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STABILIZATION OF DETERMINISTIC CONTROL SYSTEMS

UNDER RANDOM SAMPLING: OVERVIEW AND RECENT

DEVELOPMENTS

ANEEL TANWANI, DEBASISH CHATTERJEE, AND DANIEL LIBERZON

Abstract. This chapter addresses the problem of stabilizing continuous-time

deterministic control systems via a sample-and-hold scheme under random
sampling. The sampling process is assumed to be a Poisson counter, and

the open-loop system is assumed to be stabilizable in an appropriate sense.

Starting from as early as mid-1950’s, when this problem was studied in the
PhD dissertation of R.E. Kalman, we provide a historical account of several

works that have been published thereafter on this topic. In contrast to the

approaches adopted in these works, we use the framework of piecewise determ-
inistic Markov processes to model the closed-loop system, and carry out the

stability analysis by computing the extended generator. We demonstrate that
for any continuous-time robust feedback stabilizing control law employed in

the sample-and-hold scheme, the closed-loop system is asymptotically stable

for all large enough intensities of the Poisson process. In the linear case, for
increasingly large values of the mean sampling rate, the decay rate of the

sampled process increases monotonically and converges to the decay rate of

the unsampled system in the limit. In the second part of this article, we fix
the sampling rate and address the question of whether there exists a feed-

back gain which asymptotically stabilizes the system in mean square under

the sample-and-hold scheme. For the scalar linear case, the answer is in the
affirmative and a constructive formula is provided here. For systems with di-

mension greater than 1 we provide an answer for a restricted class of linear

systems, and we leave the solution corresponding to the general case as an
open problem.

1. Introduction

This chapter addresses the problem of stabilization of sampled-data control sys-
tems under random sampling. Let (τn)n∈N denote a monotonically increasing se-
quence in [0,+∞[ with τ0 := 0. Consider a nonlinear control system

(1) ẋ(t) = f
(
x(t), u(t)

)
, x(0) given, t > 0,

where f : Rd × Rm → Rd is a continuously differentiable map, and the control
process t 7→ u(t) is constant on each [τn, τn+1[ for each n. The corresponding
solution

(
x(t)

)
t>0

of (1) is referred to as the state process. We shall comment on

the precise properties of the solutions of (1) momentarily. Control systems where
the control process gets updated at the discrete time instants (τn)n∈N are referred
to as sampled-data control systems [Kal57, Ack85, CF95], and typically arise when
implementing controllers using a computer [ÅW97, FPW97], or in the context of
networked control systems [MS09, YB13, Hes14].
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Since any admissible control process t 7→ u(t) defined above can be written as

(2) u(t) =

+∞∑
k=0

u(τk) · 1[τk,τk+1[(t) for t > 0,

it is clear that the two key ingredients of sampled-data control systems are the
sampling times (τk)k∈N and the control values

(
u(τk)

)
k∈N. Different classes of these

two ingredients are possible: the former may be periodic [WBB01, NT04, NG05],
state-dependent [Tab07, Åst08, HJT12, QGMY14] or random [Kal57, HT06]; and
the latter may be a random sequence generated by a randomized Markovian policy
as defined in [ABFG+93] or just a feedback from the states at the sampling instants
[HT06, Hes14], etc. One of the fundamental problems of interest is to provide a
description of these two components (often in the form of an algorithm) that results
in stability of the closed-loop system. Different approaches have been developed
for the necessary analysis depending on how the sampling instants (τn)n∈N are
chosen: see [Ack85] for an overview of classical tools in linear systems with periodic
sampling, the papers [NTK99, NT04, LNT14] provide tools specifically suited for
nonlinear systems, and the approaches used for optimizing certain performance
criterion can be found in [CF95, BB08]. In this article, we are interested in the
situation where the sampling times are generated randomly. Formally, we define
Nt to be the number of sampling instants before (and including) time t as

(3) Nt := sup
{
n ∈ N

∣∣ τn 6 t} for t > 0,

and stipulate that the sampling process (Nt)t>0 is a continuous-time stochastic
process satisfying the basic requirement

(4) τNt
−−−−→
t↑+∞

+∞ almost surely.

It is assumed that there is an underlying probability triplet (Ω,F ,P), sufficiently
rich, that provides the substrate for these processes (i.e., each random variable
considered here is defined on (Ω,F ,P)), and in the sequel we shall denote the
mathematical expectation with respect to the probability measure P by E[·].

Due to our assumptions on the random sequence (τk)k∈N and the right-hand side
f of (1), it follows that, P-almost everywhere on the sample space Ω, Carathéodory
solutions of (1) exist for a sufficiently small interval of time containing t = 0. In
addition, we assume that solutions of (1) exist for all times. Typically, the sampling
process (Nt)t>0 is constructed by means of a renewal process [Hes14, AHS12]: inde-

pendent and identically distributed positive random variables (Sn)n∈N∗ are defined

on (Ω,F ,P),1 with the probability distribution function of S1 being Fhld(t) :=
P(S1 6 t) for t > 0, and the sequence (τn)n∈N is defined according to τ0 := 0 and

τk :=
∑k
`=1 S` for k ∈ N∗. The random variable Sn is the n-th holding time.

Typical control problems in this setting consist of the design of controllers (feed-
backs) for stabilization [HT06, ZWY16], optimal control [CF95, ACM00], state
estimation2 [MS03, SSF+04], etc., and we will study the problem of stabilization
in this article. A mapping t 7→ x(t) that satisfies (1) in the preceding setting is,
naturally, a stochastic process, and consequently, a library of different notions of
stochastic stability are available to us [Koz69, Kha12]. We will restrict our attention

1For us N∗ := N \ {0}.
2In contrast to the continuous-time systems given in (1), the references indicated here in the

context of state estimation problems deal with discrete-times linear systems, and the arrival of

observations is modeled as a random process.
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mostly to the particularly important property of stability in the mean and mean-
square—especially well-studied in the context of linear models [Kus67, CFT13]—in
the sequel.

Finally, we note a connection with the work of Roberto Tempo, to whom this
article is dedicated, and his coworkers on randomized algorithms in control theory
[TCD12]. That work asks the question of how many random samples in space are
needed to obtain a sufficient guarantee that a property of interest holds over the
whole space, whereas here we are asking how frequently we should sample randomly
in time so that the feedback is still stabilizing.

2. Connections with piecewise deterministic Markov processes

This section serves the purpose of demonstrating that sampled-data control
systems under random sampling can be readily recast as piecewise deterministic
Markov processs (PDMP); consequently, typical control problems can be immedi-
ately addressed under this rather general and well-established umbrella framework
[Dav84, Dav93].

To start our discussion, we recall that the sequence of holding times (Sn)n∈N∗
is, typically, independent and identically distributed. The assumption of S1 being
an exponential random variable with a given positive intensity λ is fairly common,
and the resulting sampling process (Nt)t>0 is, consequently, a Poisson process with

intensity λ. Recall [SK08, Theorem 2.3.2] that the Poisson process of intensity
λ > 0 is a continuous-time random process

(
Nt
)
t>0

taking values in N∗, with

N0 = 0, for every n ∈ N∗ and 0 =: t0 < t1 < · · · < tn < +∞ the increments
{Ntk − Ntk−1

}nk=1 are independent, and Ntk − Ntk−1
is distributed as a Poisson-

λ(tk − tk−1) random variable for each k. The Poisson process is among the most
well-studied processes, and standard results (see, e.g., [SK08, §2.3]) show that it
is memoryless and Markovian. Nevertheless, the resulting state process

(
x(t)

)
t>0

obtained as a solution of (1) under Poisson sampling is not controlled Markovian
in general. Recall that an Rν-valued random process

(
x̃(t)

)
t>0

controlled by an

Rm-valued random process
(
ũ(t)

)
t>0

is controlled Markov [FS06, §III.6] if for every

t, h > 0 and every Borel set S ⊂ Rν we have

P
(
x̃(t+ h) ∈ S

∣∣ x̃(s), ũ(s) for s ∈ [0, t]
)

= P
(
x̃(t+ h) ∈ S

∣∣ x̃(t), ũ(t)
)
.

Indeed, suppose that we intend to employ feedback at sampling instants so that
u(t) = u(τNt) = κ

(
x(τNt)

)
for some measurable map κ, fix t, t′ > 0, and suppose

that the history
{(
x(s), u(s)

) ∣∣ s ∈ [0, t]
}

up to time t is available to us. Of course,
any finite k samples may have occured during [t, t+ t′]. If k = 0, then x(τNt

) is not
needed to find the conditional distribution of x(t+t′) given

{(
x(s), u(s)

) ∣∣ s ∈ [0, t]
}

.
If k = 1, then the conditional distribution of x(t + t′) depends on the value of
x(τNt): since τNt+1 ∈ ]t, t + t′], the control action at τNt+1 depends on x(τNt+1),
and influences x(t+ t′). A similar reasoning holds for all k > 2.

The controlled Markovian property is extremely desirable in practice, and to
arrive at a controlled Markov process in the context of (6), we proceed to adjoin
an additional random vector by enlarging the state-space. Corresponding to the
state process

(
x(t)

)
t>0

that solves (1), we define the continuous-time last-sample

process
(
x(τNt

)
)
t>0

; at each time t, x(τNt
) is the value of the vector of states

at the last sampling time immediately preceding t. In other words, Rd-valued
process

(
x(τNt)

)
t>0

attains the value of the states at each sampling instant and
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stays constant over the corresponding holding time. It turns out to be convenient
to introduce the continuous-time error process

(
e(t)

)
t>0

defined by

(5) e(t) := x(t)− x(τNt
) for t > 0.

With the joint stochastic process
(
x(t), e(t)

)
t>0

taking values in Rd ×Rd, we write

the system of interest as a stochastic process described by the ordinary differential
equation

(6a)

(
ẋ(t)
ė(t)

)
=

(
f
(
x(t), u(t)

)
f
(
x(t), u(t)

)) for almost all t > 0,

and at each sampling time τNt
the process

(
x(t), e(t)

)
t>0

is reset according to

(6b)

(
x(τNt)
e(τNt

)

)
=

(
x(τ−Nt

)
0

)
with the convention that x(τ−0 ) = x0.

