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Users’ Belief Awareness in Reinforcement
Learning-based Situated Human-Robot
Dialogue Management

Emmanuel Ferreira, Grégoire Milliez, Fabrice Lefèvre and Rachid Alami

Abstract Others can have a different perception of the world than ours. Under-
standing this divergence is an ability, known as perspective taking in developmen-
tal psychology, that humans exploit in daily social interactions. A recent trend in
robotics aims at endowing robots with similar mental mechanisms. The goal then is
to enable them to naturally and efficiently plan tasks and communicate about them.
In this paper we address this challenge extending a state-of-the-art goal-oriented
dialogue management framework, the Hidden Information State (HIS). The new
version makes use of the robot’s awareness of the users’ belief in a reinforcement
learning-based situated dialogue management optimisation procedure. Thus the pro-
posed solution enables the system to cope with the communication ambiguities due
to noisy channel but also with the possible misunderstandings due to some diver-
gence among the beliefs of the robot and its interlocutor in a Human-Robot Interac-
tion (HRI) context. We show the relevance of the approach by comparing different
handcrafted and learnt dialogue policies with and without divergent belief reasoning
in an in-house Pick-Place-Carry scenario by mean of user trials in a simulated 3D
environment.

1 Introduction

When robots and humans share a common environment, previous works have shown
how much enhancing the robot’s perspective taking and intention detection abili-
ties improves its understanding of the situation, and leads to more appropriate and
efficient task planning and interaction strategies [2, 3, 13]. As part of the theory
of mind, perspective taking is a widely studied ability in developmental literature.
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This broad term encompasses 1) perceptual perspective taking, whereby human can
understand that other people see the world differently, and 2) conceptual perspec-
tive taking, whereby humans can go further and attribute thoughts and feelings to
other people [1]. Tversky and al. [19] explain to what extent switching between
perspectives rather than staying in an egocentric position can improve the overall
dialogue efficiency in a situated context. Therefore, to make robots more socially
competent, some research aims to endow robots with this ability. Among others,
Breazeal et al. [2] present a learning algorithm that takes into account information
about a teacher’s visual perspective in order to learn specific coloured buttons activa-
tion/deactivation patterns, and Trafton et al. [18] use both visual and spatial perspec-
tive taking to find out the referent indicated by a human partner. In the present study,
we specifically focus on a false belief task as part of the conceptual perspective tak-
ing. Formulated in [20], this kind of task requires the ability to recognize that others
can have beliefs about the world that differ from the observable reality. Breazal et
al. [3] proposed one of the first human-robot implementation and proposed some
more advanced goal recognition skills relying on this false belief detection. In [13],
a Spatial Reasoning and Knowledge component (SPARK) is presented to manage
separate models for agent belief state and used to pass the Sally and Anne test [1]
on a robotic platform. This test is a standard instance of false belief task where an
agent has to guess the belief state of an other agent with a divergent belief mind state.
The divergence in this case arises from modifications of the environment which one
agent is unaware of and which are not directly observable, for instance displacement
of objects hidden to this agent (behind another object for instance).

Considering this, to favour the human intention understanding and improve the
overall dialogue strategy, we take benefit of the divergent belief management into
the multimodal situated dialogue management problem. To do so, we rely on the
Partially Observable Markov Decision Process (POMDP) framework. This latter is
becoming a reference in the Spoken Dialogue System (SDS) field [21, 17, 14] as
well as in HRI context [15, 11, 12], due to its capacity to explicitly handle parts of
the inherent uncertainty of the information which the system (the robot) has to deal
with (erroneous speech recognizer, falsely recognised gestures, etc.). In the POMDP
setup, the agent maintains a distribution over possible dialogue states, the belief
state, all along the dialogue course and interacts with its perceived environment
using a Reinforcement Learning (RL) algorithm so as to maximise some expected
cumulative discounted reward [16]. So our goal here is to introduce the divergence
notion into the belief state tracking and add some means to deal with it in the control
part.

