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Planning and Acting with Hierarchical Input/Output Automata

Sunandita Patra, Paolo Traverso, Malik Ghallab, and Dana Nau

Abstract

This paper introduces an original framework for
planning and acting with hierarchical input/output
automata for systems defined by the parallel com-
position of the models of their components. Typ-
ical applications are, for example, in harbor or
warehouse automation. The framework extends
the usual parallel composition operation of I/O au-
tomata with a hierarchical composition operation
that can refine a task. It defines planning as the syn-
thesis of a control component to drive, through I/O
interactions and task refinement, the system toward
desired states. A new nondeterministic algorithm
performs this synthesis. We tackle these issues on
a theoretical basis. We formally define the repre-
sentation and prove that the two operations of par-
allel and hierarchical composition are distributive,
which is essential for the correctness and complete-
ness of the proposed planning algorithm.

1 Motivation

This paper introduces a knowledge representation framework
and an approach for planning and acting for component-based
interacting systems. We conform to the position of [Ghallab
et al., 2014] that planning and acting have to be tightly inte-
grated following two principles of a hierarchical and contin-
ual online deliberation. In this view, planned actions are re-
fined in a context-dependent way into executable commands,
which drive a system toward desired objectives. We argue
here that distributed domains add the requirement of a third
principle: interaction between communicating components.
The distribution considered here is not at the planning level.
It is specifically focused on systems defined by the composi-
tion of the models of their components. We first explain our
motivation.

A planning domain is usually modeled through a state-
transition system Σ. Σ is almost never given extensively,
but part of it is generated, along with the search, following
the specification of what an actor can do: its actions define
possible transitions in Σ. There is however another highly
expressive and practical means of generating a very large

state-transition system: through the composition of the tran-
sition models of the elementary components that constitute
the entire system. Such a design method is more natural and
adapted when the system of interest is not centralized into a
unique platform but distributed over numerous components.
These components have their own local sensors and actuators,
evolve concurrently, may be designed independently and can
be assembled by model composition in modular and possibly
changing manners.

Consider a warehouse automation infrastructure such as the
Kiva system [D’Andrea, 2012] that controls thousands of
robots moving inventory shelves to human pickers prepar-
ing customers orders. According to [Wurman, 2014], “plan-
ning and scheduling are at the heart of Kiva’s software archi-
tecture”. Right now, however, this appears to be done with
extensive engineering of the environment, e.g., fixed robot
tracks and highly structured inventory organization. A more
flexible approach, dealing with contingencies, local failures,
modular design and easier novel deployments, would model
each component (robot, shelf, refill and order preparation sta-
tions, etc.) through its possible interactions with the rest of
the system. An automatically synthesized controller coordi-
nates these interactions.

The composition approach has been in use for a long time in
the area of system specification and verification, e.g., [Harel,
1987]. Although less popular, it has also been developed in
the field of automated planning for applications that naturally
call for composition, e.g., planning in web services [Pistore et
al., 2005; Bertoli et al., 2010], or for the automation of a har-
bor or a large infrastructure [Boese and Piotrowski., 2009].
The state-transition system of a component, defined with the
usual action schema, evolves in its local states by interacting
with other components, i.e., by sending and receiving mes-
sages along state transitions. Planning consists of deciding
which messages to send to which components and when in
order to drive the entire system toward desired states.

Such a problem can be formalized with input/output au-
tomata. Planning for a system σ means generating a con-
trol automaton σc that receives the output of σ and sends
input to σ such that the behavior of the controlled pair, σ

and σc, drives σ toward goal states. A system composed of
multiple components is defined by the parallel composition



of their automata σ1‖ . . .‖σn, which describes all the possi-
ble evolutions of the n components. A planner for that sys-
tem synthesizes a control automaton that interacts with the n
σi’s such that the system reaches certain goal states. The ap-
proach is described in [Ghallab et al., 2016, Section 5.8] for
the purpose of performing refinements at the acting level; it
is shown to be solvable with nondeterministic planning algo-
rithms.