It is readily observed that the joint process
(
x(t), e(t)

)
t>0

is controlled Markovian.

We sometimes abbreviate the right-hand side of (6a) by

Rd × Rm 3 (x, u) 7→ F (x, u) :=

(
f(x, u)
f(x, u)

)
∈ Rd × Rd.

We shall be concerned exclusively with feedback controls in this article. In other
words, we stipulate that there exist some measurable map

Rd × Rd 3 (x, e) 7→ κ(x, e) ∈ Rm

such that our control process becomes, in the notation of (2),

u(t) =

+∞∑
k=0

κ
(
x(τk), e(τk)

)
1[τk,τk+1[(t) for t > 0.

In other words, with κ substituted into (6a), our closed-loop system becomes

(7)

(
ẋ(t)
ė(t)

)
=

(
f
(
x(t), κ

(
x(τNt

), e(τNt
)
))

f
(
x(t), κ

(
x(τNt

), e(τNt
)
))) for almost all t > 0,

while the reset map (6b) stays intact.

With the class of admissible feedback control processes as described above, the
description (7)-(6b) provides the basic ingredients to transit to the framework of
PDMPs. Indeed, we see readily that the standard conditions for a PDMP [Dav93,
(24.8), p. 62] hold for the joint process

(
x(t), e(t)

)
t>0

described by (7)-(6b) with

◦ the vector field X in [Dav93, §24] being the map (x, e) 7→ F
(
x, κ(x, e)

)
,

◦ the jump rate λ in [Dav93, §24] being a non-negative measurable function such

that Fhld(t) = exp
(∫ t

0
λ(s) ds

)
, which can be readily derived for particular cases

of probability distribution functions Fhld as in [Dav93, p. 37], and
◦ the stochastic kernel Q for the reset map in [Dav93, §24, p. 58] is the Dirac

measureQ
(
B; (x, e)

)
:= δ{(x,0)}(B) = 1B(x, 0) for every Borel subset B ⊂ Rd×Rd

in the context of (7)-(6b).

In this chapter, we will work exclusively under the assumption that the controller
has access to perfect state measurements at sampling times. While, in general,
it is of interest to consider feedbacks which depend on the measurement error at
sampling times e(τNt), we can drop the dependence of feedback κ on e(τNt) in
the case of perfect measurements since e(τNt

) = 0, for each t ∈ [0,+∞[, in such
cases. In the sequel, we shall employ the feedback exclusively as a function of
x(τNt

), which is described in (5) by the difference between x(t) and e(t), i.e, we
shall employ some measurable map κ′ : Rd → Rm such that κ(x, e) = κ′(x− e) for
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all (x, e) ∈ Rd × Rd; we shall abuse notation and continue to use the symbol κ for
κ′ since there is no risk of confusion.

Remark 2.1. As a consequence of the preceding discussion, we observe that the
techniques in [Dav93, Chapters 4, 5] (including several results on stability and op-
timal control) carry over at once to the setting of sampled-data control systems
under random sampling as special cases. In particular, the so-called extended gen-
erator of the PDMP (7)-(6b) is a particularly useful device for the purposes of
analysing stability and optimality, and we shall look at it in greater detail below in
the context of stability.

The extended generator of the joint process
(
x(t), e(t)

)
t>0

is the linear operator

ψ 7→ Lψ defined by

(8)

Rd × Rd 3 (y, z) 7→ Lψ(y, z) :=

lim
h↓0

1

h

(
E
[
ψ
(
x(t+ h), e(t+ h)

) ∣∣x(t) = y, e(t) = z
]
− ψ(y, z)

)
∈ R

for all maps ψ : Rd × Rd → R such that the limit is defined everywhere. It is pos-
sible to directly write down the extended generator of

(
x(t), e(t)

)
t>0

from [Dav93,

(26.15), p. 70]. We provide the following Proposition catering to the most standard
special case of sampling process being Poisson; a direct proof of Proposition 2.2 is
included in Appendix .1 for completeness.

Proposition 2.2. If the sampling process (Nt)t>0 is Poisson with intensity λ > 0,

then the joint process
(
x(t), e(t)

)
t>0

described above is Markovian. Moreover, for

any function Rd × Rd 3 (y, z) 7→ ψ(y, z) ∈ [0,+∞[ with at most polynomial growth
as ‖(y, z)‖ → +∞, we have

(9) Lψ(y, z) =
〈
∇yψ(y, z) +∇zψ(y, z), f

(
y, κ(y − z)

)〉
+ λ
(
ψ(y, 0)− ψ(y, z)

)
.

We submit that this extended generator serves as an important tool in most
control-theoretic problems associated with this class of randomly sampled-data sys-
tems. In particular, (9) provides the following Dynkin’s formula

(10) E
[
ψ(x(t), e(t))

]
= E

[
ψ(x(0), e(0))

]
+ E

[∫ t

0

Lψ(x(s), e(s)) ds

]
,

which allows us to establish connections with definitive results on stability.

In the sequel, while we provide an account of stability results obtained by dif-
ferent means in prior works, the focus is on using the extended generator to obtain
conditions under which the sampled-data systems are asymptotically stable.

3. Lower bounds on the sampling rate

We employ the tools from the previous section to study the following qualitative
property of the closed-loop system (7)-(6b). The closed-loop system (7)-(6b) is
globally exponentially stable in the second moment [Kha12, Chapter 1, p. 23] if
there exist two constants C, µ > 0 such that

for every x(0) ∈ Rd and t > 0, E
[
‖x(t)‖2

∣∣x(0)
]
6 C ‖x(0)‖2 e−µt.

This particular property of stochastic stability is standard, and says that, on an
average, the square norm of the system states converges exponentially fast to 0
uniformly from every initial condition.
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As a first step in obtaining conditions which guarantee this property, we specify
the class of feedback controls in (7). The natural candidates for feedback controls,
for which we solve the sampled-data problem, are the ones which asymptotically
stabilize the system when the measurements of the state are available in continuous
time (without sampling), and possess some robustness properties with respect to
errors in the measurement of state. To attribute these properties to the feedback
law κ : Rd → Rm appearing in (7), it is assumed that there is a function U : Rd →
[0,+∞[ such that

(L1) there exist α, α > 0 satisfying

α|x|2 6 U(x) 6 α|x|2 for all x ∈ Rd;
(L2) there exist α, γ > 0 which satisfy

〈∇U(x), f(x, κ(x− e))〉 6 −αU(x) + γU(e) for all (x, e) ∈ Rd × Rd;
(L3) there exist χx > 0, χe ∈ R satisfying

〈∇U(e), f(x, κ(x− e))〉 6 χx U(x) + χeU(e) for all (x, e) ∈ Rd × Rd.

Restricting our attention to such a class of controllers, we are interested in ad-
dressing the following problem:

Problem 1. Consider the system (7)-(6b) with (Nt)t>0 in (3) a Poisson process of

intensity λ. If the feedback law κ : Rd → Rm is such that (L1)-(L3) hold
for some function U : Rd → [0,+∞[, does there exist λ > 0 such that the
closed-loop system (7)-(6b) is globally exponentially stable in the second
moment?

It is noted that, between two consecutive updates in the controller value, the
process (x, e) follows the differential equation

ẋ = f(x, κ(x− e))(11a)

ė = f(x, κ(x− e)).(11b)

Assumptions (L1)-(L2) basically characterize the existence of a feedback controller
which renders the system (11a) input-to-state stable (ISS) with respect to meas-
urement errors e. Assumption (L3) is introduced to bound the growth of the error
e which satisfies (11b). The notion of ISS, pioneered in [Son89], has been instru-
mental in the synthesis of control laws for nonlinear systems under actuation and
measurement errors. While the general formulation of ISS property would involve
nonlinear gains, here we choose to work with linear gains to simplify the presenta-
tion. Sampled-data problems in the deterministic setting, where the objective is to
find upper bounds on the sampling period that guarantee asymptotic stability, em-
ploying feedback controllers with aforementioned robustness properties, have been
studied in [NT04]. In fact, such tools have also been useful in a more general frame-
work where errors in measurements may result from sources other than sampling
(see, e.g., [LNT14]). For our purposes, the existence of such robust static control-
lers allows us to compute a lower bound on the mean sampling rate that solves
Problem 1.

Proposition 3.1. Assume that there exist κ : Rd → Rm and U : Rd → R>0 such
that (L1), (L2) and (L3) hold. If the sampling process (Nt)t>0 is Poisson with

intensity λ > 0, then for each λ > 0 and δ ∈ ]0, 1[ satisfying

(12) λ > χe +
γχx
δα

the system (7)-(6b) is exponentially stable in the second moment.
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Proof. Let us define the function V : Rd × Rd → [0,+∞[

V (x, e) = U(x) + βU(e),

where β > 0 is to be specified momentarily. From Proposition 2.2 it follows that

LV (x, e) = 〈∇U(x) + β∇U(e), f(x, κ(x− e))〉 − λβU(e)

6 −αU(x) + γU(e) + βχxU(x) + βχeU(e)− λβU(e).

Pick δ ∈ ]0, 1[ and select β = δαχ−1x . Then for any λ > 0 satisfying (12), there
exists 0 < ε < 1 such that

λβ > χeβ + γ + εα(1− δ)β
so that

LV (x, e) 6 −εα(1− δ)(U(x) + βU(e)) = −εα(1− δ)V (x, e).

Exponential stability in the second moment of the process
(
x(t), e(t)

)
t>0

now fol-

lows from Dynkin’s formula (10). �

The main point of Proposition 3.1 is to show that, for controllers with certain
robustness properties, the sampled-data system with random sampling is exponen-
tially stable with large enough sampling rate, and this is done by using the extended
generator for the controlled Markovian process

(
x(t), e(t)

)
t>0

. This result can be

generalized in several ways. Instead of requiring quadratic bounds on the function
U in (L1), if for some α > 0, p > 1, U(x) is lower (respectively, upper) bounded
by α|x|p (resp. α|x|p) for each x ∈ Rn, then exponential stability in p-th mean can
be established. Other than the Poisson process, it is also possible to consider a dif-
ferent random process to determine the sampling instants. This of course changes
the formula for the extended generator. Another level of generalization arises from
introducing a diffusion term in the system dynamics (1), which would require us
to work with a weaker notion of a solution, and consequently, the assumptions
on function U need to be strengthened to be able to compute the extended gen-
erator. Stability analysis using extended generator for impulsive renewal systems
with diffusion term in the differential equation has been carried out in [HT06].

