5] we presented a geometric backtracking algorithm
which allows to reconsider the previous geometric choices by
trying various alternatives to the previously computed actions
and tests the validity of these alternatives by computing their
geometric effects. In [6], the approach is different since the
symbolic planner creates multiple instances for the same
action (if a geometric refinement is needed) and backtracks
on this instances, which are in fact, different geometric
alternatives for the same symbolic action. If an actions is
successfully refined, geometric effects, the shared literals,
are computed.

The algorithm we use in this paper is presented in details
in [5] and illustrated in fig. 2. The implementation is dif-
ferent: previously the link between the symbolic planner and
the geometric planner was encoded directly into the symbolic
domain, now a complementary module handles this link.
At the geometric level, the implementation is more generic,
and is able to tackle more complex problems linked to the
symbolic-geometric planning problem.

B. Algorithm extension

The ramification problem occurs when all the effects
of an action cannot be determined beforehand. When a
motion is involved in an action, the symbolic planner cannot
compute all the effects: a too-complex world model would
be required. Furthermore, computing the human affordances
(objects reachability, visibility and so on) makes it even more
complex. Fig. 3 shows an example of this problem: the robot
needs to place three objects on the table in front of it in order
for the human to be able to reach the three of them at the
same time. In the figure 3-C the robot places the third object,
but this makes the first one no longer reachable.

In order to (partially) tackle this problem, we use the
shared literals: after a geometric action is planned, we
compute those literals for the new end state and send them to
the symbolic layer. If some of the literals prevent a further
action preconditions to apply, a backtrack is triggered and
another geometric solution is requested. This process goes
on until a valid plan is found, a given maximum number of
geometric solutions (given by the domain expert) are tested,
or no other geometric solution is available.

The problem is only partially tackled due to the discrete set
of shared literals the system is able to compute: if a shared
literals does not exist, the problem will not be tackled.

Fig. 3. The robot can reach the three objects (the red cube, the grey
book and the orange box) and needs to place them on the table, such as
the three of them are reachable by the human at the same time. A is an
initial geometric situation, B is a step of the planning process where the
robot has already placed the red cube and the grey book reachable to the
human. In C, the robot places the orange box reachable to the human,
and by doing so, obstructs the human reachability to the red cube (this
is computed by the geometric reasoner). Finally D shows the result of a
plan found after backtracking on a number of actions. This illustrates the
ramification problem.

The symbolic layer exploits the shared literals when
checking the preconditions, such as most other planners of
the literature. In addition to the precondition checks, we
added a “goal” for the abstract tasks (methods) under the
form of literals. This goal is specified in the domain and used
to check if the method decomposition has effectively reached
the target goal. If the goal is achieved, the resolution contin-
ues, otherwise a backtrack is triggered. This mechanism is
especially useful when, during a method decomposition, one
or multiple actions can break previously achieved sub-goals
in this same decomposition.

The shared literals are also used as constraints set by the
symbolic layer when refining an action in the geometry. Then
the constraints serve as supplementary goals to the action and
drive the geometric search since they forbid some solutions.
A constraint is a literal that must be true in the action
geometric end state, for instance Object.ReachableBy ==
Human.

To better understand how constraints might be efficient
in our context, a little reminder of the algorithm to find
an action solution is needed: first it finds a position for
the object, then, it finds a configuration for the agent,
using inverse kinematic, and finally, it looks for a trajectory
between the agent current state and this configuration.

For the constraints to be useful, they are tested as soon
as possible: if it is constraints over the object position, they
are tested before calling the inverse kinematic, if it is about
the agent configuration, they are tested before the motion
planning. Using the constraints enables to save computation
time as they are tested before the computation is finished.

This constraints, when added to the symbolic domain,
consist on a domain knowledge able to drive the geometric
search. Another useful domain knowledge is the virtual



TABLE I
RESULTS FOR THE PICK & PLACE EXAMPLE.