In order to address planning and acting in a uniform frame-
work, we propose to further extend this representation. We
augment the parallel composition operation, used for the
composition of the component models, with a hierarchical
task refinement operation. We call the task refinement op-
eration as hierarchical composition. We formalize planning
for distributed interacting systems in a new framework of hi-
erarchical input/output automata. The synthesis of control
automaton is done with a new nondeterministic planning al-
gorithm.

The preceding issues, being novel in the field, required to
be initially tackled at a theoretical basis, which is developed
in this paper (no application nor experimental results are re-
ported). Our contributions are the following:

• We formally define the notion of refinement for hierarchical
communicating input/output automata, and propose a for-
malization of planning and acting problems for component-
based interacting systems in this original framework.

• We prove the essential properties of this class of formal
machines, in particular that the operations of parallel com-
position and refinement are distributive, a critical feature
needed for handling this representation, the proof of which
required extensive developments.

• Distributivity allows us to show that the synthesis of a con-
troller for a set of hierarchical communicating input/output
automata can be addressed as a nondeterministic planning
problem.

• We propose a new algorithm for solving that problem, and
discuss its theoretical properties.

The rest of the paper presents the proposed representation and
its properties. The synthesis of control automaton through
planning is developed in Section 3, followed by a discussion
of the state of the art, then concluding remarks.

2 Representation

The proposed knowledge representation relies on a class of
automata endowed with composition and refinement opera-
tions.

Automata. The building block of the representation is a par-
ticular input/output automata (IOA) σ = 〈S,s0, I,O,T,A,γ〉,
where S is a finite set of states, s0 is the initial state, I,O,T
and A are finite sets of labels called respectively input, output,
tasks and actions, γ is a deterministic state transition func-
tion.

States are defined as tuples of state variables’ values, i.e., if
{x1, . . . ,xk} are the state variables of σ , and each has a finite

range xi ∈ Di, then the set of states is S ⊆ ∏i=1,k Di. We as-
sume that for any state s ∈ S, all outgoing transitions have the
same type, i.e., {u | γ(s,u) is defined} consists solely of either
inputs, or outputs, or tasks, or actions. For simplicity we as-
sume s can have only one outgoing transition if that transition
is an output or an action. Alternative actions or outputs can
be modeled by a state that precedes s and receives alternative
inputs, one of them leading to s.

We also assume all transitions to be deterministic. The se-
mantics of an IOA views inputs as uncontrollable transitions,
triggered by messages from the external world, while outputs,
tasks, and actions are controllable transitions, freely chosen
to drive the dynamics of the modeled system. An output is a
message sent to some other IOA; an action has some direct
effects on the external world. No precondition/effect spec-
ifications are needed for actions, since a transition already
spells out the applicability conditions and the effects. A task
is refined into a collection of actions.

Note that despite the assumption of deterministic transitions,
an IOA σ models nondeterminism through its inputs. For
example, a sensing action a in state s is a transition 〈s,a,s′〉;
several input transitions from s′ model the possible outcomes
of a; these inputs to σ are generated by the external world.
A run of an IOA is a sequence 〈s0,u0, . . . ,si,ui,si+1, . . .〉 such
that si+1 = γ(si,ui) for every i. It may not be finite.

Example 2.1. The IOA in Figure 1 models a door with a
spring-loaded hinge that closes automatically when the door
is open and not held. To open the door requires unlatching it,
which may not succeed if it is locked. Then it can be opened,
unless it is blocked by some obstacle. Whenever the door is
left free, the spring closes it (the “close” action shown in red).

Figure 1: A simple σspring-door model.

Parallel Composition. Consider a system consisting of n
components Σ = {σ1, . . . ,σn}, with each σi modeled as an
IOA. These components interact by sending output and re-
ceiving input messages, while also triggering actions and
tasks. The dynamics of Σ can be modeled by the parallel
composition of the components, which is a straightforward
generalization of the parallel product defined in [Bertoli et
al., 2010]. The parallel composition of two IOAs σ1 and σ2
is
σ1‖σ2=〈S1×S2,(s01 ,s02), I1∪I2,O1∪O2,T1∪T2,A1∪A2,γ〉,
where

γ((s1,s2),u) =
{

γ1(s1,u)×{s2} if u ∈ I1∪O1∪T1,

{s1}× γ2(s2,u) if u ∈ I2∪O2∪T2.