So far, we have adopted a general approach to address the control of sampled-
data nonlinear systems. Most of the results in the literature on stabilization with
random sampling have been presented in the context of linear systems, and with
the exception of [HT06], extended generators have not appeared elsewhere. We
now focus our attention to the linear systems: An overview of different approaches
is presented and our eventual goal is to establish equivalence between some of these
approaches and the extended generator approach for the case of Poisson sampling.
In the process, we establish what may be regarded as a converse Lyapunov theorem
for (7)-(6b) when the underlying renewal process (Nt)t>0 is Poisson with fixed
intensity λ > 0.

4. Randomly sampled linear systems: A random walk down the
history lane

4.1. System description. In the remainder of this article, we will restrict our
attention to randomly sampled-data control of linear systems described by

(13) ẋ(t) = Ax(t) +Bu(t), x(0) = x0 given, t > 0,

with the input u given by

u(t) = Kx(τNt
) for all t > 0,
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where the pair (A,B) is assumed to be stabilizable, and the feedback gain K is
assumed to be fixed a priori. With (Nt)t>0 the sampling process for the above

control system, the resulting stochastic system for the joint process
(
x(t), e(t)

)
t>0

is described by

(14a)

(
ẋ(t)
ė(t)

)
=

[
A+BK −BK
A+BK −BK

](
x(t)
e(t)

)
for almost all t > 0,

and the reset equation at the sampling times is

(14b)

(
x(τNt

)
e(τNt)

)
=

[
I 0
0 0

](
x(τ−Nt

)

e(τ−Nt
)

)
.

For this class of systems, lower bounds on the sampling rates required for sta-
bility can be computed more explicitly. Also, this case has been studied in the
literature over several epochs, and we provide an overview of the approaches that
have been used for analyzing stability of randomly sampled linear systems. To
simplify notation, let us abbreviate the system in (14) as

(15)
ẋ = Fx

x(τNt) = Gx(τ−Nt
)

where x := (x>, e>)> ∈ Rn and n = 2d.

4.2. Early efforts. It may appear surprising that the investigations into control
of linear sampled-data control systems under random sampling started as early as
the late 1950s. Indeed, Rudolf Kalman in his PhD dissertation [Kal57] studied
sample-and-hold schemes for linear time-invariant control systems under random
sampling. In particular, he studied several stochastic stability notions for both
linear scalar systems and systems of higher dimension: the definitions of stability
almost surely, stability in the mean, stability in mean-square, and stability in the
mean sampling period appear in his thesis. It is interesting to note that the key
steps in his work were to first understand the asymptotic behaviour of the pro-
cess

(
x(τk)

)
k∈N as k → +∞, and thereafter to derive certain inferences about the

continuous-time process
(
x(t)

)
t>0

. Only asymptotically stable system matrices A

were considered by Kalman; this peculiar assumption was perhaps a natural con-
sequence of his proof technique. The operator-theoretic approach à la extended
generators pioneered by Dynkin [Dyn55, Dyn56] was relatively less known at the
time of Kalman’s graduation.

About a decade later, Oskar Leneman at MIT published a sequence of short
articles on control of linear time-invariant sample-and-hold systems under random
sampling. Chief among this sequence is [Len68], where Leneman claimed that
certain calculations in [Kal57] did not quite lead to correct results. He focussed
attention on scalar problems in [Len68], and derived his results following the same
route as that of Kalman: first getting estimates of the behavior of the sampled
process

(
x(τk)

)
k∈N, followed by inferring stability of the underlying continuous-

time process
(
x(t)

)
t>0

via lengthy calculations involving some integral transform

calculus. Once again, only scalar asymptotically stable systems were considered.
Related problems of stability of linear control systems under random sample-and-
hold schemes were almost concurrently investigated by Harold Kushner and his
collaborators [KT69], and their techniques were also similar to those in [Len68]. To
the best of our knowledge, it seems that this early period focussed attention only
on open-loop asymptotically stable systems; even neutrally stable linear systems
were perhaps considered too difficult to handle via these techniques. An admittedly
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speculative reason for this may have been that even for Poisson sampling, it was not
clear how to deal with remarkably long holding times (that appear with probability
1) during which the process may deviate very far away from a given compact set
since the right-hand side of the x-subsystem of (14) is affine in x during the holding
times.

To anyone attempting to follow the footprints of Leneman, it is not difficult
to appreciate the tediousness of the calculations involved in transitioning from
estimates of the behaviour of the sampled process. (In fact, [Len68] skips quite a
few details and provides the readers with just the key steps of his proofs.) The first
part of deriving estimates for the sampled process

(
x(τk)

)
k∈N is relatively simple:

Lemma 4.1. Let −∞ < t′ < t′′ < +∞. If A ∈ Rd×d, then∫ t′′

t′
etA dt =

(
et
′′A − et

′A
)

A
,

where the object on the right-hand side is defined by(
et
′′A − et

′A
)

A
:=

+∞∑
k=1

(t′′)k − (t′)k

k!
Ak−1.

Proof. On the one hand, if A ∈ Rd×d is non-singular, then (see also [AS04, p. 47])∫ t′′

t′
etA dt =

∫ t′′

t′

+∞∑
k=0

Ak

k!
tk dt =

+∞∑
k=0

Ak

(k + 1)!

(
(t′′)k+1 − (t′)k+1

)
= A−1(et

′′A − et
′A)

=

+∞∑
k=1

(t′′)k − (t′)k

k!
Ak−1 =

(
et
′′A − et

′A
)

A
,

where we have carried out the interchange of the summation and the integral under
the shadow of Tonelli’s theorem [Dud02, Theorem 4.4.5]. In particular, we observe
that the map

Rd×d 3 A 7→
(
et
′′A − et

′A
)

A
∈ Rd×d

is continuous. On the other hand, if A ∈ Rd×d is singular, we pick a sequence of
matrices (An)n∈N∗ with An := A+εnI and εn ↓ 0, such that each An is non-singular.
(For instance, we employ a similarity transformation to obtain the upper-triangular
complex-Jordan form J of A; the eigenvalues of A are on the diagonal of J and since
A is singular, there is at least one 0 on the diagonal of J ; we pick the sequence
εn ↓ 0 such that J + εnI is nonsingular for each n — this is possible since the
spectrum of A is a finite set.) Since An −−−−−→

n→+∞
A, we apply the assertion to the

nonsingular matrix An instead of A, and the general formula follows at once from
continuity. �

To simplify some calculations below, we assume that A ∈ Rd×d is non-singular.
Starting from (13) with a given initial condition x(0), and

(16) u(t) = Kx(τi) whenever t ∈ [τi, τi+1[, i ∈ N,

we arrive at

(17) x(t) =
(

e(t−τi)A + etAA−1
(
e−τiA − e−tA

)
BK

)
x(τi) for t ∈ [τi, τi+1[,
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or equivalently,

(18) x(t) =
(

e(t−τi)A
(
I +A−1BK

)
−A−1BK

)
x(τi) for all t ∈ [τi, τi+1[.

By continuity of solutions,

x(τi+1) =
(

e(τi+1−τi)A
(
I +A−1BK

)
−A−1BK

)
x(τi),

which is a recursive formula for the states at consecutive sampling instants. Mul-
tiplying out, for any N ∈ N∗,

(19) x(τN ) =

N−1∏
i=0

(
e(τi+1−τi)A

(
I +A−1BK

)
−A−1BK

)
x(0),

where we remember that the product is directed.

In the scalar case (d = 1), by independence of the holding times,

E
[
x(τN )

∣∣x(0)
]

= E

[N−1∏
i=0

(
e(τi+1−τi)A

(
1 +A−1BK

)
−A−1BK

)
x(0)

∣∣∣∣x(0)

]

=

N−1∏
i=0

E
[
e(τi+1−τi)A

(
1 +A−1BK

)
−A−1BK

]
x(0)

=

N−1∏
i=0

(
E
[
e(τi+1−τi)A

](
1 +A−1BK

)
−A−1BK

)
x(0).

The quantity E[e(τi+1−τi)A] is simply the moment generating function MS (if it
exists) of (τi+1− τi) evaluated at A ∈ R, denoted hereafter byMS(A).3 Therefore,

E
[
x(τN )

∣∣x(0)
]

=

N−1∏
i=0

(
MS(A)

(
1 +A−1BK

)
−A−1BK

)
x(0).

For convergence of the product on the right-hand side to 0 as N → +∞, it is
necessary and sufficient that

(20) |MS(A)(A+BK)−BK| < |A| ,

from which we can immediately arrive at the range of permissible K’s. The ques-
tion of designing stabilizing feedback gains K is addressed in detail in §6; Merely
assuming that A+BK = A(1 +A−1BK) is Hurwitz stable may not be enough!

Remark 4.2 (A+ BK Hurwitz is necessary for the scalar case). In the scalar case
and an unstable open-loop system (that is, A > 0), if we select the feedback gain
K such that A + BK > 0, then the condition (20) will not be satisfied. Indeed,
MS(A) > 1 for every A > 0 whenever the former exists.

3Recall that the moment generating function MX , if it exists, of a random variable X is the
function R 3 ξ 7→ MX(ξ) := E[eξX ] ∈ R. The moment generating function may only be defined
on a subset of R, of course.
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The multi-dimensional case is similar to the scalar one: by independence of the
holding times,

(21)

E
[
x(τN )

∣∣x(0)
]

= E

[N−1∏
i=0

(
e(τi+1−τi)A

(
I +A−1BK

)
−A−1BK

)
x(0)

∣∣∣∣x(0)

]

=

N−1∏
i=0

E
[
e(τi+1−τi)A

(
I +A−1BK

)
−A−1BK

]
x(0)

=

N−1∏
i=0

(
E
[
e(τi+1−τi)A

](
I +A−1BK

)
−A−1BK

)
x(0).