The remainder of the paper is organised as follows. Section 2 gives some details
about how an agent knowledge model can be maintained in a robotic system; in Sec-
tion 3 our extension of a state-of-art goal-oriented POMDP dialogue management
framework, the Hidden Information State (HIS), is presented to take into account
users’ beliefs state; in Section 4 the proposed Pick-Place-Carry false belief scenario
used to exemplify the benefit of both taking account of the perspective taking ability
and its integration in a machine learning scheme is introduced. In the same section,
the current system architecture and the experimental setup employed are given. The
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(a) (b)

Fig. 1: (a) Real users in front of the robot (right) and the virtual representation built
by the system (left). (b) Divergent belief example with belief state.

user trial results obtained with a learnt and an handcrafted belief-aware system are
compared in Section 5 with systems lacking perspective taking ability. Finally, in
Section 6 we discuss some conclusions and give some perspectives.

2 Agent knowledge management

As mentioned in the introduction, the spatial reasoning framework SPARK is used
for situation assessment and spatial reasoning. We will briefly recap here how it
works, for further details please refer to [13]. In our system, the robot collects data
about three different entities to virtually model its environment: objects, humans
and proprioceptions (its own position, posture, etc.). Concerning objects, a model
of the environment is loaded at startup to obtain the positions of static objects (e.g.
walls, furnitures, etc.). Other objects (e.g. mug, tape, etc.) are considered as mov-
able. Their positions are gathered using the robot’s stereo vision. Posture sensors,
such as Kinect, are used to obtain the position of humans. These perception data
allow the system to use the generated virtual model for further spatial-temporal rea-
soning. As an example, the system can reason on why an object is not perceived any
more by a participant and decide to keep its last known position if it recognizes a
situation of occlusion, or remove the object from its model if there is none.

Figure 1 (a) shows a field experiment with the virtual environment built by the
system from the perception data collected and enriched by the spatial reasoner. The
latter component is also used to generate facts about the objects relative position
and agents’ affordances. The relative position such as isIn, isNextTo, isOn are used
for multimodal dialogue management as a way to solve referents in users’ utter-
ances, but also for a more natural dialogue description of the objects position in
the robot’s responses. Agents’ affordances come from their ability to perceive and
reach objects. The robot is calculating its own capability of perception according to
the actual data it gets from the object position and recognition modules. For reach-
ability, the robot computes if it is able to reach the object with its grasping joints.
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To compute the human’s affordances the robot applies its perspective taking abil-
ity. In other words, the robot has to estimate what is visible and reachable for the
human according to her current position. For visibility, it computes which objects
are present in a cone, emerging from human’s head. If the object can be directly
linked to the human’s head with no obstacle and if it is in the field of the view cone,
then it is assumed that the human sees the object and hence has knowledge of its
true position. If an obstacle is occluding the object, then it won’t be visible for the
human. Concerning the reachability, a threshold of one meter is used to determine
if the human can reach an object or not.

The facts generation feature allows the robot to get the information about the en-
vironment, its own affordances, and the human’s affordances. In daily life, humans
get the information about the environment through perception and dialogue. Using
the perspective taking abilities of our robot, we can compute a model of each hu-
man’s belief state according to what she perceived or what the robot has told her
about the environment. Then two different models of the world are considered: one
for the world state from the robot perception and reasoning and one for each hu-
man’s belief state (computed by the robot according to what the human perceived).
Each of these models is independent and logically consistent. In some cases, the
robot and the human models of the environment can diverge. As an example, if an
object O has a property P with a value A, if P’s value changed to B and the human
had no way to perceive it when it occurred, the robot will have the value B in its
model (P(O) = B) while the human will still have the value A for the property P
(P(O) = A). This value shouldn’t be updated in the human model until the human is
actually able to perceive this change or until the robot informs him. In our scenario,
this reasoning is applied to the position property.