2



By extension, σ1 ‖σ2 ‖σ3 ‖ . . .‖σn is the parallel composition
of all of the IOAs in Σ. The order in which the composition
operations is done is unimportant, because parallel composi-
tion is associative and commutative.1

We assume the state variables, as well as the input and output
labels, are local to each IOA. This avoids potential confusion
in the definition of the composed system. It also allows for a
robust and flexible design, since components can be modeled
independently and added incrementally to a system.

If we restrict the n components of Σ to have no tasks but only
inputs, outputs and actions, then driving Σ toward some goal
can be addressed with a nondeterministic planning algorithm
for the synthesis of a control automaton σc that interacts with
the parallel composition σ1 ‖σ2 ‖σ3 ‖ . . .‖σn of the automata
in Σ. The control automaton’s inputs are the outputs of Σ

and its outputs are inputs of Σ. Several algorithms are avail-
able to synthesize such control automata, e.g., [Bertoli et al.,
2010].

Hierarchical Refinement. With each task we want to asso-
ciate a set of methods for hierarchically refining the task into
IOAs that can perform the task. This is in principle akin to
HTN planning [Erol et al., 1994], but if the methods refine
tasks into IOAs rather than subtasks, they produce a struc-
ture that incorporates control constructs such as branches and
loops. This structure is like a hierarchical automaton (see,
e.g., [Harel, 1987]). However, the latter relies on a state hier-
archy (a state gets expanded recursively into other automata),
whereas in our case the tasks to be refined are transitions.
This motivates the following definitions.

A refinement method for a task t is a pair µt = 〈t,σt〉,
where σt is an IOA that has both an initial state s0µ and
a finishing state s f µ . Unlike tasks in HTN planning [Nau
et al., 1999], t is a single symbol rather than a term that
takes arguments. Note that σt may recursively contain other
subtasks, which can themselves be refined. Consider an
IOA σ = 〈S,s0, I,O,T,A,γ〉 that has a transition 〈s1, t,s2〉
in which t is a task. A method µt = 〈t,σt〉 with σt =
〈Sµ ,s0µ ,s f µ , Iµ ,Oµ ,Tµ ,Aµ ,γµ〉 can be used to refine this
transition by mapping s1 to s0µ , s2 to s f µ and t to σt .2 This
produces an IOA

R(σ ,s1,µt) =

〈SR, s0R, I∪ Iµ , O∪Oµ , T ∪Tµ \{t}, A∪Aµ , γR〉,
where

SR = (S\{s1,s2})∪Sµ ,

s0R =

{
s0 if s1 6= s0,

s0µ otherwise,

1The proof involves showing that every run of σ1 ‖ σ2 is a run of
σ2 ‖ σ1 and vice-versa. The final paper will include a link to the full
proofs of this and the other results in this paper.

2As a special case, if σ contains multiple calls to t or σt contains
a recursive call to t, then the states of σt must first be renamed,
in order to avoid ambiguity. This is analogous to standardizing a
formula in automated theorem proving.

γR(s,u) =



γµ(s,u) if s ∈ Sµ ,

s0µ if s ∈ S and γ(s,u) = s1,

s f µ if s ∈ S and γ(s,u) = s2,

γ(s,u) if s ∈ S\{s1,s2} and γ(s,u) /∈ {s1,s2},
γ(s1,u) if s = s0µ ,

γ(s2,u) if s = s f µ .

Note that we do not require every run in σt to actually end in
s f µ . Some runs may be infinite, some other runs may end in a
state different from s f µ . Such requirement would be unreal-
istic, since the IOA of a method may receive different inputs
from other IOA, which cannot be controlled by the method.
Intuitively, s f µ represents the “nominal” state in which a run
should end, i.e., the nominal path of execution.3

Figure 2: An IOA for a robot going through a doorway.

Example 2.2. [[[DANA SAYS: rewritten, please check.]]]
[[[SUNANDITA SAYS: Checked]]] Figure 2 shows an IOA for
a robot going through a doorway. It has two tasks: move
and cross door. It sends to σspring-door the input free if it gets
through the doorway successfully. The move task can be re-
fined using the σmove method in Figure 3.

