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Planning and Acting with Hierarchical Input/Output Automata

This paper introduces an original framework for planning and acting with hierarchical input/output automata for systems defined by the parallel composition of the models of their components. Typical applications are, for example, in harbor or warehouse automation. The framework extends the usual parallel composition operation of I/O automata with a hierarchical composition operation that can refine a task. It defines planning as the synthesis of a control component to drive, through I/O interactions and task refinement, the system toward desired states. A new nondeterministic algorithm performs this synthesis. We tackle these issues on a theoretical basis. We formally define the representation and prove that the two operations of parallel and hierarchical composition are distributive, which is essential for the correctness and completeness of the proposed planning algorithm.

Motivation

This paper introduces a knowledge representation framework and an approach for planning and acting for component-based interacting systems. We conform to the position of [START_REF] Ghallab | [END_REF] that planning and acting have to be tightly integrated following two principles of a hierarchical and continual online deliberation. In this view, planned actions are refined in a context-dependent way into executable commands, which drive a system toward desired objectives. We argue here that distributed domains add the requirement of a third principle: interaction between communicating components. The distribution considered here is not at the planning level. It is specifically focused on systems defined by the composition of the models of their components. We first explain our motivation.

A planning domain is usually modeled through a statetransition system Σ. Σ is almost never given extensively, but part of it is generated, along with the search, following the specification of what an actor can do: its actions define possible transitions in Σ. There is however another highly expressive and practical means of generating a very large state-transition system: through the composition of the transition models of the elementary components that constitute the entire system. Such a design method is more natural and adapted when the system of interest is not centralized into a unique platform but distributed over numerous components. These components have their own local sensors and actuators, evolve concurrently, may be designed independently and can be assembled by model composition in modular and possibly changing manners.

Consider a warehouse automation infrastructure such as the Kiva system [D' Andrea, 2012] that controls thousands of robots moving inventory shelves to human pickers preparing customers orders. According to [Wurman, 2014], "planning and scheduling are at the heart of Kiva's software architecture". Right now, however, this appears to be done with extensive engineering of the environment, e.g., fixed robot tracks and highly structured inventory organization. A more flexible approach, dealing with contingencies, local failures, modular design and easier novel deployments, would model each component (robot, shelf, refill and order preparation stations, etc.) through its possible interactions with the rest of the system. An automatically synthesized controller coordinates these interactions.

The composition approach has been in use for a long time in the area of system specification and verification, e.g., [Harel, 1987]. Although less popular, it has also been developed in the field of automated planning for applications that naturally call for composition, e.g., planning in web services [START_REF] Pistore | [END_REF][START_REF] Bertoli | [END_REF], or for the automation of a harbor or a large infrastructure [Boese and Piotrowski., 2009]. The state-transition system of a component, defined with the usual action schema, evolves in its local states by interacting with other components, i.e., by sending and receiving messages along state transitions. Planning consists of deciding which messages to send to which components and when in order to drive the entire system toward desired states.

Such a problem can be formalized with input/output automata. Planning for a system σ means generating a control automaton σ c that receives the output of σ and sends input to σ such that the behavior of the controlled pair, σ and σ c , drives σ toward goal states. A system composed of multiple components is defined by the parallel composition of their automata σ 1 . . . σ n , which describes all the possible evolutions of the n components. A planner for that system synthesizes a control automaton that interacts with the n σ i 's such that the system reaches certain goal states. The approach is described in [Ghallab et al., 2016, Section 5.8] for the purpose of performing refinements at the acting level; it is shown to be solvable with nondeterministic planning algorithms.

In order to address planning and acting in a uniform framework, we propose to further extend this representation. We augment the parallel composition operation, used for the composition of the component models, with a hierarchical task refinement operation. We call the task refinement operation as hierarchical composition. We formalize planning for distributed interacting systems in a new framework of hierarchical input/output automata. The synthesis of control automaton is done with a new nondeterministic planning algorithm.