We introduce here an example of false belief situation (fig. 1 (b)). A human sees
a red book (RED BOOK) on the bedside table BT . She will then have this property
in his belief state: P(RED BOOK) = BT . Now, while this human is away (has no
perception of BT ), the book is swapped with an other brown one (BROWN BOOK)
from the kitchen table KT . In this example, the robot explores the environment
and is aware of the new position values. The human will keep this belief until she
gets a new information on the current position of RED BOOK. This could come
from actually seeing RED BOOK on the position KT or seeing that RED BOOK
is not any more in BT (in which case the position property value will be updated to
an unknown value). Another way to update this value is for the robot to explicitly
inform the user of the new position.

In our system we mainly focused on position properties but this reasoning could
be straightforwardly extended to other properties such as who manipulated an ob-
ject, its content, temperature, etc. Obviously if this setup generalises quite easily
to false beliefs about individual properties of elements of the world, more complex
divergence configurations that might arise in daily interactions, for instance due to
prior individual knowledge, still remain out of range and should be addressed by
future complementary works.
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3 Belief Aware Multimodal Dialogue Management

As mentioned earlier, an important aspect of the approach is to base our user be-
lief state management on the POMDP framework [9]. It is a generalisation of the
fully-observable Markov Decision Process (MDP), that was first employed to deter-
mine an optimal mapping between situations (dialogue states) and actions for the
dialogue management problem in [10]. We try hereafter to recall some of the prin-
ciples of this approach pertaining to the modifications that will be introduced. More
comprehensive descriptions should be sought in the cited papers. This framework
maintains a probability distribution over dialogue states, called belief states, assum-
ing the true one is unobservable. By doing so, it explicitly handles parts of the in-
herent uncertainty on the information conveyed inside the Dialogue Manager (DM)
(e.g. error prone speech recognition and understanding processes). Thus, POMDP
can be cast as a continuous space MDP. The latter is a tuple < B,A,T,R,γ > ,
where B is the belief state space (continuous), A is the discrete action space, T
is a set of Markovian transition probabilities, R is the immediate reward function,
R : B× A× B→ ℜ and γ ∈ [0,1] the discount factor (discounting long term re-
wards). The environment evolves at each time step t to a belief state bt and the
agent picks an action at according to a policy mapping belief states to actions,
π : B→ A. Then the belief state changes to bt+1 according to the Markovian tran-
sition probability bt+1 ∼ T (.|bt ,at) and, following this, the agent received a re-
ward rt = R(bt ,at ,bt+1) from the environment. The overall problem of this con-
tinuous MDP is to derive an optimal policy maximising the reward expectation.
Typically the averaged discounted sum over a potentially infinite horizon is used,
∑

∞
t=0 γ trt . Thus, for a given policy and start belief state b, this quantity is called

the value function: V π(b) = E[∑t≥0 γ trt |b0 = b,π] ∈ ℜB. V ∗ corresponds to the
value function of any optimal policy π∗. The Q-function may be defined as an al-
ternative to the value function. It adds a degree of freedom on the first selected
action, Qπ(b,a) = E[∑t≥0 γ trt |b0 = b,a0 = a,π] ∈ ℜB×A. As well as V ∗, Q∗ cor-
responds to the action-value function of any optimal policy π∗. If it is known,
an optimal policy can be directly computed by being greedy according to Q∗ ,
π∗(b) = argmaxa Q∗(b,a)∀b ∈ B.