The matrix E
[
e(τi+1−τi)A

]
is well-defined whenever MS(‖A‖) = E

[
e(τi+1−τi)‖A‖

]
exists; this follows from a standard application of the dominated convergence the-
orem [Dud02, Theorem 4.3.5]. Now, the necessary and sufficient condition for
convergence of the product on the right-hand side to 0 as N → +∞ is that

(22) A−1
(
E
[
e(τi+1−τi)A

]
(A+BK)−BK

)
is Schur stable.

It is evident that straightforward calculations are enough to arrive at necessary and
sufficient conditions for stability in the mean of the sampled process

(
x(τk)

)
k∈N. A

similar calculation can be carried out for
(
‖x(τk)‖

)
k∈N to arrive at convergence in

mean-square of the process
(
‖x(τk)‖

)
k∈N.

However, the preceding calculations do not shed much light on the inter-sample
behaviour of

(
x(t)

)
t>0

. The transition from stability of the sampled process to

that of
(
x(t)

)
t>0

is a nontrivial matter. A tiny calculation in this direction is to

check whether the process
(
x(τNt)

)
t>0

is stable, and to this end, our assumption (4)

provides the necessary support, and one concludes that E
[
x(τNt

)
∣∣x(0)

]
−−−−→
t→+∞

0.

The next natural step is to compute E
[
x(t)

∣∣x(0)
]

for a given time t, and finally
to take the limit (if it exists,) as t→ +∞. However, at this stage matters start to
become rather tedious and complicated. Indeed, if we proceed as Leneman does in
[Len68], for the quadratic function Rd 3 x 7→ ϕ(x) := 1

2 〈x,Qx〉 ∈ [0,+∞[ where

Q ∈ Rd×d is some symmetric and positive definite matrix,

E
[
ϕ
(
x(t))

∣∣x(0)
]

= E

[
ϕ
(
x(t)

) +∞∑
k=0

1[τk,τk+1[(t)

∣∣∣∣x(0)

]

=

+∞∑
k=0

E
[
ϕ
(
x(t)

)
1[τk,τk+1[(t)

∣∣x(0)
]

where the second equality follows by the monotone convergence theorem. Since
1[τk,τk+1[(t) = 1 if and only if Nt = k and 0 otherwise, each summand on the
right-hand side can be manipulated as

E
[
ϕ
(
x(t)

)
1[τk,τk+1[(t)

∣∣x(0)
]

= P
(
Nt = k

∣∣x(0)
)
E
[
ϕ
(
x(t)

) ∣∣x(0), Nt = k
]
.

If the sampling process (Nt)t>0 is Poisson with intensity λ, we have the expression

P
(
Nt = k

∣∣x(0)
)

= e−λt (λt)
k

k! since the sampling process is independent of the state
process, but for more general sampling (renewal) processes, such expressions are
difficult to arrive at. Even if (Nt)t>0 is Poisson-λ, it is still not simple to compute

the second term E
[
ϕ
(
x(t)

) ∣∣x(0), Nt = k
]
. Indeed, one would naturally proceed, for

the specific case of ϕ defined above, by employing (19) and then (17) and separating
out terms consisting of terms involving x(τk) and (t − τk). The (quadratic) terms
consisting only of x(τk) can be dealt with as discussed above, and those containing



12 A. TANWANI, D. CHATTERJEE, AND D. LIBERZON

(t − τk) would need the probability distribution of (t − τk). By all indications,
Leneman’s calculations (which are not explicitly provided in [Len68]) completed
the preceding steps for the case of d = 1 and asymptotically stable A. It should be
evident that for sampling processes more general than Poisson, this route quickly
becomes intractable.

4.3. New generation, same problem. Skipping a few decades, we arrive at
[MA04] which presents stability conditions for several sampling routines, one of
which is random sampling. Instead of computing E

[
ϕ
(
x(t))

∣∣x(0)
]

exactly, the
authors of [MA04] obtain an upper bound and provide conditions which make this
upper bound converge to zero asymptotically. However, the conditions given in
their main result on random sampling [MA04, Theorem 5] are seen to hold only for
open-loop stable systems. To see this, consider the scalar system

ẋ = ax+ u

and by choosing u = κx(τNt
), we consider the matrix

F :=

[
a+ κ −κ
a+ κ −κ

]
.

It is seen that (hint: use the transformation T = [1 0; 1 1] with x = Tz)

eFt =

[
(1− κ/a)eat + κ/a 0
−(1− κ/a)eat − κ/a 0

]
Let

M :=

[
1 0
0 0

]
eFt
[
1 0
0 0

]
=

[
((1− κ/a)eat + κ/a) 0

0 0

]
then according to [MA04, Theorem 5], the sufficient condition for asymptotic sta-
bility in second moment is ∥∥∥E[M

>
M ]
∥∥∥ < 1.

However, for Poisson sampling with intensity λ, it is seen that

E[((1− κ/a)eat + κ/a)2] = λ

∫ +∞

0

((1− κ/a)eat + κ/a)2e−λt dt

= (1− κ/a)2
λ

λ− 2a
+
κ2

a2
+ 2(κ/a)(1− κ/a)

λ

λ− a
.

Note that the term on right-hand side is greater than 1 for each4 λ > 2a. In fact,
it is a decreasing function of λ, and

lim
λ→+∞

E[((1− κ/a)eat + κ/a)2] = 1.

This shows that, even in such simple cases, we do not get
∥∥∥E[M

>
M ]
∥∥∥ < 1 for

arbitrarily large values of λ. This demonstrates the conservatism in the sufficient
condition proposed in [MA04, Theorem 5], and hence it can be presumed that the
problem of computing E

[
ϕ
(
x(t))

∣∣x(0)
]

did not get a positive response until the first
decade of this century. One positive response to this question has been provided
in [AHS12], which we treat in greater detail in the next section. The authors of
[AHS12] provide necessary and sufficient conditions for mean-square stability of lin-
ear systems under random sampling for a rather general class of random processes.
We examine closely and comment on their main result in §5.1. The techniques
involved in [AHS12] are quite different from the ones that are mainstream.

4The necessity of the condition λ > 2a for scalar linear systems with Poisson sampling is
discussed in §6.2.
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Before moving on, we mention a couple of additional references dealing with
random sampling. The article [ACM00] deals with control under random sampling:
An optimal control problem with a quadratic instantaneous cost for linear controlled
diffusions was studied in this particular work, but under the assumption that there
are only finitely many sampling instants. The authors of the recent article [ZWY16]
also limited their scope to a Lyapunov stable matrix A.

The preceding efforts involve hands-on calculations that are specific to linear
system models and/or specific (and simple) sampling processes, with the excep-
tion of [AHS12]. The connection between PDMPs and sampled-data control under
random sampling discussed in Remark 2.1 immediately opens up the possibility of
employing generator-based ideas in this context; our agenda for the next section
will focus on this connection closely. In particular, we shall demonstrate in §5.2
that the main results of [AHS12] can also be derived by employing the extended
generator (8).

5. Equivalence of different stability conditions for linear PDMPs

Turning our attention to (15), and looking at this joint system with state x =
(x>, e>)>, it is possible to find necessary and sufficient conditions for asymptotic
stability in second moment by computing E

[
ψ
(
x(t))

∣∣x(0)
]

for system (15), with ψ
quadratic in x. This is done in an explicit manner in [AHS12], where the authors use

the recursive Volterra integral equation to compute E[‖x(t)‖2 |x(0)]. Another tool
for analyzing the stability in second moment for system (15) was already revealed
in §3 in the form of extended generator. After providing a quick overview of how
E[‖x(t)‖2 |x(0)] is computed, we show the equivalence between two approaches,
which essentially establishes a converse Lyapunov theorem for (15) with Poisson
renewal process.

5.1. Volterra-integral approach. To analyze stability in second moment for sys-
tem (15), it is observed that we can write [AHS12, Proposition 6]

(23) E[x>(t)Qx(t)] = x>0 W (t)x0

where the matrix-valued function W : [0,+∞[→ Rn×n satisfies the Volterra integ-
ral equation

(24) W (t) = K(W )(t) +H(t),

with H(t) = eF
>tQeFte−λt for some positive-definite and symmetric Q ∈ Rn×n,

and λ > 0 being the intensity of the Poisson sampling process (Nt)t>0 so that the

jump times τNt in (14) have the property that (τNt − τNt−1) ∼ Exp(λ). In (24),
the operator K : C1(R>0;Rn×n)→ C1(R>0;Rn×n) is given by

(25) K(W )(t) := λ

∫ t

0

eF
>sG>W (t− s)GeFse−λs ds.

Due to (23), stability of (14) can be formulated in terms of the asymptotic properties
of the matrix-valued function W (t). In [AHS12, Theorem 3], depending upon
the stability notion under consideration, several conditions are provided which are
equivalent to convergence of W in appropriate norms. For example, conditions for

stochastic stability are equivalent to absolute convergence of
∫ +∞
0

W (s) ds, and the
conditions given for mean-square stability are equivalent to W (t)→ 0.
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5.2. Connections between the extended generator and Volterra-integral
techniques. In Section 3, we used the extended generator to obtain sufficient
conditions for stability of nonlinear PDMPs. In case of linear systems (14), the same
approach can be adopted while restricting attention to quadratic test functions.
Since we now have a characterization of stability in terms of the function W given in
(24), it is natural to ask whether we can establish necessary conditions for stability
in second moment using the extended generator. To show that these approaches
are equivalent for linear dynamics (15) and Poisson renewal processes, we have the
following result.

Theorem 5.1. Consider system (14) with (Nt)t>0 a Poisson process of intensity
λ > 0. The following statements are equivalent:

(S1) System (14) is exponentially stable in second moment.
(S2) There exists a symmetric positive definite matrix Q ∈ Rn×n such that the

matrix-valued function W satisfying (24), with H(t) = eF
>tQeFte−λt, con-

verges to zero exponentially as t→ +∞.
(S3) There exists a symmetric positive definite matrix P ∈ Rn×n such that

(26) F>P + P F + λ(G>P G− P ) < 0.