The preceding issues, being novel in the field, required to be initially tackled at a theoretical basis, which is developed in this paper (no application nor experimental results are reported). Our contributions are the following:

• We formally define the notion of refinement for hierarchical communicating input/output automata, and propose a formalization of planning and acting problems for componentbased interacting systems in this original framework. • We prove the essential properties of this class of formal machines, in particular that the operations of parallel composition and refinement are distributive, a critical feature needed for handling this representation, the proof of which required extensive developments. • Distributivity allows us to show that the synthesis of a controller for a set of hierarchical communicating input/output automata can be addressed as a nondeterministic planning problem.

• We propose a new algorithm for solving that problem, and discuss its theoretical properties.

The rest of the paper presents the proposed representation and its properties. The synthesis of control automaton through planning is developed in Section 3, followed by a discussion of the state of the art, then concluding remarks.

Representation

The proposed knowledge representation relies on a class of automata endowed with composition and refinement operations.

Automata. The building block of the representation is a particular input/output automata (IOA) σ = S, s 0 , I, O, T, A, γ , where S is a finite set of states, s 0 is the initial state, I, O, T and A are finite sets of labels called respectively input, output, tasks and actions, γ is a deterministic state transition function.

States We also assume all transitions to be deterministic. The semantics of an IOA views inputs as uncontrollable transitions, triggered by messages from the external world, while outputs, tasks, and actions are controllable transitions, freely chosen to drive the dynamics of the modeled system. An output is a message sent to some other IOA; an action has some direct effects on the external world. No precondition/effect specifications are needed for actions, since a transition already spells out the applicability conditions and the effects. A task is refined into a collection of actions.

Note that despite the assumption of deterministic transitions, an IOA σ models nondeterminism through its inputs. For example, a sensing action a in state s is a transition s, a, s ; several input transitions from s model the possible outcomes of a; these inputs to σ are generated by the external world.

A run of an IOA is a sequence s 0 , u 0 , . . . , s i , u i , s i+1 , . . . such that s i+1 = γ(s i , u i ) for every i. It may not be finite.

Example 2.1. The IOA in Figure 1 models a door with a spring-loaded hinge that closes automatically when the door is open and not held. To open the door requires unlatching it, which may not succeed if it is locked. Then it can be opened, unless it is blocked by some obstacle. Whenever the door is left free, the spring closes it (the "close" action shown in red). Parallel Composition. Consider a system consisting of n components Σ = {σ 1 , . . . , σ n }, with each σ i modeled as an IOA. These components interact by sending output and receiving input messages, while also triggering actions and tasks. The dynamics of Σ can be modeled by the parallel composition of the components, which is a straightforward generalization of the parallel product defined in [START_REF] Bertoli | [END_REF]. The parallel composition of two IOAs σ 1 and σ 2 is

σ 1 σ 2 = S 1 ×S 2 , (s 0 1 , s 0 2 ), I 1 ∪I 2 , O 1 ∪O 2 , T 1 ∪T 2 , A 1 ∪A 2 , γ , where γ((s 1 , s 2 ), u) = γ 1 (s 1 , u) × {s 2 } if u ∈ I 1 ∪ O 1 ∪ T 1 , {s 1 } × γ 2 (s 2 , u) if u ∈ I 2 ∪ O 2 ∪ T 2 .
By extension, σ 1 σ 2 σ 3 . . . σ n is the parallel composition of all of the IOAs in Σ. The order in which the composition operations is done is unimportant, because parallel composition is associative and commutative.1 

We assume the state variables, as well as the input and output labels, are local to each IOA. This avoids potential confusion in the definition of the composed system. It also allows for a robust and flexible design, since components can be modeled independently and added incrementally to a system.