However, real-world POMDP problems are often intractable due to their dimen-
sionality (large belief state and action spaces). Among other techniques, the HIS
model [21] circumvents this scaling problem for dialogue management by the use
of two main principles. First, it factors the dialogue state into three components:
the user goal, the dialogue history and the last user act (see Figure 2). The pos-
sible user goals are then grouped together into partitions on the assumption that
all goals from the same partition are equally probable. These partitions are built
using the dependencies defined in a domain-specific ontology and the information
extracted all along the dialogue from both the user and the system communicative
acts. In the standard HIS model, each partition is linked to matching database enti-
ties based on its static and dynamic properties that corresponds to the current state of
the world (e.g. colour of an object vs spatial relations like isOn). The combination of
a partition, the associated dialogue history, which corresponds here to a finite state
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Fig. 2: Overview of the HIS extension to take into account divergent belief.

machine that keeps track of the grounding status for each convoyed piece of infor-
mation (e.g. informed or grounded by the user), and a possible last user action forms
a dialogue state hypothesis. A probability distribution b(hyp) over the most likely
hypotheses is maintained during the dialogue and this distribution constitutes the
POMDP’s belief state. Second, HIS maps both the belief space (hypotheses) and the
action space into a much reduced summary space where RL algorithms are tractable.
The summary state space is the compound of two continuous and three discrete val-
ues. Continuous values are the probabilities of the two-first hypotheses b(hyp1) and
b(hyp2) while the discrete ones, extracted from the top hypothesis, are the type of
the last user act (noted last uact), a partition status (noted p-status) database match-
ing status related to the corresponding goal and a history status (noted h-status).
Likewise system dialogue acts are simplified in a dozen of summary actions like of-
fer, execute, explicit-confirm and request. Once the summary actions are ordered by
their Q(b,a) scores in descending order by the policy, an handcrafted process checks
if the best scored action is compatible with the current set of hypotheses (e.g. for the
confirm summary act this compatibility test consists in checking if there is some-
thing to confirm in the top hypothesis). If they are compatible, an heuristic-based
method maps this action back to the master space as the next system response. If
not, the process is pursued using the next best scored summary action until a possi-
ble action is found.

The standard HIS framework can properly handle misunderstandings due to noise
in the communicative channel. However, misunderstandings can also be introduced
in cases where the user has false beliefs, impacting negatively her communicative
acts. HIS has no dedicated mechanism to deal with such a situation and so it should
react as in front of a classical uncertainty by asking the user to confirm hypotheses
until the request can match the reality, although it could have be resolved since the
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first turn. Therefore having an appropriate mechanism should improve the quality
and efficiency of the dialogue, preventing user to pursue her goal with an erroneous
statement.

So, as illustrated in Figure 2 and highlighted with the orange items, we propose
to extend the summary belief state with an additional status, the divergent belief
status (noted d-status), and an additional summary action, inform divergent belief.
The d-status is employed to trigger the presence of false belief situations by match-
ing the top partition with user facts compiled by the system (see Sec. 2) and as
such trying to highlight some divergences between the user and the robot points of
view. Both the user and the robot facts (from the belief models, not to be mistaken
with the belief state related to the dialogue representation) are considered as part of
the dynamic knowledge resource and are maintained independently of the internal
state of the system with the techniques described in Sec. 2. Here we can observe in
Figure 2 that the top partition is about a book located on the bedside table. In the
robot model of the world (i.e. robot facts) this book is identified as a unique entity,
RED BOOK, and p-status is set to unique accordingly. However, in the user model
it is identified as BROWN BOOK. This situation can be considered as divergent
and p-status is set to unique too because there is one possible object that corre-
sponds to that description in the user model. In this preliminary study d-status can
only be unique or non-unique. Further studies may consider more complex cases.
The new summary action is employed for appropriate resolution and removal of the
divergence. The (real) communicative acts associated to this (generic) action relies
on expert design. In this first version, if this action is compatible with the current
hypotheses and thus picked up by the system, it explicitly informs the user of the
presence and the nature of the divergence. To do so, the system uses a deny dialogue
act to inform the user about the existence of a divergent point of view and let the
user agree on the updated information. Consequently, the user may pursue its orig-
inal goal with the correct property instead of the obsolete one. This process is also
illustrated in Figure 2 when the inform divergent belief action is mapped back to the
master space.