30 runs(time in s) Place PlaceR PlaceRGoal PlaceRC
Mean time(stdev) 44.3(6.1) 27(3.6) 23(2.7) 16.2(1.8)
Nb tasks tried 67.5 11.6 9.7 8.6
Nb alternatives 59.6 3.8 2.5 1.6

actions. Virtual actions are simple, fast computing actions,
used to test if a future action might be possible. Those actions
do not ensure the infeasibility of the future actions, but, if
they succeed, ensure their feasibility.

The example presented later in this paper (subsection V-B)
concerns a virtualPlace1. This action places a virtual object2

on a support to test if it fits. In this case, any items this virtual
object may contain will fit on the support.

The last contribution of this paper, is the cost usage:
the symbolic planner uses cost-driven search [24], moreover
each action has a cost function given by the domain expert.
However, the geometric planner as it computes the actual
trajectory, has a better cost estimation and can provide the
symbolic planner with precise costs representing different
parameters such as the energy needed, the time to execute
or social rules (e.g. avoiding navigation behind humans [25]).

V. EXAMPLES & RESULTS

In this section, we present different examples involving at
least a human and a robot (the PR2), where a standard two-
layer planning architecture would not be able to solve the
problem or would not find the best solution. The experiments
were run on a quad-core Intel Core i7 processor and 8GB of
RAM, running Ubuntu 14.04.

A. Exploiting reachability computation to enrich reasoning
about pick & place

This example shows the interest of having a backtracking
algorithm, different levels of abstraction in the geometric
planner, constraints, symbolic goals and how our system
handles the ramification problem.

Fig. 3-A shows a geometric initial situation Sg0. The robot
needs to place the three objects (the red cube, the grey book
and the orange box) on the table in front of it, reachable by
the human (at the same time, in the end of the task).

The shared literals used in this example are ReachableBy
(which objects are reachable to each agent) and IsOn (which
object is on which one). The available geometric actions
in Dg are pick, place, placeR and placeRC. placeR is
an action where the robot places an object ReachableBy
the target agent (the human here). placeRC is similar to it
but adds constraints to the action: the constraints are for the
objects already placed on the table to still be ReachableBy
the same target agent once the action is performed.

The highest-level task in the symbolic domain Ds is
PlaceObjects and is composed of the succession of three

1italic is used for the symbolic layer, bold is used for the geometric layer.
2an object that can contain other objects, and that can be ignored by the

collision checking when needed. The virtual objects are given to the system,
each virtual object correspond to a set of objects it can contain.

Fig. 4. The same experiment as in fig. 3 described in section V-A was
held on the PR2 robot (the robot needs to place the three objects accessible
to the human). The environment was set, then a plan (both at symbolic and
geometric level) was computed by our algorithm and finally executed (the
execution part is not a contribution of this paper).

Transport tasks followed by a Validate action. The Transport
method contains a Pick action, then a Place and finally a
CheckReachable. The goal of the latter is to check if the
object involved in Transport is reachable by the human. The
Validate action is similar but does the reachability test for
all the objects the robot should place and is used as a goal
test. The objects placement order is given to the planner.

There are four variants of PlaceObjects: the first is pre-
sented above, the second, PlaceObjectsR, where PlaceR is
called instead of Place, the third, PlaceObjectsRC, uses
PlaceRC instead of Place. The set of objects to specify in
this function is the list of the previously placed objects,
which prevent this action from breaking the predicates
Object.ReachableBy == targetAgent tested in Check-
Reachable and Validate. Finally the fourth, PlaceObjectsR-
Goal, which is similar to PlaceObjectsR (the second variant)
but where the goal of each method is specified such that it
must keep the previously-placed objects reachable in addition
to make the newly-placed object reachable.