Figure 3: The IOA σmove of a method for the move task.

Example 2.3. [[[DANA SAYS: rewritten, please check.]]]
[[[SUNANDITA SAYS: Checked]]] Figure 3 shows the IOA of
a refinement method for the move task in Figure 2. σmove
starts with a start monitor output to activate a monitor IOA
that senses the distance to a target. It then triggers the task
get closer to approach the target. From state v2 it receives
two possible inputs: close or far. When close, it ends the
monitor activity and terminates in v4, otherwise it gets closer
again.

Figure 4 shows the IOA of a method for the monitor task. It
waits in state m0 for the input start monitor, [[[DANA SAYS:
Figure 3 calls it start monitor, but Figure 4 calls it start. Same

3Alternatively, we may assume we have only runs that terminate,
and a set of finishing states S f µ . We simply add a transition from
every element in S f µ to the nominal finishing state s f µ .
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problem with end monitor. Please fix.]]] [[[SUNANDITA SAYS:
Updated. Now we have start monitor, end monitor and con-
tinue monitor consistently]]] then triggers the sensing action
get-distance. In response, the execution platform may re-
turn either far or close. In states m5 and m6, the input con-
tinue monitor transitions to m1 to sense the distance again,
otherwise the input end monitor transitions to the final state
m7.

Figure 4: The IOA σmonitor of a monitoring method.

Planning Problem. We are now ready to define the planning
problem for this representation. Consider a system modeled
by Σ= {σ1, . . . ,σn} and a collection of methods M , such that
for every task t in Σ or in the methods of M there is at least
one method µt ∈M for task t. An instantiation of (Σ,M )
is obtained by recursively refining every task in the composi-
tion (σ1 ‖σ2 ‖ ...σn) with a method in M , down to primitive
actions. Let (Σ,M )∗ be the set of all possible instantiations
of that system, which is enumerable but not necessarily finite.
Among this set, some instantiations are desirable with respect
to an objective.

A planning problem is defined as a tuple P = 〈Σ,M ,Sg〉,
where Sg is a set of goal states. It is solved by finding re-
finements for tasks in Σ with methods in M . We mentioned
earlier that this is in principle akin to HTN planning. How-
ever, here we have IOAs that receive inputs from the environ-
ment or from other IOAs, thus modelling nondeterminism.
We need to control the set of IOAs Σ in order to reach (or to
try to reach) a goal in Sg. For this reason a solution is defined
by introducing a control automaton that drives an an instan-
tiation of (Σ,M ) to meet the goal Sg. A control automaton
drives an IOA σ by receiving inputs that are outputs of σ and
generating outputs which act as inputs to σ . [Ghallab et al.,
2016, Section 5.8]

Let σc be a control automaton for an IOA σ f which is an in-
stantiation of (Σ,M ), i.e., the inputs of σc are the outputs
of σ f , and the outputs of σc are the inputs of σ f . A solu-
tion for the planning problem P = 〈Σ,M ,Sg〉 is an IOA σflat
in (Σ,M )∗ and a control automaton σc such that some runs
of the parallel composition of σc with σflat reach a state in
Sg. Note that the notion of solution is rather weak, since it
guarantees that just some runs reach a goal state. Other runs
may never end, or may reach a state that is not a goal state.
[[[DANA SAYS: Rewrote what follows to correct some errors.]]]
We will use the same terminology as in [Ghallab et al., 2016,
Section 5.2.3]: a solution is safe if all of its finite runs termi-
nate in goal states, and a solution is either cyclic or acyclic

Figure 5: Control automaton for the IOAs in Figures 1 and 2.

depending on whether it has any cycles.4

[[[DANA SAYS: Removed an incorrect paragraph
here.]]]

Example 2.4. Figure 5 shows a control automaton for the
IOAs in Figures 1 and 2. This control automaton is for the
system when the move task has not been refined.

Figure 6: A control automaton for the door component, re-
fined robot component for going through a doorway, and the
monitor component.