4 Scenario & Experimental Setup

In order to illustrate the robot’s ability to deal with user’s perspective, an adapted
Pick-Place-Carry scenario is used as test-bed. The robot and the user are in a vir-
tual flat with three rooms, in which there are different kinds of objects varying in
terms of colour, type, and position (e.g. blue mug on the kitchen table, red book on
the living room table, etc.). The user interacts with the robot using unconstrained
speech (Large Vocabulary Speech Recognition) and pointing gestures to ask the
robot to perform some specific object manipulation tasks (e.g. move the blue mug
from the living room table to the kitchen table). The multimodal dialogue is used to
solve ambiguities and to request missing information until task completion (i.e. full
command execution) or failure (i.e. explicit user disengagement or wrong command
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Fig. 3 Architecture of the
multimodal and situated dia-
logue system.

execution). In this study, we specifically focus on tasks where divergent beliefs are
prone to be generated as in the Sally and Anne test: a previous interaction has led
the user to think that a specific object O is located at A which is out of her view, and
an event has changed the object position from A to B without user’s awareness. For
example, a change performed by another user (or by the robot) without the presence
of the first one. Thereby, if the user currently wants to perform a manipulation in-
volving O she may do so using her own believed value (A) of the position property
in her communicative act.

Concerning the simulation, the setup of [12] is applied to enable a rich multi-
modal HRI. Thus, the open-source robotics simulator MORSE [5] is used which
provides a realistic rendering through the Blender Game Engine, a wide range sup-
port of middleware (e.g. ROS, YARP), and proposes reliable implementations of
realistic sensors and actuators which ease the integration on real robotic platforms.
It also provides the operator with an immersive control of a virtual human avatar
in terms of displacement, gaze, and interactions on the environment, such as object
manipulation (e.g. grasp/release an object). This simulator is tightly coupled with
the multimodal dialogue system, with the overall architecture given in Figure 3.

In the chosen architecture, the Google Web Speech API1 for Automatic Speech
Recognition (ASR) is combined with a custom-defined grammar parser for Spoken
Language Understanding (SLU). The spatial reasoning module, SPARK, is respon-
sible for both detecting the user gestures and generating the per-agent spatial facts
(see Sec. 2) used to dynamically feed the contextual knowledge base and allow-
ing the robot to reason over different perspectives of the world. Furthermore, we
also make use of a static knowledge base containing the list of all available ob-
jects (even those not perceived) and their related static properties (e.g. color). The
Gesture Recognition and Understanding (GRU) module catches the gesture-events
generated by SPARK during the course of the interaction. Then, a rule-based fusion
engine, close to the one presented in [8], temporally aligns the monomodal inputs
(speech and gesture) and merges them to convey the list of possible fused inputs to
the POMDP-based DM, with speech considered as the primary modality.

The DM implements the extended HIS framework described in Sec. 3. For the
reinforcement learning setup, the sample-efficient KTD-SARSA RL algorithm [4]
in combination with the Bonus Greedy exploration scheme enables online learning
of dialogue strategy from scratch, as in [6]. A reward function is defined to penalise
the DM by −1 for each dialogue turn and give it a +20 if the right command is
performed at the end of the interaction, 0 otherwise. To convey the DM action back

1 https://www.google.com/intl/en/chrome/demos/speech.html
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to the user, a rule-based fission module is employed that splits the high level DM
decision into verbal and non-verbal actions. The robot speech outputs are generated
by chaining a template-based Natural Language Generation (NLG) module, which
converts the sequence of concepts into text, to a Text-To-Speech (TTS) component
based on the commercial Acapela TTS system2. A Non-verbal Behaviour Planning
and Motor Control (NVBP/MC) module produces robot postures and gestures by
translating the non-verbal actions into a sequence of abstract actions such as grasp,
moveTo, release which are then executed in the simulated environment.