Table I shows a clear difference between the domains
using Place, PlaceR, PlaceRGoal and PlaceRC. In the first
case, the action CheckReachable preconditions are rarely
met, resulting in a high number of alternatives computed and
a long computation time (∼15min). When PlaceR is used,
the number of alternatives computed decreases significantly:
the geometric planner directly places the objects reachable by
the human. Placing a new object may change the reachability
of the previously placed objects, –the ramification problem
depicted in fig. 3–, the constraints enforcement in PlaceRC
prevents this behaviour, greatly reducing the number of
alternatives needed and the computation time. PlaceRGoal
gives better results than PlaceR, the ramification problem
is detected sooner enabling a faster recovery: for instance
when the second object (the grey book) is placed, if it
breaks the reachability of the first one (red cube) the PlaceR
variant will only detect it at the final Validate while the goal
enforcement ensures an earlier detection. However PlaceRC
gives better results as it prevents the ramification problem
from occurring.

This example is based on backtracking, shared literals
and abstract actions. [20] and [12] can reproduce the first
results (placeR and placeRC) while [16] and [9], due to their
constraint based approaches, can reproduce the latest ones
(under the condition of adding the human-aware predicates).

This experiment (with slightly different items, but with the
same problems) was held on the actual robot (PR2) as well,



A B

Fig. 5. The robot has to place the three books on the table in front of it.
This table is cluttered by other objects, making it impossible to place more
than one or two books. Case A shows an initial situation while B shows
the VirtualPlace test made on the table to assess if there is enough space
for placing all the books on the table.

fig. 4 shows key pictures of the execution and the attached
video shows the whole plan execution.

B. Using domain-expert knowledge to drive the search

This example shows how it is possible using the combi-
nation of a symbolic and a geometric planner to implement
a common-sense heuristic. When one tries to place several
objects close one to the others, it tries to find a surface or
to free a surface (if needed) where it is possible to put an
“imaginary” (we call it virtual), big object that represents the
volume to be occupied by the full set of objects.

Fig. 5-A shows an initial geometric states Sg0. The robot
needs to place the three books in front of the human, but the
table is cluttered with other objects. The available geometric
actions in Dg are pick and place.

In this scenario the top-level task, GiveCollection, has two
decompositions and, to decide which one to use, it tries a
virtualPlace with a virtual object. If the virtual object can be
placed, it means that there should be enough room to directly
call the task PutObjects. This task is recursive and is called
once for all objects in order to Transport them. (Transport
is defined as the sequence of a Pick and a Place actions.) In
the case where the virtual object can not be placed, the task
CleanTable is called before using the PutObjects. CleanTable
is also recursive and iterates through all objects on the goal
table and stops when either the virtualPlace succeeds or all
objects are removed. If the robot can not carry out this task
(no space to place or no grasp for the objects) the human
will help out.

In order to have a reference value, we have created a
version of this domain where the virtualPlace is not used
to choose whether to CleanTable or not, neither to stop the
recursive call to CleanTable (which then stops only when all
objects are moved away). Table II shows the two domains
(with and without the virtual test). When virtualPlace is
used, the planner tries to place a virtual object corresponding
to the set of books, on the table (fig. 5-B) and if no space
is found, calls CleanTable before PutObjects, otherwise it
directly calls PutObjects. In the other case, the planner will
try to place the books on the table, and will probably succeed
to place one or two, but the space is limited, and the third
book will not have enough space. Hence, the planner will
backtrack several times over the Transport task before finally
trying another decomposition (CleanTable), this implies to
try several decompositions, refine and compute a lot of

TABLE II
RESULTS FOR THE FUNCTION VIRTUALPLACE

30 runs (time in s) without VirtualPlace with VirtualPlace
Mean time (stdev) 191.2 (8.6) 21.7 (1.45)
Nb tasks 162.6 25
Nb alternatives 62.9 0.3

alternatives before finding the first valid plan. The significant
time spent on useless backtracks can be seen in table II. On
the other hand, with the virtualPlace, a first valid plan is
found sooner since it realises that it is necessary to free
the table before putting the objects, yet it may use few
alternatives to correctly refine CleanTable or PutObjects.

In this example, the aim was to remove objects in the
target area only when necessary, this has been of interest in
[11], [13], [17].