If we restrict the n components of Σ to have no tasks but only inputs, outputs and actions, then driving Σ toward some goal can be addressed with a nondeterministic planning algorithm for the synthesis of a control automaton σ c that interacts with the parallel composition σ 1 σ 2 σ 3 . . . σ n of the automata in Σ. The control automaton's inputs are the outputs of Σ and its outputs are inputs of Σ. Several algorithms are available to synthesize such control automata, e.g., [START_REF] Bertoli | [END_REF].

Hierarchical Refinement. With each task we want to associate a set of methods for hierarchically refining the task into IOAs that can perform the task. This is in principle akin to HTN planning [Erol et al., 1994], but if the methods refine tasks into IOAs rather than subtasks, they produce a structure that incorporates control constructs such as branches and loops. This structure is like a hierarchical automaton (see, e.g., [Harel, 1987]). However, the latter relies on a state hierarchy (a state gets expanded recursively into other automata), whereas in our case the tasks to be refined are transitions. This motivates the following definitions.

A refinement method for a task t is a pair µ t = t, σ t , where σ t is an IOA that has both an initial state s 0µ and a finishing state s f µ . Unlike tasks in HTN planning [START_REF] Nau | [END_REF], t is a single symbol rather than a term that takes arguments. Note that σ t may recursively contain other subtasks, which can themselves be refined. Consider an IOA σ = S, s 0 , I, O, T, A, γ that has a transition s 1 ,t, s 2 in which t is a task. A method µ t = t, σ t with σ t = S µ , s 0µ , s f µ , I µ , O µ , T µ , A µ , γ µ can be used to refine this transition by mapping s 1 to s 0µ , s 2 to s f µ and t to σ t .2 This produces an IOA

R(σ , s 1 , µ t ) = S R , s 0R , I ∪ I µ , O ∪ O µ , T ∪ T µ \ {t}, A ∪ A µ , γ R , where S R = (S \ {s 1 , s 2 }) ∪ S µ , s 0R = s 0 if s 1 = s 0 , s 0µ otherwise, γ R (s, u) =                  γ µ (s, u) if s ∈ S µ , s 0µ if s ∈ S and γ(s, u) = s 1 , s f µ if s ∈ S and γ(s, u) = s 2 , γ(s, u) if s ∈ S \ {s 1 , s 2 } and γ(s, u) / ∈ {s 1 , s 2 }, γ(s 1 , u) if s = s 0µ , γ(s 2 , u) if s = s f µ .
Note that we do not require every run in σ t to actually end in s f µ . Some runs may be infinite, some other runs may end in a state different from s f µ . Such requirement would be unrealistic, since the IOA of a method may receive different inputs from other IOA, which cannot be controlled by the method. Intuitively, s f µ represents the "nominal" state in which a run should end, i.e., the nominal path of execution. Updated. Now we have start monitor, end monitor and continue monitor consistently] ] ] then triggers the sensing action get-distance. In response, the execution platform may return either far or close. In states m 5 and m 6 , the input continue monitor transitions to m 1 to sense the distance again, otherwise the input end monitor transitions to the final state m 7 . Planning Problem. We are now ready to define the planning problem for this representation. Consider a system modeled by Σ = {σ 1 , . . . , σ n } and a collection of methods M , such that for every task t in Σ or in the methods of M there is at least one method µ t ∈ M for task t. An instantiation of (Σ, M ) is obtained by recursively refining every task in the composition (σ 1 σ 2 ...σ n ) with a method in M , down to primitive actions. Let (Σ, M ) * be the set of all possible instantiations of that system, which is enumerable but not necessarily finite. Among this set, some instantiations are desirable with respect to an objective.