If we let ψ(x) := x>Px, then using the expression for Lψ(x, e) in (9), the in-
equality (26) is equivalently written as Lψ(x, e) < 0, for each (x, e) ∈ Rd×d. Note
that the result of Theorem 5.1 is of independent interest as it proves a converse Lya-
punov theorem for a class of linear PDMPs which are exponentially stable in second
moment. Establishing converse Lyapunov theorems for stochastic hybrid systems,
in general, was identified as an open problem in [TSS14, Section 8.4, Open Prob-
lem 4], and Theorem 5.1 provides a result in this direction for a particular class of
stochastic hybrid systems. The nontrivial aspect of the proof of Theorem 5.1 relies
on constructing P using the expression for W in (24).

Proof. The equivalence between (S1) and (S2) follows directly from (23), where the
latter is derived in [AHS12, Proposition 6]. In the sequel, we prove the equivalence
between (S2) and (S3), and for our purposes it is useful to recall that, using
the properties of Volterra integral equation, W can be explicitly described by the
expression

(27) W (t) :=

+∞∑
j=1

Kj(H)(t) +H(t).

Now, let us assume that (S3) holds, and from there we show that there is a matrix

Q such that W satisfying (24), with H(t) = eF
>tQeFte−λt, converges to zero as t

goes to infinity. Let P be the symmetric positive definite matrix satisfying (26), so
there exists α > 0 such that

F>P + PF + λ(G>PG− P ) + αP < 0.

Take Q = P . Multiplying the last inequality by eF
>t from left, eFt from right, and

the scalar e−λt, we get

(28) F>H +HF + λ(J −H) < −αH

where we recall that H(t) = eF
>tQeFte−λt, and

J(t) := eF
>tG>QGeFte−λt.

With this choice of Q and H, let W be the function obtained from solving (27). To
see that W converges to zero exponentially, we need the following lemma:
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Lemma 5.2. For the continuously differentiable matrix-valued function W given
in (27), it holds that

(29)
d

dt
W (t) =

+∞∑
j=1

Kj(F>H +HF − λH)(t) +

+∞∑
j=0

λKj(J)(t)

+ F>H(t) +H(t)F − λH(t).

The proof of this lemma is given in the Appendix .2. Combined with (28), and
using the expression for W in (27), this lemma immediately yields

Ẇ (t) 6 −αW (t)

from where the exponential convergence of W follows.

Next, we show that (S2) implies the existence of matrix P such that (S3) holds.
For this implication to hold, the important relation that we need to develop is

(30)
d

dt
W (t) = F>W (t) +W (t)F − λW (t) + λG>W (t)G, t > 0.

Indeed, if (30) holds, then by letting,

P := lim
t→+∞

∫ t

0

W (s) ds,

it is seen that

F>P + PF + λ(G>PG− P ) = lim
t→+∞

∫ t

0

d

ds
W (s) ds,

= lim
t→+∞

W (t)−W (0)

= −Q

where we used the fact that limt→+∞W (t) = 0 because of (S2). The limit in the
definition of the matrix P is well-defined because W converges to zero exponentially.
The matrix P is also seen to be symmetric and positive definite. To show this, we
first observe from (27) that, for each s > 0, W (s) is symmetric and W (s) > H(s).
Suppose, ad absurdum, that P is not positive definite, then there exists x ∈ Rn,
x 6= 0, such that

0 = x>Px = lim
t→+∞

∫ t

0

x>W (s)xds

> lim
t→+∞

∫ t

0

x>H(s)xds = lim
t→+∞

∫ t

0

x>esF
>
QesF e−λsxds.

Since Q is positive-definite, the last inequality suggests that esFx = 0 for every
s > 0, and hence x = 0; a contradiction.

So, the focus in remainder of the proof is on proving (30). We already have an
expression for d

dtW in Lemma 5.2. To simplify the terms on the right-hand side of
(29), we introduce the following lemma:

Lemma 5.3. For each j > 1, we have

(31) Kj(F>H +HF − λH) + λKj−1(J)(t) = λG>Kj−1(H)(t)G

+ F>Kj(H)(t) +Kj(H)(t)F − λKj(H)(t).

Again, the proof of this lemma is provided in Appendix .2. Combining the
statements of Lemma 5.2 and Lemma 5.3, we get
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(32)
d

dt
W (t) =

+∞∑
j=1

λG>Kj−1(H)(t)G+ F>Kj(H)(t) +Kj(H)(t)F − λKj(H)(t)

+ F>H(t) +H(t)F − λH(t).

On the other hand, it follows from the expression for W in (27) that

(33) F>W (t) +W (t)F − λW (t) =

+∞∑
j=1

F>Kj(H)(t) +Kj(H)(t)F − λKj(H)(t)

+ F>H(t) +H(t)F − λH(t).

Substituting (33) in (32), and using the notation K0 to denote the identity operator,
we get

d

dt
W (t) = F>W (t) +W (t)F − λW (t) + λG>

+∞∑
j=1

Kj−1(H)(t)

G.

The desired equation (30) now follows by recalling the definition ofW from (27). �

5.3. Exponential stability under random sampling. Now that we have estab-
lished the necessary and sufficient conditions for stability of the randomly sampled-
data system (14) in Theorem 5.1, we can obtain refined estimates on the mean
sampling rate λ for stability in second moment to solve Problem 1. We will only
work out the estimates that can be obtained from the statement (S3). A direct
way to obtain a lower bound on the mean sampling rate is by solving the inequal-
ity (26) in λ and P , for a given K ∈ Rm×d. But, since (26) is a bilinear matrix
inequality, and hence nonconvex, it is difficult to obtain analytical bounds on λ for
feasibility. To overcome this issue, we choose to work with a block diagonal P and
proceed with computing the lower bounds on λ analytically with such P . We fix
K to be any matrix which makes A+BK Hurwitz, and with this assumption, we
show that by choosing λ large enough as a function of the matrices A,B,K, the
resulting system is asymptotically stable in second moment.

Theorem 5.4. Consider the system (14), with (Nt)t>0 a Poisson process of in-

tensity λ. Assume that there exist α > 0, a matrix K ∈ Rd×m and a symmetric
positive definite matrix P ∈ Rd×d satisfying

(34) (A+BK)>P + P (A+BK) 6 −αP.

For Rd 3 y 7→ V (y) := 〈y, Py〉, there exist constants C0, C1, such that

(35)
for every ρ ∈ ]0, α[, for every λ > ρ+ C0 +

C1

(α− ρ)
,

for every x(0) ∈ Rd, and for every t > 0,

we have

(36) E
[
V (x(t))

∣∣x(0)
]
6 V (x(0)) exp (−ρt).

In particular, for all λ > 0 sufficiently large, the closed-loop system (14) is globally
exponentially stable in the second moment.

Remark 5.5. It is seen from the Theorem statement that, even if we choose the
decay rate ρ to be close to α, it is possible to achieve it by choosing the sampling
rate λ to be sufficiently large. In other words, with faster sampling rates, we
approach the performance of the continuous-time system.
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Remark 5.6. In the proof of Theorem 5.4, we compute the constants C0 and C1

in (35) as functions of the matrices A,B,K and P satisfying (34). By letting

Ỹ := P 1/2BKP−1/2, and Ã := P 1/2AP−1/2, it turns out that we can choose

C0 := σmax

(
−Ỹ − Ỹ >

)
and(37a)

C1 := σmax

((
Ỹ > − Ỹ − Ã

)(
Ỹ − Ỹ > − Ã>

))
,(37b)

where, for a given matrix M , σmax(M) denotes the maximum eigenvalue of a matrix
M . In fact, it is possible to show that the claim of Theorem 5.4 holds whenever

λ− ρ > σmax

( 1

α− ρ
(
Ỹ > − Ỹ − Ã

)(
Ỹ − Ỹ > − Ã>

)
− Ỹ − Ỹ >

)
.

Corollary 5.7. Let K = −R−1B>P , where R and P are symmetric positive def-
inite matrices which satisfy, for some α > 0, the relation

(38)
(
A+

α

2
I
)>

P + P
(
A+

α

2
I
)
− 2PBR−1B>P 6 0.

For each ρ ∈ ]0, α[, if λ satisfies (35) with

C0 := 2σmax

(
P 1/2BR−1B>P 1/2

)
and

C1 := σmax

(
P 1/2AP−1A>P 1/2

)
,

then (36) holds.

The bounds in Corollary 5.7 are obtained by observing that the choice of K =

−R−1B>P leads to Ỹ = Ỹ >, which simplifies the expression for C0 and C1 to some
extent.

Proof of Theorem 5.4. We choose a quadratic function ψ : Rd × Rd → R>0 of the
form

(39) (x, e) 7→ ψ(x, e) := 〈x, Pxx〉+ 〈e, Pee〉 ,

where Px and Pe are symmetric positive definite matrices. Using (9) from Propos-
ition 2.2, we obtain

Lψ(x, e) =
〈
(Px + P>x )x+ (Pe + P>e )e, (A+BK)x−BKe

〉
+ λ (〈x, Pxx〉 − 〈e, Pee〉 − 〈x, Pxx〉)

=
〈
(Pe + P>e )e, (A+BK)x−BKe

〉
+
〈
(Px + P>x )x, (A+BK)x−BKe

〉
− λ 〈e, Pee〉

= −λ 〈e, Pee〉+
〈
x, Px(A+BK)x+ (A+BK)>Pxx

〉
−
〈
e, (PeBK +K>B>Pe)e

〉
+ 2 〈e, Pe(A+BK)x〉

− 2 〈x, PxBKe〉 .

Letting Px = Pe = P and AK := A+BK, we get

Lψ(x, e)

= −
〈(

x
e

)
,

[
−PAK −A>KP PBK −A>KP
−PAK +K>B>P λP + PBK +K>B>P

](
x
e

)〉
6 −

〈(
x
e

)
,

[
αP PBK −A>KP

−PAK +K>B>P λP + PBK +K>B>P

]
︸ ︷︷ ︸

=:M(λ)

(
x
e

)〉
.
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We next analyze the matrix M(λ) and show that for λ large enough, M(λ) is
positive definite and see how the minimum eigenvalue of M(λ) varies with λ. We
first write M(λ) as

M(λ) := M0 +M1(λ)

where for a fixed ρ ∈ ]0, α[,

(40) M0 :=

[
ρP 0
0 ρP

]
and

M1(λ) :=

[
(α− ρ)P PBK −A>KP

−PAK +K>B>P (λ− ρ)P + PBK +K>B>P

]
.