[[[DANA SAYS: rewritten, please check.]]] [[[SUNANDITA SAYS:
This control automaton also controls the robot component.
Added that. ]]] The control automaton in Figure 6 controls the
door IOA in Figure 1, the robot IOA in Figure 2, the move
IOA in Figure 3, and the monitor IOA in Figure 4.

3 Solving Planning Problems

This section describes our planning algorithm,
MakeControlStructure (Figure 7). It solves the planning
problem 〈Σ,M ,Sg〉 where Σ is the set of IOAs, M is the
collection of methods for refining different tasks and Sg is
the set of goal states. The solution is a set of IOAs Σset and
a control automaton σc such that Σset driven by σc reaches
the desired goals states, Sg. Depending on how one of its

4In the terminology of [Cimatti et al., 2003], a weak solution is
what we call a solution, a strong cyclic solution is what we call a
safe solution, and a strong solution is what we call an acyclic safe
solution.
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subroutines is configured, MakeControlStructure can either
search for acyclic safe solutions, or search for safe solutions
that may contain cycles. [[[DANA SAYS: I removed the rest
of this paragraph. It isn’t really understandable until the
reader has read the rest of the section.]]] [[[SUNANDITA SAYS:
OK. We should say somewhere that Σset fully determines
an instantiation of (Σ,M ). Adding it in the description of
MakeControlStructure]]]

Before getting into the details of how MakeControlStructure
works, we need to discuss a property on which it depends.
Given a planning problem, MakeControlStructure constructs a
solution by doing a sequence of parallel composition and re-
finement operations. An important property is that composi-
tion and refinement can be done in either order to produce the
same result. Thus the algorithm can choose the order in which
to do those operations (line (*) in Figure 7), which is useful
because the order affects the size of the search space.

Theorem 3.1 (distributivity). Let σ1 and σ2 be IOAs,
〈s1, t,s2〉 be a transition in σ1, and µt = 〈t,σt〉 be a method
for t. Then

R(σ1,s1,µt) ‖ σ2 =R(σ1 ‖ σ2,s∗1,µt),

where s∗1 = {(s1,s) | s ∈ Sσ2}.
Sketch of proof. We prove the theorem by showing that ev-
ery run (defined in Section 2) of R(σ1,s1,µt) ‖ σ2 is a run of
R(σ1 ‖ σ2,s∗1,µt) and vice-versa. To do this, we divide a run
into unique sub-sequences, calling them projections which
are responsible for transitions along each of the IOA involved
in a parallel or hierarchical composition. We manipulate
these projections to form new sequences while maintaining
a set of constraints which they satisfy. Then we show that
satisfying this set of constraints is enough for the sequence to
be a run of an IOA, thus proving our theorem.

Algorithm. We now discuss our planning algorithm, which
is shown in Figure 7.

[[[DANA SAYS: Rewritten, please check.]]] [[[SUNANDITA SAYS:
Looks fine.]]] MakeControlStructure’s two main steps are as
follows. First, it uses the MakeFlat subroutine (described in
the next paragraph) to build an IOA σflat that is an instantia-
tion of (Σ,M ) and a set of IOAs Σset that fully determine σflat.
[[[SUNANDITA SAYS: Added the part about Σset ]]] Next, Make-
ControlStructure uses the MakeControlAutomaton subroutine
to create a control automaton σc for Σ. We do not include
pseudocode for MakeControlAutomaton, because it may be
any of several planning algorithms published elsewhere. For
example, the algorithm in [Bertoli et al., 2010] will gener-
ate an acyclic safe solution if one exists, and [Bertoli et al.,
2010] discusses how to modify that algorithm so that it will
find safe solutions that aren’t restricted to be acyclic. Several
of the algorithms in [Ghallab et al., 2016, Chapter 5] could
also be used.