A planning problem is defined as a tuple P = Σ, M , S g , where S g is a set of goal states. It is solved by finding refinements for tasks in Σ with methods in M . We mentioned earlier that this is in principle akin to HTN planning. However, here we have IOAs that receive inputs from the environment or from other IOAs, thus modelling nondeterminism. We need to control the set of IOAs Σ in order to reach (or to try to reach) a goal in S g . For this reason a solution is defined by introducing a control automaton that drives an an instantiation of (Σ, M ) to meet the goal S g . A control automaton drives an IOA σ by receiving inputs that are outputs of σ and generating outputs which act as inputs to σ . [Ghallab et al., 2016, Section 5.8] Let σ c be a control automaton for an IOA σ f which is an instantiation of (Σ, M ), i.e., the inputs of σ c are the outputs of σ f , and the outputs of σ c are the inputs of σ f . A solution for the planning problem P = Σ, M , S g is an IOA σ flat in (Σ, M ) * and a control automaton σ c such that some runs of the parallel composition of σ c with σ flat reach a state in S g . Note that the notion of solution is rather weak, since it guarantees that just some runs reach a goal state. Other runs may never end, or may reach a state that is not a goal state.

[ [ [DANA SAYS: Rewrote what follows to correct some errors.] ] ] We will use the same terminology as in [Ghallab et al., 2016, Section 5.2.3]: a solution is safe if all of its finite runs terminate in goal states, and a solution is either cyclic or acyclic Removed an incorrect paragraph here.] ] ]

Example 2.4. Figure 5 shows a control automaton for the IOAs in Figures 1 and2. This control automaton is for the system when the move task has not been refined. This control automaton also controls the robot component. Added that. ] ] ] The control automaton in Figure 6 controls the door IOA in Figure 1, the robot IOA in Figure 2, the move IOA in Figure 3, and the monitor IOA in Figure 4.

Solving Planning Problems

This section describes our planning algorithm, MakeControlStructure (Figure 7). It solves the planning problem Σ, M , S g where Σ is the set of IOAs, M is the collection of methods for refining different tasks and S g is the set of goal states. The solution is a set of IOAs Σ set and a control automaton σ c such that Σ set driven by σ c reaches the desired goals states, S g . Depending on how one of its subroutines is configured, MakeControlStructure can either search for acyclic safe solutions, or search for safe solutions that may contain cycles. [ [ [DANA SAYS: I removed the rest of this paragraph. It isn't really understandable until the reader has read the rest of the section.] ] ] [ [ [SUNANDITA SAYS: OK. We should say somewhere that Σ set fully determines an instantiation of (Σ, M ). Adding it in the description of MakeControlStructure] ] ] Before getting into the details of how MakeControlStructure works, we need to discuss a property on which it depends. Given a planning problem, MakeControlStructure constructs a solution by doing a sequence of parallel composition and refinement operations. An important property is that composition and refinement can be done in either order to produce the same result. Thus the algorithm can choose the order in which to do those operations (line (*) in Figure 7), which is useful because the order affects the size of the search space.

Theorem 3.1 (distributivity). Let σ 1 and σ 2 be IOAs, s 1 ,t, s 2 be a transition in σ 1 , and µ t = t, σ t be a method for t. Then

R(σ 1 , s 1 , µ t ) σ 2 = R(σ 1 σ 2 , s * 1 , µ t ), where s * 1 = {(s 1 , s) | s ∈ S σ 2 }. Sketch of proof.
We prove the theorem by showing that every run (defined in Section 2

) of R(σ 1 , s 1 , µ t ) σ 2 is a run of R(σ 1 σ 2 , s * 1 , µ t )
and vice-versa. To do this, we divide a run into unique sub-sequences, calling them projections which are responsible for transitions along each of the IOA involved in a parallel or hierarchical composition. We manipulate these projections to form new sequences while maintaining a set of constraints which they satisfy. Then we show that satisfying this set of constraints is enough for the sequence to be a run of an IOA, thus proving our theorem.

Algorithm. We now discuss our planning algorithm, which is shown in Figure 7.

[ [ [DANA SAYS: Rewritten, please check.] ] ] [ [ [SUNANDITA SAYS: Looks fine.] ] ] MakeControlStructure's two main steps are as follows. First, it uses the MakeFlat subroutine (described in the next paragraph) to build an IOA σ flat that is an instantiation of (Σ, M ) and a set of IOAs Σ set that fully determine σ flat .