Using Schur complements [Zha11, §7.4] and introducing the notation Y := PBK it
is seen that

M1(λ) > 0 ⇔ (λ− ρ)P + Y + Y > >

(
Y > − Y − PA

)
P−1

(
Y − Y > −A>P

)
α− ρ

.

Let P 1/2 denote the positive square root of P . Also, let Ỹ := P 1/2BKP−1/2, and

Ã := P 1/2AP−1/2, then conjugation by P−1/2 yields

M1(λ) > 0 ⇔ (λ− ρ)I + Ỹ + Ỹ > >
1

α− ρ
(
Ỹ > − Ỹ − Ã

)(
Ỹ − Ỹ > − Ã>

)
.

Using Weyl’s inequality [HJ13, Theorem 4.3.1], we obtain

σmax

(
1

α− ρ
(
Ỹ > − Ỹ − Ã

)(
Ỹ − Ỹ > − Ã>

)
− (Ỹ + Ỹ >)

)
6 σmax

(
1

α− ρ
(
Ỹ > − Ỹ − Ã

)(
Ỹ − Ỹ > − Ã>

))
+ σmax(−Ỹ − Ỹ >)

=
1

α− ρ
σmax

((
Ỹ > − Ỹ − Ã

)(
Ỹ − Ỹ > − Ã>

))
+ σmax(−Ỹ − Ỹ >)

=:
1

α− ρ
C1 + C0

where we introduced the constants C0, C1 given in (37). It is now observed that
M1 > 0 for each λ > ρ+ C0 + C1/(α− ρ), and hence

Lψ(x, e) 6 −
〈(

x
e

)
,M0

(
x
e

)〉
= −ρψ(x, e).

The assertion of Theorem 5.4 follows. �

It must be noted that the condition (35) is only sufficient for stability in second
moment because in the notation of (S3) of Theorem 5.1, the proof was worked

out by choosing P =

(
P 0
0 P

)
. This choice indeed makes our estimates of λ

conservative. In the next section, we study stability of closed-loop systems for
smaller values of λ by addressing the converse question of designing static feedbacks
for linear systems.

6. Converse question and feedback design

In contrast to finding lower bounds on the sampling rate for a given feedback
law in previous sections, we are now interested in designing the feedback laws for a
fixed sampling rate. The problem of interest is thus formalized as follows:
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Problem 2. Consider the system (14), with (Nt)t>0 a Poisson process of intensity

λ. If λ > 0 is given, does there exist a matrix K ∈ Rm×d such that (14) is
globally exponentially stable in second moment?

Preparatory to addressing this problem, we first observe that the search space
for the feedback gain K is constrained by the sampling rate even in the setting
of deterministic sampling — see §6.1 for the relevant discussion. Moreover, in the
setting of Poisson sampling, there is a lower bound on the sampling rate that must
be satisfied for the expectation to be well-defined; see §6.2 for the corresponding
details. These two observations are then employed to provide a partial answer to
Problem 2.

6.1. Using the scalar deterministic case as a guideline. Before addressing
this question with random sampling, let us have a quick look at the deterministic
sampling case and observe how one would choose a feedback gain in that case.
Consider the scalar system

ẋ(t) = ax(t) + u(t), t > 0,

with a given a > 0. Our objective is to asymptotically stabilize this system at
the origin, and the state measurements are available only periodically at (τi)i∈N∗ ⊂
[0,+∞[, where τi+1−τi = T for some fixed T > 0; in other words, τn = nT . We aim
to design a controller u(t) = κx(τNt), with an appropriately chosen κ depending on
the sampling period T . Elementary calculations yield

x(τi+1) = exp (aT )x(τi) +

∫ τi+1

τi

exp (a(τi+1 − s))κx(τi) ds

=
(

exp (aT ) +
κ

a

(
exp (aT )− 1

))
x(τi),

and for a fixed sampling period T > 0, the closed-loop system is asymptotically
stable if and only if the sequence (x(τn))n∈N∗ converges to 0. The latter holds if
and only if ∣∣∣exp (aT ) +

κ

a

(
exp (aT )− 1

)∣∣∣ < 1,

or equivalently, if and only if

−a
(exp (aT ) + 1

exp (aT )− 1

)
< κ < −a.

We observe two key facts:

◦ The inequality κ < −a is necessary for the stability of the continuous-time sys-
tem. The other inequality gives a lower bound on the value of κ, and shows that
for a fixed sampling rate, one can not choose |κ| to be very large.

◦ On the one hand, as T goes to zero (the case of fast sampling), this lower bound
goes to −∞. On the other hand, as T grows large (the case of slow sampling), this
lower bound approaches −a from below, and the admissible set of the stabilizing
gain κ becomes smaller.

In dimensions larger than 1, the problem of selecting a suitable control gain K
becomes more delicate, as we shall momentarily see.

6.2. Necessary lower bounds for the sampling rate. We turn our attention
back to the system

(41) ẋ(t) = Ax(t) +BKx(τNt
), x(0) given, t > 0,

where we recall that (Nt)t>0 defined in (3) is a Poisson process of intensity λ which
determines the sampling times. We assume for the sake of simplicity that A is in its
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complex Jordan normal form and that it is non-singular. It can be easily verified
that, for each sample path, and i ∈ N∗, we have

(42) x(τi+1) = A−1
(

eA(τi+1−τi)
(
A+BK

)
−BK

)
x(τi).

If the linear system (41) is exponentially stable in the second moment, then the
discrete-time system (42) must also be exponentially stable in the second moment,5

and therefore, there exist [MT09, Theorem 9.4.2] a symmetric positive definite
matrix Pd ∈ Rd×d and γ ∈ [0, 1[ such that for each i ∈ N∗,

E
[
〈x(τi+1), Pdx(τi+1)〉

∣∣x(τi)
]
6 γE

[
〈x(τi), Pdx(τi)〉

∣∣x(τi)
]
.

With AK := (A+BK) and P̃d := A−1PdA
−1, time-invariance of the data leads to

A>KE
[
eSA

>
P̃deSA

]
AK −A>KE

[
eSA

>]
P̃dBK

− (BK)>P̃dE
[
eSA

]
AK + (BK)>P̃dBK 6 γAP̃dA,

where S is an exponential random variable with parameter λ. The matrix on the

left-hand side is well-defined if and only if E
[
eSA

>
P̃deSA

]
and E

[
eSA

]
are well-

defined.

The (j, k)-th entry of the matrix E
[
eSA

>
P̃deSA

]
is

E

[ d∑
`=1

d∑
m=1

(eSA
>

)j`
(
P̃d

)
`m

(eSA)mk

]
.

Since eSA is in the block-diagonal form with the eigenvalues of A on the diagonal,
this expectation is of the form E

[
pjk(S)eS(σj+σk)

]
for 1 6 j, k 6 d, where σj , σk are

the j-th and k-th diagonal entries (eigenvalues) of A, and pjk(·) is a polynomial of
degree at most 2d. This expectation is finite only if λ > <σj + <σk, and there-

fore, E
[
eSA

>
P̃deSA

]
is well-defined whenever λ > 2 max{<σj(A) | j = 1, . . . , d}.

Similarly, E
[
eSA

]
is well-defined only for λ > max{<σj(A) | j = 1, . . . , d}.

We conclude from this discussion that

λ > 2 max{<σj(A) | j = 1, . . . , d}

is a necessary condition for asymptotic stability in the second moment of the
sampled process

(
x(τn)

)
n∈N∗ , and seek to resolve the following conjecture:

Conjecture 6.1. Consider the system (41), where (Nt)t>0 is a Poisson process of

given intensity λ > 0. For each λ > 2 max{<σj(A) | j = 1, . . . , d} there exists a
feedback matrix K ∈ Rm×d such that (41) is globally asymptotically stable in the
second moment.

6.3. The scalar case with Poisson sampling. We proceed to verify that the
Conjecture 6.1 holds in the scalar case.

Proposition 6.2. Conjecture 6.1 holds when the system dimension d = 1.

Proof. Without loss of generality, we look at the scalar plant

ẋ(t) = ax(t) + u(t)

5The definition of exponential stability in the second moment for the discrete-time case is
analogous to the continuous-time version that we have quoted above.
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with a > 0 and are interested in choosing the scalar feedback gain κ such that
u(t) = κx(τNt

), t > 0, results in mean-squared asymptotic stability. Recalling that
e(t) = x(t)− x(τNt) for t > 0, we pick

ψ(x, e) := px2 + e2

for some p > 0 to be specified later. Using (9), we get

Lψ(x, e) = −

〈(
x
e

)
,

[
−2(a+ κ)p pκ− (a+ κ)
pκ− (a+ κ) λ+ 2κ

]
︸ ︷︷ ︸

=:M

(
x
e

)〉
.

If we show that there exist p > 0 and κ < 0 such that M is positive definite, our
proof will be complete. Towards this end, we first look at the determinant of M :

det(M) = −2p(a+ κ)(λ+ 2κ)− (a+ κ)2 − p2κ2 + 2pκ(a+ κ)

= −(p+ 1)2(a+ κ)2 + 2p(a+ κ)(ap+ a− λ)− a2p2.

Defining θ := −(a+ κ), we observe that det(M) > 0 if and only if

(p+ 1)2θ2 − 2pθ(ap+ a− λ) + a2p2 < 0.

The left-hand side of the inequality is a convex function of θ, and it attains its
global minimum at

θ∗ =
p(λ− a(1 + p))

(p+ 1)2
.

It is then readily verified that the value of det(M) with θ = θ∗ is

det(Mθ=θ∗) =
p2(λ− a(p+ 1))2

(p+ 1)2
− a2p2,

so that det(Mθ=θ∗) > 0 whenever

(43) 0 < p <
δ

2a
, where δ := λ− 2a.

Fixing θ = θ∗ and letting p satisfy (43), we next look at the trace of M :

trace(Mθ=θ∗) = λ− 2a+ 2θ∗(p− 1)

= δ + 2p
λ− a(p+ 1)

(p+ 1)2
(p− 1).