In this study we intend to assess the benefit of introducing the divergent belief
management into the multimodal situated dialogue management problem. Thereby,
the scenarios of interest require some situations of divergent beliefs between the user
and the robot. In real setup those scenarios often need a long term interaction context
tracking. To bypass this time consuming process in our evaluation setup, we directly
propose a corrupted goal to the user at the beginning of her interaction. So, a false
belief about the location value was automatically added concerning an object not
visible from the human point of view. Although the situation is artificially generated,
the same behaviour can be obtained with the spatial reasoner if the robot performs an
action in self-decision mode, or if another human corrupts the scene. Thereby, this
setup was used to evaluate the robot’s ability to deal with both classical (CLASSIC)
and false belief (FB) object manipulation tasks. To do so, we compare the belief-
aware learnt system performance (noted BA-LEARNT hereafter) to an handcrafted
one (noted BA-HDC), and with two other similar systems with no perspective taking
ability (noted LEARNT and HDC respectively). The handcrafted policies make use
of expert rules based on the information provided by the summary state to pick the
next action to perform (deterministic). They are not considered as the best possible
handcrafted policies but as robust enough to manage correctly an interaction with
real users. The learnt policies were trained in an online learning settings using a
small set of 2 expert users which first performed 40 dialogues without FB tasks
and 20 more as a method-specific adaptation (LEARNT with CLASSIC tasks vs
BA-LEARNT with FB tasks). In former works we have shown the possibility to
learn efficient policies with few tens of dialogue samples, due to expert users better
tolerance to poor initial performance combined with more consistent behaviours
during interactions [7].

In the evaluation setup, 10 dialogues for the four proposed system configurations
(the learnt policies were configured to act greedily according to the value function)
were recorded from 6 distinct subjects (2 females and 4 males, around 25yo on aver-
age) who interacted with all configurations (within-subjects study), so 240 dialogues
in total. 30% of the performed dialogues involve FB tasks. No user had knowledge
of the current system configurations and they were proposed in random order to
avoid any prior effect. At the end of each interaction, users evaluated the system in
terms of task completion with an online questionnaire.

2 http://www.acapela-group.com/index.html
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5 Results

HDC BA-HDC LEARNT BA-LEARNT
TASK Avg.R Length SuccR Avg.R Length SuccR Avg.R Length SuccR Avg.R Length SuccR

CLASSIC 14.33 4.81 0.85 14.28 4.86 0.86 17.62 2.95 0.93 17.69 2.88 0.93
FB 9.78 6.67 0.72 13.05 5.61 0.83 12.72 5.94 0.83 13.89 4.78 0.83

ALL 12.97 5.36 0.82 13.92 5.08 0.85 16.15 3.85 0.9 16.55 3.45 0.9

Table 1: System performance on classic (CLASSIC), false belief (FB) and all (ALL)
tasks in terms of average cumulative discounted reward (Avg.R), average dialogue
length in terms of system turns (Length) and average success rate (SuccR).

Table 1 is populated with the performance obtained by the four system configu-
rations discussed above considering CLASSIC and FB tasks. These results are first
given in terms of mean discounted cumulative rewards (Avg.R). According to the
reward function definition, this metric expresses in a single real value the two vari-
ables of improvement, namely the success rate (accuracy) and the number of turns
until dialogue end (time efficiency). However, both metrics are also presented for
convenience. The results in Table 1 were gathered in test condition where no explo-
ration of the RL method is allowed. Thus, they basically consist of a mere average
over the 60 performed dialogues for each method and metric.