[ [ [SUNANDITA SAYS: Added the part about Σ set ] ] ] Next, Make-ControlStructure uses the MakeControlAutomaton subroutine to create a control automaton σ c for Σ. We do not include pseudocode for MakeControlAutomaton, because it may be any of several planning algorithms published elsewhere. For example, the algorithm in [START_REF] Bertoli | [END_REF] will generate an acyclic safe solution if one exists, and [START_REF] Bertoli | [END_REF] discusses how to modify that algorithm so that it will find safe solutions that aren't restricted to be acyclic. Several of the algorithms in [Ghallab et al., 2016, Chapter 5] could also be used.

MakeFlat constructs an instantiation σ flat of (Σ, M ) by doing a series of parallel and hierarchical compositions. It randomly selects an IOA from Σ to start with and then goes through a loop which makes the choice of whether to do a parallel composition or a refinement at each iteration. The size of the search space depends on the order in which the choices are made. In an implementation, the choice would be made heuristically. We believe the heuristics will be analogous to some of the heuristics for constraint-satisfaction problems [Dechter, 2003;[START_REF] Russell | [END_REF]. MakeFlat exits when the IOA σ f is an instantiation of (Σ, M ) i.e., there are no more tasks to be refined and all possible interactions have been taken in account through parallel composition.

MakeControlStructure (Σ, M , S g ) select an IOA σ from Σ and remove it (σ f lat , Σ set ) ← MakeFlat(Σ, σ , M , {σ }) σ c ← MakeControlAutomaton (σ f lat , S g ) return (σ c , Σ set ) MakeFlat (Σ, σ 0 , M , Σ 0 set ) σ f ← σ 0 ; Σ set ← Σ 0 set loop if σ f ∈ (Σ, M ) * , then return (σ f , Σ set ) choose which-first ∈ {compose, refine} (*) if (which-first = compose) select IOA σ from Σ that interacts with σ f σ f ← σ f σ Σ set ← Σ set ∪ {σ } else (σ f , Σ set ) ← ComputeRefinement(Σ, σ f , M ) Σ set ← Σ set ∪ Σ set ComputeRefinement (Σ, σ f , M ) select a task t from T σ f such that s 1 ,t, s 2 is a transition in σ f select a method, µ t = t, σ t from M for refining t S ← {IOA that interact with σ t } t new , σ t new ← new unique names for t and σ t σ t ← σ t new ( σ ∈S σ ) σ f ← R(σ f , s 1 , t new , σ t ) return (σ f , {σ t new } ∪ S)
ComputeRefinement is a subroutine of MakeFlat which does task refinement. It applies a refinement method µ t selected from M to refine a task t. This involves doing both a refinement and a parallel composition. Once the task has been refined, ComputeRefinement returns the resulting IOA σ f from this hierarchical composition and a set of IOAs that uniquely determine σ f . At this step, we also rename the task t and body(µ t ) to t new and σ t new , where t new is a new unique name for t. This renaming is required to identify body(µ t ) uniquely for each refinement and avoid name conflicts when µ t is chosen multiple times to refine different instances of t.

Theorem 3.2. MakeControlStructure is sound and complete.

Sketch of proof.

The soundness and completeness of MakeControlStructure depends on the soundness and completeness of its subroutines, MakeFlat and MakeControlAutomaton.

We show MakeFlat is sound by proving that every IOA σ flat created by MakeFlat is an instantiation of (Σ, M ). This is done using the distributivity theorem (Theorem 3.1). We show that MakeFlat is complete by demonstrating that it can build any instantiation σ flat of (Σ, M ) because it considers all possible hierarchical and parallel compositions. The proof of soundness and completeness of MakeControlAutomaton is present in [START_REF] Bertoli | [END_REF]. We proof the completeness of MakeControlStructure by showing that if there is a solution control automaton σ c for Σ, then there is an instantiation σ flat of (Σ, M ) corresponding to it and then using the completeness properties of MakeFlat and MakeControlAutomaton.