Since trace(Mθ=θ∗) is a continuous function of p and trace(M) = δ > 0 when p = 0,
it follows that for p > 0 sufficiently small, it is possible to make both trace(M) and
det(M) strictly positive. The resulting feedback law is

κ = −a− p(2a− δ − a(1 + p))

(p+ 1)2
,

with p > 0 chosen such that trace(Mθ=θ∗) > 0. The proof is complete. �

Remark 6.3. In the proof of Proposition 6.2 we selected the function ψ from (39)
with Px = p and Pe = 1. An interesting observation is that if we select Px = Pe (as
we did in the proof of Theorem 5.4), and λ is fixed, it is not possible to choose a
feedback gain K such that Lψ(x, e) < 0. To see this, we observe again in the scalar
case that by letting px = pe = p,

Lψ(x, e) = −
(
x
e

)> [−2(a+ κ)p −ap
−ap (λ+ 2κ)p

](
x
e

)
.



22 A. TANWANI, D. CHATTERJEE, AND D. LIBERZON

We can choose κ < −a so that both the diagonal terms of the matrix become
negative, and by looking at the determinant of the matrix, it is seen that Lψ(x, e) <
0, if and only if,

2θ(λ− 2a− 2θ) > a2,

where θ = −(a+ κ) > 0. For a given value of a, one can find λ > 2a, such that the
foregoing inequality is infeasible, regardless of the value of θ, or κ.

6.4. The multidimensional case. We employ the guidelines from the previous
subsections to address Conjecture 6.1 for the systems with dimension greater than
1. As already mentioned, our results here are not quite complete, and we require
an additional assumption on the class of linear control systems:

Assumption 1. The matrix pair (A,B) is such that, there exist positive definite
matrices R and P , which solve the algebraic Riccati equation

(44) A>P + PA− 2PBR−1B>P = −αP,

and (A − BR−1B>P ) is Hurwitz. Moreover, the matrix P has the property that
for some C > 0 and p > 2

3 ,

(45) lim
α↓0

σmax(P )

αp
6 C.

Assumption 1 requires that σmax(P ) = O(αp) when α ↓ 0. There exist linear
systems that satisfy this Assumption; indeed, consider A and B given by

(46) A =

0 1 0
0 0 1
0 0 0

 , B =

1 0
0 0
0 1

 ,
and choose R = 2 I, with I denoting the identity matrix (of appropriate dimension).
Then (44) admits a unique solution P , with (A − BR−1B>P ) Hurwitz, and the
(i, j)− th entry of P has the form

[P ]ij =
pij(α)

1 + α4

where pij are functions satisfying limα↓0
pij(α)
α = 0 when (i, j) 6= (3, 3), and for

(i, j) = (3, 3) we have limα↓0
pij(α)
α = 3. A crisp characterization of the class of

systems that satisfy Assumption 1 is under investigation.

Remark 6.4. System (46) is a particular example of null-controllable systems where
the eigenvalues of A are on the imaginary axis. In general, we do not expect
Assumption 1 to hold for systems with eigenvalues of A in open right-half complex
plane. This can be seen for the scalar systems ẋ = ax+u, for which the solution of
(44) with R = 1 is p = 2a+α, and clearly (45) holds only with a = 0 for 0 < p 6 1.

The following Theorem provides a recipe for designing feedback controllers under
Assumption 1.

Theorem 6.5. Consider the system (41) where (Nt)t>0 is a Poisson process of
given intensity λ > 0, and suppose that Assumption 1 holds. Then there exists
α > 0 (sufficiently small) such that the feedback gain

K = −R−1B>P with P solving (44)

renders the system (41) globally asymptotically stable in the second moment.
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Proof of Theorem 6.5. For α > 0 we let P denote the solution of (44), and choose

ψ(x, e) := ηe 〈e, Pe〉+ ηx 〈x, Px〉 for (x, e) ∈ Rd × Rd,

where the positive scalars ηe, ηx will be specified later. The expression in (9) with
the above choice of ψ yields

Lψ(e, x) = −
〈(

x
e

)
,M(α, λ)

(
x
e

)〉
,

where

M(α, λ) :=

[
−ηx(A>KP + PAK) ηxPBK − ηeA>KP
ηxK

>B>P − ηePAK ηe(λP + PBK +K>B>P )

]
,

in which AK = A+BK, and dependence on α is through the matrix P . It follows
that M is positive definite if M0 and M1 are positive definite, where

M0 :=

[
α
2 ηxP −ηeA>KP
−ηePAK λ

2 ηeP

]
M1 :=

[
α
2 ηxP ηxPBK

ηxK
>B>P λ

2 ηeP + ηePBK + ηeK
>B>P

]
.

We first treat M0. Using Schur complements [Zha11, §7.4] followed by conjuga-

tion with η
−1/2
e P−1/2, we get

(47) M0 > 0⇔ λ

2
I > 2

ηe
ηxα

P 1/2(A+BK)P−1(A+BK)>P 1/2.

In view of Assumption 1, for a p > 2
3 satisfying σmax(P ) = O(αp), we pick ε > 0

such that 0 < ε < p− 2
3 , and select ηe, ηx > 0 such that

(48)
ηe
ηx

= O(α1+ε).

By letting α ↓ 0, we see that σmax(P 1/2) = O(αp/2), which also yields that P 1/2(A+
BK)P−1(A + BK)>P 1/2 = O(1). Thus, the term on the right-hand side of the
inequality (47) is bounded by O(αε). This shows that for α sufficiently small,
M0 > 0.

We next analyze M1. Substituting K = −R−1B>P into M1, using Schur com-

plements [Zha11, §7.4], and conjugating by η
−1/2
e P−1/2, we get

M1 > 0 ⇔
λ

2
I > 2αP 1/2BR−1B>P 1/2 + 2

ηx
ηeα

P 1/2BR−1B>P 2BR−1B>P 1/2.(49)

Letting α ↓ 0, in view of Assumption 1 we have σmax(P ) = O(αp). The first term
on the right-hand side is O(αp+1). For our choice of ηe and ηx in (48), we get

(50)
ηx
ηeα

= O(α−2−ε).

This way, the second term on the right-hand side of the inequality (49) isO(α3p−2−ε),
which under the assumption p > 2

3 +ε, converges to zero as α ↓ 0. We conclude that
M1, and hence M = M0 +M1, are positive definite for sufficiently small α > 0. �
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7. Conclusions

This chapter provided an overview on the problem of stabilization of determin-
istic control systems under random sampling. Although the problem was first intro-
duced almost 60 years ago, the earlier efforts did not create many inroads. The use
of modern tools from the literature on stochastic systems has indeed brought con-
structive solution to this problem. In particular, this chapter provided the solution
to this problem using the extended generator and Volterra-integral techniques, and
also developed connections between these two approaches. One particular question
that needs further investigation is the design of feedback laws for fixed sampling
rates. In this direction, Conjecture 6.1 is shown to hold for scalar systems and to
some extent for multidimensional systems under a strong assumption. Investigating
design techniques for constructing feedback gains in linear case for given sampling
rates is indeed relevant for several applications.

As it is naturally the case, the problem has been studied with more depth in
the case of linear systems which lead to Theorem 5.1 and quantitative estimates
in Theorem 5.4. Extending such results for the case when the sampling process
in not necessarily Poisson, but governed by some other distribution needs to be
investigated. Another set of problems that emerges from these results is to develop
their analogue counterparts for nonlinear systems. It is not immediately clear how
Volterra-integral technique used in Theorem 5.1 could be generalized in nonlinear
setting. Hence, it needs to be seen whether a converse Lyapunov theorem can be
proven for nonlinear PDMPs. Also, at this moment, Theorem 5.4 shows that faster
sampling in the limit leads to the same convergence rate as one obtains for the
unsampled system. To extend this line of thought, we are currently looking into
whether for randomly-sampled process, the expected value of the random variable
at each time converges to the value of the function obtained as a solution to the
unsampled process, as the mean sampling rate grows.

While this chapter addressed the problem of stabilization with random sampling
using static time-invariant state feedback controllers, one can also explore the pos-
sibility of considering dynamic controllers with output feedback. Going beyond the
realm of conventional dynamic controllers, more recently in [TT17], the authors
work with discontinuous, or hybrid controllers, and consider the effect of random
perturbations in communication of discrete and continuous state to the controller.
Addressing similar questions, as the ones confronted in this chapter, for more gen-
eral class of controllers is likely to bring significant contributions to the currently
active field of stochastic hybrid systems [CL07, Hes14, TSS14].
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.1. Proof of Proposition 2.2.

Proof. The fact that
(
x(t), e(t)

)
t>0

is Markovian follows from the observation that

the future of x(t) depends on x(τNt
) and, therefore, equivalently on e(t).

Let Rd × Rd 3 (y, z) 7→ ψ(y, z) ∈ R denote a function with at most polynomial
growth as ‖(y, z)‖ → +∞. Since the system under consideration is well-posed, we
have, for h > 0 small,

E
[
ψ
(
x(t+ h), e(t+ h)

) ∣∣x(t) = y, e(t) = z
]

= E
[
ψ
(
x(t+ h), e(t+ h)

)(
1{Nt+h=Nt} + 1{Nt+h=1+Nt}

+ 1{Nt+h−Nt>2}
) ∣∣x(t), e(t)

]
.(51)

We now compute the conditional probability distribution of
(
x(t+ h), e(t+ h)

)
for

small h > 0 given
(
x(t), e(t)

)
. Since the sampling process is independent of the

joint process
(
x(τNt), x(t)

)
t>0

, by definition of the sampling (Poisson) process we
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have, for h ↓ 0,
P
(
Nt+h −Nt = 0

∣∣Nt, e(t), x(t)
)

= 1− λh+ o(h),

P
(
Nt+h −Nt = 1

∣∣Nt, e(t), x(t)
)

= λh+ o(h),

P
(
Nt+h −Nt > 2

∣∣Nt, e(t), x(t)
)

= o(h).