The differences observed between the LEARNT/BA-LEARNT and the HDC/BA-
HDC on the overall performance (row ALL) shows the interest of considering RL
methods rather than handcrafted policies. Indeed, only 60 training dialogues are
enough to outperform both handcrafted solutions. On CLASSIC tasks the perfor-
mance between LEARNT and BA-LEARNT as well as between HDC and BA-
HDC must be considered similar. Thus, the divergent belief resolution mechanism
doesn’t seem to impact the dialogue management when divergent belief situations
do not appear. For BA-HDC this statement could be expected (in lack of false be-
lief, the rules are the same as HDC). However for BA-LEARNT the tested policy is
learnt and the action assignment process is optimized with an additional degree of
complexity (larger state/action space than in LEARNT), so a loss could have been
observed. The performances between LEARNT and BA-LEARNT and respectively
between HDC and BA-HDC on FB tasks appear in favour of the BA-systems (both
show a higher success rate and a slightly more time efficient dialogue management
process - average gain of 1 turn). However the quantitative comparison between the
system configurations is not ensured to be relevant due to the relatively high confi-
dence interval on considered metrics (e.g. success rate confidence interval for row
FB is around 0.2 for all system configurations). Two main reasons account for this
status quo. First, a limited amount of observations involving the different system
configurations (due to experimental cost). Second, the expected marginal gain in
terms of the considered metrics. Indeed, the current system is learnt on some overall
task completion and efficiency criterion. However solving divergent belief situations
in a pick and place scenario can not be considered a critical factor influencing these
criterion greatly but just a way to cope with an additional (not dominant) degree of
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uncertainty and to improve user experience and naturalness of the interaction with
the embodied agent.

R1: Can I help you? U1: Bring me the book on my bedside table

R2: The brown book is not on the bedside
table, it has been moved to the kitchen.

U2: Ok, bring it to me
R3: I will give you the brown book that is on

the kitchen table

(a)

R2: Do you want the red one?
U2: No, the brown book.
R3: There is no brown book in your bedroom

but there is one in the kitchen
U3: Are you sure? Well, bring me that one.
R4: I will give you the brown book that is on

the kitchen table

(b)

Table 2: Dialogue examples with (a) and without (b) divergent belief reasoning in
the case of an unknown (from the user’s point of view) interchange between a red
and a brown book.

To have better insights on what the main differences between the four dialogue
strategies are we also performed a qualitative study. In this study we precisely iden-
tify the behavioural differences due to introducing a FB handling mechanism in a
learning setup. Overall, it is observed that confirmation acts (e.g. confirm, offer)
are more accurate and less frequent for the two learnt methods. For instance, when
the learnt systems are confident on the top object manipulation hypothesis they pre-
dominantly performed the command directly rather than trying to check its validity
further as in the handcrafted versions. In Table 2 two dialogue samples extracted
from the evaluation dataset illustrate the differences between non-BA and BA di-
alogue management on the same FB task (here a red book was interchanged with
a brown one). If the belief divergence problem is not explicitly taken into account
(as in (a)) the DM can be constrained to deal with an additional level of misunder-
standing (see (b) from R2 to U3). We can also see in (b) that the non-BA system was
able to succeed FB tasks (explaining the relative high LEARNT performance on
FB tasks). Indeed, if the object is clearly identified by the user (e.g. color and type)
the system can release the constraint of the false position and thus is able to make
an offer on (execute) the “corrected” form of the command involving the true object
position. Concerning the main differences between BA-LEARNT and BA-HDC, we
observed a less systematic usage of the inform divergent belief act in the learnt case.
BA-LEARNT first tries to reach a high confidence on the true presence of the object
involved in the belief divergence in the user goal. Furthermore, BA-LEARNT, like
LEARNT, has learnt alternative mechanisms to fulfil FB tasks such as direct execu-
tion of the user command (which also avoids misunderstanding) when the convoyed
piece of information seems to be sufficient to identify the object.

6 Conclusion

In this paper, we described how a user belief realtime tracking framework can be
used along with a multimodal POMDP-based dialogue management. The evalua-
tion of the proposed method with real users confirms that this additional informa-
tion helps to achieve more efficient and natural task planning (and does not harm
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handling of normal situations). Our next step will be to integrate the multimodal
dialogue system on the robot and carry out evaluations in real setting to uphold our
claims in an fully realistic configuration.
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for dialogue learning. In SIMPAR, pages 62–73, 2014.

13. G. Milliez, M. Warnier, A. Clodic, and R. Alami. A framework for endowing interactive robot
with reasoning capabilities about perspective-taking and belief management. In ISRHIC, 2014.
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