Related Work

To the best of our knowledge, no previous approach to planning has proposed a formal framework based on hierarchical input/output automata. The idea of hierarchical planning was proposed long time ago, see, e.g., [Sacerdoti, 1974;Tate, 1977;Yang, 1990]. In these works, high level plans are sequences of abstract actions that are refined into sequences of actions at a lower level of abstraction. In our work, plans are represented with automata. This allows us to express plans with rich control constructs, not only sequences of actions. We can thus represent conditional and iterative plans that are most often required when we refine plans at a lower level of abstraction. Moreover, none of these systems can represent components that interact among each other, and that act by interacting with the external environment, like in our representation based on input/output automata. These are also the main differences with more recent works, such as the work based on the idea of angelic hierarchical planning [Marthi et al., 2007] and of its extension with optimal and online algorithms [START_REF] Marthi | [END_REF]. Some approaches manage plans with rich control constructs, see, e.g., the PRS [START_REF] Georgeff | [END_REF] and Golog [START_REF] Mcilraith | [END_REF] systems. However, PRS does not provide the ability to reason about alternative refinements. Some limited planning capabilities were added to PRS by [START_REF] Despouys | [END_REF] to anticipate execution paths leading to failure by simulating the execution of procedures and exploring different branches. In Golog, it is possible to specify plans with complex actions and to reason about them in a logical framework. However, the formal framework is not hierarchical and the notion of refinement is not formalized. Moreover, neither PRS nor Golog allows for an explicit representation of interactions among different systems or components. Hierarchical and procedure based frameworks (similar to PRS) have been used in robotic systems, see, e.g., RAP [Firby, 1987], TCA [Simmons, 1992;Simmons and Apfelbaum, 1998], XFRM [Beetz and McDermott, 1994], and the survey [Ingrand and Ghallab, 2014]. All these works have addressed the practical problem of providing reactive systems for robotics, but none of them is based on a formal account as the one provided in this paper.

Our approach shares some similarities with the hierarchical state machines [Harel, 1987], which has been used to address problems different from planning and acting, like the problem of the specification and verification of reactive systems. Our work is based on the theory of input/output automata (see, e.g., [Lynch and Tuttle, 1988]), which has been used to specify distributed discrete event systems, and to formalize and analyse communication and concurrent algorithms. I/O automata have been used to formalize interactions among web services and to plan for their composition [START_REF] Pistore | [END_REF][START_REF] Bertoli | [END_REF]. That work was the basis for the approach described in [Ghallab et al., 2016, Section 5.8]. In our paper, beyond providing a framework that is independent of the web service domain, we extend the representation significantly with hierarchical input/output automata, that contain compound tasks. Moreover, we provide a theory that formalizes the refinement of tasks. Finally, we describe a novel planning algorithm for synthesizing control automata, that can deal with hierarchical refinements. Our work is also significantly different from the work in [Bucchiarone et al., 2012;[START_REF] Bucchiarone | [END_REF], where abstract actions are represented with goals, and where (online) planning can be used to generate interacting processes that satisfy such goals.

Our framework has some similarities with HTN planning [START_REF] Nau | [END_REF], since tasks can be refined with different methods. However, our methods are significantly different from HTN ones in at least two fundamental aspects: (i) our methods are automata that can encode rich control constructs rather than simple sequences of primitive tasks; (ii) our methods can interact among themselves. This allows us to represent interacting and distributed systems and components. This is also a main difference with the work proposed in extensions of HTN planning to deal with nondeterministic domains [START_REF] Kuter | [END_REF].

Conclusions and Future Work

We have developed a formalism for synthesizing systems that are composed of communicating components. This synthesis is done by combining parallel composition of input/output automata with hierarchical refinement of tasks into input/output automata. This approach can be used to synthesize plans that are not just sequences of actions, but include rich control constructs such as conditional and iterative plans. For synthesis of such plans, we describe a novel planning algorithm for synthesizing control automaton, that can deal with hierarchical refinements.