C. Reconsidering the object choices based on the plan cost

This example shows how the geometry can guide and/or
help the symbolic planner to find the best plan based on
its quality. Number of research focuses on qualifying a
geometric action, especially in a human-aware context. We
use [25] in order to compute a cost for the robot navigation
action, integrating the path length, the distance between the
path and the humans and the length of the path passing
closely behind the humans.

Fig. 6 shows two initial situations Sg0 and their solutions
(the blue lines). The difficulty consist on choosing the right
object (between the two similar and available ones) to bring
to the human. This choice should take into account the
comfort of every human in the environment.

The available geometric actions in Dg are pick, place and
goto, which is a navigation action where the search space is
the set of positions within range of the target object.

The domain starts with the task GiveObject that randomly
chooses an object: this is a backtracking point and since
all the plans are computed in order to find the best, all
objects are tested. It decomposes into Take and MakeReach-
able methods. The first method has two decompositions
depending on whether the robot can Pick or has to first
GotoObject before being able to Pick. The choice is based
on a reachability test. The MakeReachable task again takes
in account the reachability of the table to place the object
on: it relies on Place but also has a second decomposition
where it first uses GotoTable before the Place.

This example can be solved using a symbolic planner
only, but our approach enables the planner to choose the
best solution among all the possible plans while taking into
account the geometric world and some specific social rules.

[15] describes an example close to this one, where the
robot needs to choose between multiple symbolic plans and
the best one based on a geometric computation of the cost.

Fig. 1 shows a variation of this example (The attached
video shows a symbolic-geometric search in this domain,
and the plan found for it), where there are more actions and
interactions. The green human is waiting for two processed
objects to be delivered, and there are two unprocessed objects



A B

Fig. 6. The green human asks the robot to bring him an object. Two similar
objects are available in the environment, and the robot needs to choose the
one to bring to the human, depending on the environment (here the presence
or not of the blue human). When the blue human is absent, the shortest path
is chosen. When he is near the table, choosing this path makes the robot
navigate behind him, thus the robot chooses the other object which is farther
but, by doing this, it respects the human comfort.

and a processed one in the environment. The blue human is
able to process the objects. The difficulties in this example
are the followings: (1) to reach the unprocessed object at
B, the robot needs to move the orange box, (2) to navigate
to the unprocessed object at C, the robot goes behind the
red human, (3) the planner needs to choose between the two
unprocessed object based on cost evaluation, (4) the choice
between the processed and unprocessed object can be done
only by the symbolic planner.

The planner chooses for the robot to first bring the
processed object to the green human (smaller number of
actions), then, goes and get the unprocessed object at B after
moving the orange box (as it is less disturbing for the red
human) and brings it to the green human after the blue human
has processed it.

VI. CONCLUSION

We have presented in this paper different improvements
to a previously published algorithm, concerning the combi-
nation of symbolic and geometric planning in the context
of human robot collaboration. We have provided details on
how we handle the ramification problem by computing the
actions side-effects and using the shared literals. We have
also presented these improvements: (1) using shared literals
as constraints to guide the geometric planner, (2) Adding
requests to the geometric planner to asses the feasibility
of future actions, (3) estimating accurately the action cost
based on social rules and (4) using different alternatives of
a geometric action for the same symbolic task.

In order to support these improvements, we implemented
them on pick & place examples, however they can be used in
other domains. In order to achieve this, new domain specific
knowledge should be added, such as new shared literals, new
cost computations and/or new virtual actions, but their usage
would be similar.

We believe that this framework will provide latitude for
even more improvements and for devising more elaborate
techniques to reduce computation time and focus on the
more promising alternatives. For instance, a way to extend
our work would be to choose a backtracking point using
information from both the geometric and symbolic contexts.
As of now, the maximum allowed number of alternatives is
fixed by the domain expert, while it could be computed or
learned from the geometric and symbolic contexts.

REFERENCES

[1] R. Alami, “On human models for collaborative robots,” in CTS Int.
Conf. on Collaboration Technologies and Systems, 2013, pp. 191–194.