MakeFlat constructs an instantiation σflat of (Σ,M ) by doing
a series of parallel and hierarchical compositions. It randomly
selects an IOA from Σ to start with and then goes through
a loop which makes the choice of whether to do a parallel
composition or a refinement at each iteration. The size of

MakeControlStructure (Σ,M ,Sg)
select an IOA σ from Σ and remove it
(σ f lat ,Σset)←MakeFlat(Σ,σ ,M ,{σ})
σc← MakeControlAutomaton (σ f lat ,Sg)
return (σc,Σset)

MakeFlat (Σ,σ0,M ,Σ0
set)

σ f ← σ0; Σset ← Σ0
set

loop
if σ f ∈ (Σ,M )∗, then return (σ f ,Σset)
choose which-first ∈ {compose,refine} (*)
if (which-first = compose)

select IOA σ from Σ that interacts with σ f
σ f ← σ f ‖ σ

Σset ← Σset ∪{σ}
else

(σ f ,Σ
′
set)← ComputeRefinement(Σ,σ f ,M )

Σset ← Σset ∪Σ′set

ComputeRefinement (Σ,σ f ,M )
select a task t from Tσ f such that
〈s1, t,s2〉 is a transition in σ f

select a method, µt = 〈t,σt〉 from M for refining t
S← {IOA that interact with σt}
tnew, σtnew ← new unique names for t and σt
σ ′t ← σtnew ‖ (‖σ ′∈Sσ ′)
σ f ←R(σ f ,s1,〈tnew,σ

′
t 〉)

return (σ f ,{σtnew}∪S)

Figure 7: Pseudocode for our planning algorithm.

the search space depends on the order in which the choices
are made. In an implementation, the choice would be made
heuristically. We believe the heuristics will be analogous
to some of the heuristics for constraint-satisfaction problems
[Dechter, 2003; Russell and Norvig, 2009]. MakeFlat exits
when the IOA σ f is an instantiation of (Σ,M ) i.e., there are
no more tasks to be refined and all possible interactions have
been taken in account through parallel composition.

ComputeRefinement is a subroutine of MakeFlat which does
task refinement. It applies a refinement method µt selected
from M to refine a task t. This involves doing both a refine-
ment and a parallel composition. Once the task has been re-
fined, ComputeRefinement returns the resulting IOA σ f from
this hierarchical composition and a set of IOAs that uniquely
determine σ f . At this step, we also rename the task t and
body(µt) to tnew and σtnew , where tnew is a new unique name
for t. This renaming is required to identify body(µt) uniquely
for each refinement and avoid name conflicts when µt is cho-
sen multiple times to refine different instances of t.

Theorem 3.2. MakeControlStructure is sound and complete.

Sketch of proof. The soundness and completeness
of MakeControlStructure depends on the soundness
and completeness of its subroutines, MakeFlat and
MakeControlAutomaton. We show MakeFlat is sound
by proving that every IOA σflat created by MakeFlat is an
instantiation of (Σ,M ). This is done using the distributivity
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theorem (Theorem 3.1). We show that MakeFlat is complete
by demonstrating that it can build any instantiation σflat of
(Σ,M ) because it considers all possible hierarchical and
parallel compositions. The proof of soundness and complete-
ness of MakeControlAutomaton is present in [Bertoli et al.,
2010]. We proof the completeness of MakeControlStructure
by showing that if there is a solution control automaton σc for
Σ, then there is an instantiation σflat of (Σ,M ) corresponding
to it and then using the completeness properties of MakeFlat
and MakeControlAutomaton.

4 Related Work

To the best of our knowledge, no previous approach to plan-
ning has proposed a formal framework based on hierarchi-
cal input/output automata. The idea of hierarchical plan-
ning was proposed long time ago, see, e.g., [Sacerdoti, 1974;
Tate, 1977; Yang, 1990]. In these works, high level plans are
sequences of abstract actions that are refined into sequences
of actions at a lower level of abstraction. In our work, plans
are represented with automata. This allows us to express
plans with rich control constructs, not only sequences of ac-
tions. We can thus represent conditional and iterative plans
that are most often required when we refine plans at a lower
level of abstraction. Moreover, none of these systems can
represent components that interact among each other, and
that act by interacting with the external environment, like in
our representation based on input/output automata. These are
also the main differences with more recent works, such as
the work based on the idea of angelic hierarchical planning
[Marthi et al., 2007] and of its extension with optimal and
online algorithms [Marthi et al., 2008].