Using these expressions we develop (51) further for h ↓ 0 as

E
[
ψ
(
x(t+ h), e(t+ h)

) ∣∣x(t) = y, e(t) = z
]

= E
[
ψ
(
x(t+ h), e(t+ h)

)(
1{Nt+h=Nt} + 1{Nt+h=1+Nt}

) ∣∣x(t), e(t)
]

+ o(h)

= E
[
ψ
(
x(t+ h), e(t+ h)

) ∣∣x(t), e(t), Nt+h = Nt
]
·
(
1− λh+ o(h)

)
+ E

[
ψ
(
x(t+ h), e(t+ h)

) ∣∣x(t), e(t), Nt+h = 1 +Nt
](
λh
)

+ o(h).(52)

The two significant terms on the right-hand side of (52) are now computed separ-
ately. For the event Nt+h = Nt, given x(t) = y, e(t) = z, we have for h ↓ 0,

ψ
(
x(t+ h), e(t+ h)

)
= ψ

(
y, z
)

+ h
〈
∇yψ

(
y, z
)
, f
(
y, κ
(
x(τNt

)
)))〉

+ h
〈
∇zψ

(
y, z
)
, f
(
y, κ
(
x(τNt

)
)))〉

+ o(h),

leading to the first term on the right-hand side of (52) having the estimate

E
[
ψ
(
x(t+ h), e(t+ h)

) ∣∣Nt+h = Nt, x(t) = y, e(t) = z
]
·
(
1− λh+ o(h)

)
= ψ

(
y, z
)

+ h
〈
∇yψ

(
y, z
)

+∇zψ
(
y, z
)
, f
(
y, κ
(
x(τNt)

)))〉
− (λh)ψ

(
y, z
)

+ o(h) for h ↓ 0.

Concerning the second term on the right-hand side of (52), we observe that condi-
tional on Nt+h = 1 + Nt, the probability distribution of τNt+h

is [SK08, Theorem
2.3.7] uniform over [t, t+ h[ by definition of the sampling (Poisson) process, i.e.,

P
(
τNt+h

∈ [s, s+ s′[
∣∣Nt+h = 1 +Nt

)
=

1

h
s′ for [s, s+ s′[⊂ [t, t+ h[.

Since the sampling process is independent of the state process, the preceding con-
ditional probability is equal to

P
(
τNt+h

∈ [s, s+ s′[
∣∣Nt+h = 1 +Nt, x(t) = y, e(t) = z

)
.

We define θ ∈ [0, 1[ such that τNt+h
= t+ θh, x(t) = y, e(t) = z; then θ is uniformly

distributed on [0, 1[ given Nt+h = 1 + Nt. We also have, conditioned on the same
event,

e(τNt+h
) = e(t+ θh) = 0,

and

x(τNt+h
) = x(t+ θh) = x(t) + θhf

(
x(t), κ

(
x(τNt

)
)))

+ o(h).

The above expressions then lead to, conditioned on the event Nt+h = 1+Nt, x(t) =
y, e(t) = z and for h ↓ 0,

x(t+ h) = x(t+ θh) + (1− θ)hf
(
x(t+ θh), κ(x(t+ θh))

)
+ o(h)

= x(t) + θhf
(
x(t), κ

(
x(τNt)

)))
+ (1− θ)hf

(
x(t+ θh), κ(x(t+ θh))

)
+ o(h)

= x(t) + θhf
(
x(t), κ

(
x(τNt)

)))
+ (1− θ)hf

(
x(t), κ(x(t))

)
+ o(h).

Similarly, it can be verified directly from the differential equation governing e that
conditioned on the same event,

e(t+ h) = (1− θ)hf(x(t), κ(x(t))) + o(h) for h ↓ 0.

Therefore, for h ↓ 0,

E
[
ψ
(
x(t+ h), e(t+ h)

) ∣∣x(t) = y, e(t) = z,Nt+h = 1 +Nt
]
· (λh)
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=

∫ 1

0

ψ
(
y + θhf

(
x(t), κ

(
x(τNt

)
)))

+ (1− θ)hf
(
x(t), κ(x(t))

)
+ o(h),

(1− θ)hf
(
x(t), κ(x(t))

)
+ o(h)

)
dθ · (λh)

=

∫ 1

0

(
ψ
(
y, 0
)

+ h
〈
∇yψ

(
y, 0
)
, θhf

(
x(t), κ

(
x(τNt

)
)))

+ (1− θ)hf
(
x(t), k(x(t), 0)

〉
+ h

〈
∇zψ

(
y, 0
)
, (1− θ)hf

(
x(t), κ(x(t))

)〉
+ o(h)

)
dθ · (λh)

=
(
ψ
(
y, 0
)

+O(h)
)
· (λh)

= (λh)ψ
(
y, 0
)

+ o(h).

Putting everything together, we arrive at

E
[
ψ
(
x(t+ h), e(t+ h)

) ∣∣x(t) = y, e(t) = z
]

= ψ(y, z) + h
(〈
∇yψ(y, z) +∇zψ(y, z), f

(
y, κ
(
y − z

))〉)
− (λh)

(
ψ(y, z)− ψ(y, 0)

)
+ o(h).

Substituting these expressions in (8), we see that for each (y, z) ∈ Rd × Rd,
Lψ(y, z) =

〈
∇yψ(y, z) +∇zψ(y, z), f

(
y, κ
(
y − z)

))〉
− λ
(
ψ(y, z)− ψ(y, 0)

)
,

as asserted. �

.2. Proofs of Lemma 5.2 and Lemma 5.3.

Proof of Lemma 5.2. The desired expression for d
dtW (t) is obtained by differenti-

ating

W (t) =

+∞∑
j=0

Kj(H)(t)

where we recall that K is given in (25) and K0 is the identity operator. To do so,
we basically compute d

dtK
j(H)(t) for each j > 0. Since K0(H)(t) = H(t), we first

observe that
d

dt
H(t) = F>H(t) +H(t)F − λH(t).

Similarly, we compute

d

dt
K(H)(t) = λetF

>
G>(H)(0)GetF e−λt

+ λ

∫ t

0

esF
>
G>

(
d

dt
H(t− s)

)
GesF e−λs ds

= λJ(t) +K(F>H +HF − λH)(t).

Next, to compute d
dtK

j(H)(t), for j > 2, we use the induction principle. Let us
assume that, for some j > 2,

d

dt
Kj−1(H)(t) = λKj−2(J)(t) +Kj−1(F>H +HF − λH)(t).

It then follows that
d

dt
Kj(H)(t) = λetF

>
G>Kj−1(H)(0)GetF e−λt

+ λ

∫ t

0

esF
>
G>

d

dt
Kj−1(H)(t− s)GesF e−λs ds
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= λKj−1(J)(t) +Kj(F>H +HF − λH)(t).

Using this last expression and recalling the definition of W from (27), we obtain

d

dt
W (t) =

+∞∑
j=1

Kj(F>H +HF + λ(J −H))(t) + (F>H +HF + λ(J −H))(t),

which is the desired statement. �

Proof of Lemma 5.3. We first verify the desired expression (31) for j = 1. It is seen
that

λJ(t)− λG>H(t)G = λeF
>tG>QGeFte−λt − λG>H(t)G

= λ

∫ t

0

∂

∂s

(
eF
>sG>H(t− s)GeFse−λs

)
ds

= F>K(H)(t) +K(H)(t)F − λK(H)(t)

+ λ

∫ t

0

(
eF
>sG>

∂

∂s
H(t− s)GeFse−λs

)
ds

= F>K(H)(t) +K(H)(t)F − λK(H)(t)

−K(F>H +HF − λH)(t),

and hence (31) holds for j = 1.

Proceeding by induction, we assume that for some j > 1

(53) F>Kj(H)(t) +Kj(H)(t)F − λKj(H)(t) = −λG>Kj−1(H)(t)G

+Kj(F>H +HF − λH) + λKj−1(J)(t).

We then observe that

(54) − λG>Kj(H(t))G = λ

∫ t

0

∂

∂sj

(
eF
>sjG>Kj(H)(t− sj)GeFsje−λsj

)
dsj

because Kj(H)(0) = 0 for each j > 1. To compute the expression in the integrand
on the right-hand side, we observe that

∂

∂sj
Kj(H)(t− sj) = −λKj−1(J)(t− sj)−Kj(F>H +HF − λH)(t− sj),

which results in

∂

∂sj

(
eF
>sjG>Kj(H)(t− sj)GeFsje−λsj

)
dsj

= −λeF
>sjG>Kj−1(J)(t− s)GeFsje−λsj

− eF
>sjG>Kj(F>H +HF − λH)(t− sj)GeFsje−λsj

+ F>(eF
>sjG>Kj(H)(t− sj)GeFsje−λsj )

+ (eF
>sjG>Kj(H)(t− sj)GeFsje−λsj )F

− λ(eF
>sjG>Kj(H)(t− sj)GeFsje−λsj )

Substituting this last equality in (53), we get

λKj(J(t))− λG>Kj(H(t))G = F>Kj+1(H)(t) +Kj+1(H)(t)F − λKj+1(H)(t)

−Kj+1(F>H +HF − λH)(t),

and the assertion follows. �



30 A. TANWANI, D. CHATTERJEE, AND D. LIBERZON

LAAS – CNRS, University of Toulouse, 31400 Toulouse, France

E-mail address: aneel.tanwani@laas.fr

URL: http://homepages.laas.fr/atanwani

Systems & Control Engineering, IIT Bombay, Powai, Mumbai 400076, India.

E-mail address: dchatter@iitb.ac.in

URL: http://www.sc.iitb.ac.in/~chatterjee

Coordinated Science Laboratory, Department of Electrical and Computer Engin-

eering, University of Illinois at Urbana-Champaign, 61820 Urbana, IL USA.

E-mail address: liberzon@illinois.edu

URL: http://liberzon.csl.illinois.edu/


	1. Introduction
	2. Connections with piecewise deterministic Markov processes
	3. Lower bounds on the sampling rate
	4. Randomly sampled linear systems: A random walk down the history lane
	4.1. System description
	4.2. Early efforts
	4.3. New generation, same problem

	5. Equivalence of different stability conditions for linear PDMPs
	5.1. Volterra-integral approach
	5.2. Connections between the extended generator and Volterra-integral techniques
	5.3. Exponential stability under random sampling

	6. Converse question and feedback design
	6.1. Using the scalar deterministic case as a guideline
	6.2. Necessary lower bounds for the sampling rate
	6.3. The scalar case with Poisson sampling
	6.4. The multidimensional case

	7. Conclusions
	References
	.1. Proof of Proposition 2.2
	.2. Proofs of Lemma 5.2 and Lemma 5.3