[2] M. Warnier, J. Guitton, S. Lemaignan, and R. Alami, “When the
robot puts itself in your shoes. managing and exploiting human and
robot beliefs,” in IEEE Int. Symp. on Robot and Human Interactive
Communication, 2012, pp. 948–954.

[3] S. Lemaignan, R. Ros, E. A. Sisbot, R. Alami, and M. Beetz,
“Grounding the interaction: Anchoring situated discourse in everyday
human-robot interaction,” Int. Journal of Social Robotics, 2011.

[4] E. A. Sisbot and R. Alami, “A human-aware manipulation planner,”
IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1045–1057, 2012.

[5] L. de Silva, A. K. Pandey, M. Gharbi, and R. Alami, “Towards
combining HTN planning and geometric task planning,” CoRR, vol.
abs/1307.1482, 2013.

[6] L. De Silva, M. Gharbi, A. K. Pandey, and R. Alami, “A new
approach to combined symbolic-geometric backtracking in the context
of human–robot interaction,” in IEEE int. conf. on robotics and
automation, 2014.

[7] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic
action planning with geometric and differential constraints,” in IEEE
int. conf. on robotics and automation, 2010, pp. 5002–5008.

[8] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki,
“Smt-based synthesis of integrated task and motion plans from plan
outlines,” in IEEE int. conf. on robotics and automation, 2014.

[9] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in Int. Workshop
on the Algorithmic Foundations of Robotics, 2014.

[10] C. Dornhege, A. Hertle, and B. Nebel, “Lazy evaluation and subsump-
tion caching for search-based integrated task and motion planning,” in
IROS workshop on AI-based robotics, 2013.

[11] C. Dornhege, P. Eyerich, T. Keller, M. Brenner, and B. Nebel,
“Integrating task and motion planning using semantic attachments.”
in Bridging the Gap Between Task and Motion Planning, 2010.

[12] L. Karlsson, J. Bidot, F. Lagriffoul, A. Saffiotti, U. Hillenbrand, and
F. Schmidt, “Combining task and path planning for a humanoid two-
arm robotic system,” in ICAPS workshop, Combining Task and Motion
Planning for Real-World Applications. Citeseer, 2012, pp. 13–20.

[13] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in IEEE int. conf. on robotics and automation,
2011, pp. 1470–1477.

[14] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in IEEE
int. conf. on robotics and automation, 2011.

[15] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” IEEE int. conf. on robotics and automa-
tion, 2014.

[16] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint
propagation on interval bounds for dealing with geometric backtrack-
ing,” in IEEE/RSJ int. conf. on Robots and Systems, 2012, pp. 957–964.

[17] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for
solving sequential manipulation planning problems,” IEEE/RSJ int.
conf. on Robots and Systems, 2014.

[18] E. A. Sisbot, R. Ros, and R. Alami, “Situation assessment for human-
robot interactive object manipulation,” in IEEE Int. Symp. on Robot
and Human Interactive Communication, 2011, pp. 15–20.

[19] M. Daoutis, S. Coradeschi, and A. Loutfi, “Cooperative knowledge
based perceptual anchoring,” Int. Journal on AI Tools, vol. 21, 2012.

[20] S. Cambon, F. Gravot, and R. Alami, “A robot task planner that merges
symbolic and geometric reasoning,” in ECAI, vol. 16, 2004, p. 895.

[21] F. Gravot, S. Cambon, and R. Alami, “asymov: a planner that
deals with intricate symbolic and geometric problems,” in Robotics
Research. Springer, 2005, pp. 100–110.

[22] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer
Academic Publishers, 1991.

[23] D. Nau, M. Ghallab, and P. Traverso, Automated Planning: Theory &
Practice. San Francisco, CA, USA: Morgan Kaufmann, 2004.

[24] R. Lallement, L. de Silva, and R. Alami, “Hatp: An htn planner for
robotics,” in ICAPS Workshop on Planning and Robotics, 2014.

[25] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, “A human
aware mobile robot motion planner,” Robotics, IEEE Transactions on,
vol. 23, no. 5, pp. 874–883, 2007.