Some approaches manage plans with rich control constructs,
see, e.g., the PRS [Georgeff et al., 1985] and Golog [McIl-
raith and Fadel, 2002] systems. However, PRS does not
provide the ability to reason about alternative refinements.
Some limited planning capabilities were added to PRS by
[Despouys and Ingrand, 1999] to anticipate execution paths
leading to failure by simulating the execution of procedures
and exploring different branches. In Golog, it is possible
to specify plans with complex actions and to reason about
them in a logical framework. However, the formal frame-
work is not hierarchical and the notion of refinement is
not formalized. Moreover, neither PRS nor Golog allows
for an explicit representation of interactions among different
systems or components. Hierarchical and procedure based
frameworks (similar to PRS) have been used in robotic sys-
tems, see, e.g., RAP [Firby, 1987], TCA [Simmons, 1992;
Simmons and Apfelbaum, 1998], XFRM [Beetz and McDer-
mott, 1994], and the survey [Ingrand and Ghallab, 2014]. All
these works have addressed the practical problem of provid-
ing reactive systems for robotics, but none of them is based
on a formal account as the one provided in this paper.

Our approach shares some similarities with the hierarchical
state machines [Harel, 1987], which has been used to address
problems different from planning and acting, like the problem
of the specification and verification of reactive systems. Our

work is based on the theory of input/output automata (see,
e.g., [Lynch and Tuttle, 1988]), which has been used to spec-
ify distributed discrete event systems, and to formalize and
analyse communication and concurrent algorithms.

I/O automata have been used to formalize interactions among
web services and to plan for their composition [Pistore et al.,
2005; Bertoli et al., 2010]. That work was the basis for the ap-
proach described in [Ghallab et al., 2016, Section 5.8]. In our
paper, beyond providing a framework that is independent of
the web service domain, we extend the representation signif-
icantly with hierarchical input/output automata, that contain
compound tasks. Moreover, we provide a theory that formal-
izes the refinement of tasks. Finally, we describe a novel plan-
ning algorithm for synthesizing control automata, that can
deal with hierarchical refinements. Our work is also signif-
icantly different from the work in [Bucchiarone et al., 2012;
Bucchiarone et al., 2013], where abstract actions are repre-
sented with goals, and where (online) planning can be used to
generate interacting processes that satisfy such goals.

Our framework has some similarities with HTN planning
[Nau et al., 1999], since tasks can be refined with different
methods. However, our methods are significantly different
from HTN ones in at least two fundamental aspects: (i) our
methods are automata that can encode rich control constructs
rather than simple sequences of primitive tasks; (ii) our meth-
ods can interact among themselves. This allows us to rep-
resent interacting and distributed systems and components.
This is also a main difference with the work proposed in ex-
tensions of HTN planning to deal with nondeterministic do-
mains [Kuter et al., 2009].

5 Conclusions and Future Work

We have developed a formalism for synthesizing systems that
are composed of communicating components. This synthesis
is done by combining parallel composition of input/output au-
tomata with hierarchical refinement of tasks into input/output
automata. This approach can be used to synthesize plans that
are not just sequences of actions, but include rich control con-
structs such as conditional and iterative plans. For synthesis
of such plans, we describe a novel planning algorithm for syn-
thesizing control automaton, that can deal with hierarchical
refinements.

We believe this work will be important as a basis for algo-
rithms to synthesize real-time systems for web services, au-
tomation of large physical facilities such as warehouses or
harbors, and other applications. In our future work, we in-
tend to implement our algorithm and test it on representa-
tive problems from such problem domains. For that pur-
pose, an important topic of future work will be to extend
our algorithm for use in continual online planning. As an-
other topic for future work, recall that Theorem 3.1 (Dis-
tributivity) shows that parallel and hierarchical composition
operations can be done in either order and produce the same
result. The size of the planner’s search space depends on
the order in which these operations are done, and we want
to develop heuristics for choosing the best order. Some of
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these heuristics are likely to be similar to the heuristics used
to guide constraint-satisfaction algorithms [Dechter, 2003;
Russell and Norvig, 2009].

Finally, there are several ways in which it would be useful to
generalize our formalism. One is to allow tasks and methods
to have parameters, so that a method can be used to refine a
variety of related tasks. Another is to extend the formalism to
support cases where two or more methods can collaborate to
perform a single task.