We believe this work will be important as a basis for algorithms to synthesize real-time systems for web services, automation of large physical facilities such as warehouses or harbors, and other applications. In our future work, we intend to implement our algorithm and test it on representative problems from such problem domains. For that purpose, an important topic of future work will be to extend our algorithm for use in continual online planning. As another topic for future work, recall that Theorem 3.1 (Distributivity) shows that parallel and hierarchical composition operations can be done in either order and produce the same result. The size of the planner's search space depends on the order in which these operations are done, and we want to develop heuristics for choosing the best order. Some of these heuristics are likely to be similar to the heuristics used to guide constraint-satisfaction algorithms [Dechter, 2003;[START_REF] Russell | [END_REF].

Finally, there are several ways in which it would be useful to generalize our formalism. One is to allow tasks and methods to have parameters, so that a method can be used to refine a variety of related tasks. Another is to extend the formalism to support cases where two or more methods can collaborate to perform a single task.
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 1 Figure 1: A simple σ spring-door model.
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 2 Figure 2: An IOA for a robot going through a doorway. Example 2.2. [ [ [DANA SAYS: rewritten, please check.] ] ] [ [ [SUNANDITA SAYS: Checked] ] ] Figure 2 shows an IOA for a robot going through a doorway. It has two tasks: move and cross door. It sends to σ spring-door the input free if it gets through the doorway successfully. The move task can be refined using the σ move method in Figure 3.
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 3 Figure 3: The IOA σ move of a method for the move task. Example 2.3. [ [ [DANA SAYS: rewritten, please check.] ] ] [ [ [SUNANDITA SAYS: Checked] ] ] Figure 3 shows the IOA of a refinement method for the move task in Figure 2. σ move starts with a start monitor output to activate a monitor IOA that senses the distance to a target. It then triggers the task get closer to approach the target. From state v 2 it receives two possible inputs: close or far. When close, it ends the monitor activity and terminates in v 4 , otherwise it gets closer again.

Figure 4

 4 Figure 4 shows the IOA of a method for the monitor task. It waits in state m 0 for the input start monitor, [ [ [DANA SAYS: Figure 3 calls it start monitor, but Figure 4 calls it start. Same
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 4 Figure 4: The IOA σ monitor of a monitoring method.
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 5 Figure 5: Control automaton for the IOAs in Figures 1 and 2.
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 6 Figure 6: A control automaton for the door component, refined robot component for going through a doorway, and the monitor component.
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 7 Figure 7: Pseudocode for our planning algorithm.

  are defined as tuples of state variables' values, i.e., if {x 1 , . . . , x k } are the state variables of σ , and each has a finite range x i ∈ D i , then the set of states is S ⊆ ∏ i=1,k D i . We assume that for any state s ∈ S, all outgoing transitions have the same type, i.e., {u | γ(s, u) is defined} consists solely of either inputs, or outputs, or tasks, or actions. For simplicity we assume s can have only one outgoing transition if that transition is an output or an action. Alternative actions or outputs can be modeled by a state that precedes s and receives alternative inputs, one of them leading to s.

The proof involves showing that every run of σ 1 σ

is a run of σ 2 σ 1 and vice-versa. The final paper will include a link to the full proofs of this and the other results in this paper.2 As a special case, if σ contains multiple calls to t or σ t contains a recursive call to t, then the states of σ t must first be renamed, in order to avoid ambiguity. This is analogous to standardizing a formula in automated theorem proving.

Alternatively, we may assume we have only runs that terminate, and a set of finishing states S f µ . We simply add a transition from every element in S f µ to the nominal finishing state s f µ .

In the terminology of[START_REF] Cimatti | [END_REF], a weak solution is what we call a solution, a strong cyclic solution is what we call a safe solution, and a strong solution is what we call an acyclic safe solution.