References

[Beetz and McDermott, 1994] M. Beetz and D. McDermott.
Improving robot plans during their execution. In AIPS,
1994.

[Bertoli et al., 2010] P. Bertoli, M. Pistore, and P. Traverso.
Automated composition of Web services via planning in
asynchronous domains. Artificial Intelligence, 174(3-
4):316–361, 2010.

[Boese and Piotrowski., 2009] F. Boese and J. Piotrowski.
Autonomously controlled storage management in vehicle
logistics applications of RFID and mobile computing sys-
tems. Intl. J. RF Technologies: Research and Applications,
1(1):57–76, 2009.

[Bucchiarone et al., 2012] A. Bucchiarone, A. Marconi,
M. Pistore, and H. Raik. Dynamic adaptation of fragment-
based and context-aware business processes. In Intl. Conf.
Web Services, pages 33–41, 2012.

[Bucchiarone et al., 2013] A. Bucchiarone, A. Marconi,
M. Pistore, P. Traverso, P. Bertoli, and R. Kazhamiakin.
Domain objects for continuous context-aware adaptation
of service-based systems. In ICWS, pages 571–578, 2013.

[Cimatti et al., 2003] A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. Weak, strong, and strong cyclic planning via
symbolic model checking. Artificial Intelligence, 147(1-
2):35–84, 2003.

[D’Andrea, 2012] R. D’Andrea. A revolution in the ware-
house: A retrospective on Kiva Systems and the grand
challenges ahead. IEEE Trans. Automation Sci. and Engr.,
9(4):638–639, 2012.

[Dechter, 2003] R. Dechter. Constraint Processing. Morgan
Kaufmann, 2003.

[Despouys and Ingrand, 1999] O. Despouys and F. Ingrand.
Propice-Plan: Toward a unified framework for planning
and execution. In ECP, 1999.

[Erol et al., 1994] K. Erol, J. Hendler, and D. S. Nau.
UMCP: A sound and complete procedure for hierarchi-
cal task-network planning. In AIPS, pages 249–254, June
1994.

[Firby, 1987] R. J. Firby. An investigation into reactive plan-
ning in complex domains. In Proc. AAAI, pages 202–206.
AAAI Press, 1987.

[Georgeff et al., 1985] M. P. Georgeff, A. L. Lansky, and
P. Bessière. A procedural logic. In IJCAI, pages 516–523,
1985.

[Ghallab et al., 2014] M. Ghallab, D. S. Nau, and
P. Traverso. The actor’s view of automated planning
and acting: A position paper. Artificial Intelligence,
208:1–17, March 2014.

[Ghallab et al., 2016] M. Ghallab, D. S. Nau, and
P. Traverso. Automated Planning and Acting. Cam-
bridge University Press, 2016.

[Harel, 1987] D. Harel. Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming,
8(3):231–274, 1987.

[Ingrand and Ghallab, 2014] F. Ingrand and M. Ghallab. De-
liberation for autonomous robots: A survey. Artificial In-
telligence, 2014.

[Kuter et al., 2009] Ugur Kuter, D. S. Nau, M. Pistore, and
P. Traverso. Task decomposition on abstract states, for
planning under nondeterminism. Artificial Intelligence,
173:669–695, 2009.

[Lynch and Tuttle, 1988] N. A. Lynch and M. R. Tuttle. An
introduction to input output automata. CWI Quarterly,
2(3):219–246, 1988.

[Marthi et al., 2007] B. Marthi, S. J. Russell, and J. Wolfe.
Angelic semantics for high-level actions. In ICAPS, 2007.

[Marthi et al., 2008] B. Marthi, S. J. Russell, and J. Wolfe.
Angelic hierarchical planning: Optimal and online algo-
rithms. In ICAPS, pages 222–231, 2008.

[McIlraith and Fadel, 2002] S. A. McIlraith and R. Fadel.
Planning with complex actions. In Proc. NMR 2002, pages
356–364, 2002.

[Nau et al., 1999] D. S. Nau, Y. Cao, A. Lotem, and
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