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Stability of distributed delay system with infinite support

Yassine Ariba, Frédéric Gouaisbaut, Alexandre Seuret and Kun Liu

Abstract— This paper is devoted to the stability analysis of
infinite distributed delay systems. The basic idea is to model
the original time-delay system into an interconnected feedback
system in order to use robust analysis and especially quadratic
separation. This approach has been widely used to study
classical pointwise time-delay system. The stability analysis
is performed by introducing new quadratic inequalities based
on Laguerre polynomials particularly well fitted to deal with
infinite distributed delay. It allows to develop new stability
results which accuracy depends on the chosen polynomial
degree.

I. INTRODUCTION

For several years, we have experienced a renewal in the
study of the stability and stabilisation of delay systems
[20]. Indeed, the study of stability is mainly carried out by
using a Lyapunov-Krasovskii functional whose parameters
are determined by means of a convex optimization scheme.
For several years now, these functionals have become very
efficient thanks to the relevant choices of their structure [21]
which has become more complex and incorporates new states
related to the partitioning of the delay [7], integral of states
[5] or the projection of the infinite-dimensional delay state
on an orthogonal polynomial basis [16]. This last feature also
allows the use of very precise quadratic inequalities leading
to very efficient LMI criteria. These inequalities, called
Bessel inequalities, are all primarily based on the relevant
choice of an inner product in L2 and the use of a polynomial
orthogonal basis. Thus, Legendre polynomials have been
used to develop stability criteria for pointwise delay systems
in a Lyapunov-Krasovskii functionals framework but also in
a robust analysis setup [1]. Notice that these inequalities
include the inequalities of Jensen [8] and Wirtinger [15]
widely used in the literature on delay systems. Concerning
distributed time-delay systems with a finite support, several
papers have been devoted to the construction of Lyapunov
functionals [3], [4], [5] (and references therein). The method-
ology involving orthogonal Legendre polynomials has also
led to results reducing the conservatism of Lyapunov meth-
ods and keeping a relatively low numerical complexity [17],
[6].

Attempts to study systems with distributed delay with an
infinite support are more scarce. For instance, frequency
approaches have been developed to study the stability of

Y. Ariba, F. Gouaisbaut, A. Seuret are with LAAS - CNRS, Université de
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the traffic flow dynamics [13] or linear systems with gamma
distributed delays [18]. These systems have also been studied
under the angle of an extension of the functional [19].
The interest of such methods is mainly the development of
new quadratic integral inequalities with infinite support of
integration. This has led to the construction of new Lyapunov
functionals, which, combined with optimization algorithms,
allowed at least on examples, to obtain very encouraging
results [19]. It should be noted that this approach has recently
been extended by using terms that depend on a double
integral in order to significantly improve the results [11].

The paper’s objective is to study this class of delay
systems using robust analysis, a method that has already
led to the development of robust stability conditions for
constant delay systems (pointwise or distributed). We focus
more specifically on the quadratic separation approach whose
principle is to model the distributed delay system as a
closed loop system between an uncertain dynamical system
and a linear transformation. The novelty of the approach
lies in the use of a new inner product taking into account
the infinite support of the distributed delay system. The
kernel of the distributed part is thus, within this framework,
approximated by a sum of Laguerre polynomials which
are orthogonal for the selected inner product. Notice that
the approximation error is also taken into account in the
rewriting of the original model. A new comparison model
is therefore obtained, in which the uncertainty set, gathering
the delay elements, can be precisely described by using a
Bessel-Laguerre inequality. Using the quadratic separation
theorem, a sequence of LMIs tests, in which conservatism
decreases as the degree of Laguerre polynomials increases is
then proposed. This approach has to be viewed as the robust
counterpart of [12], where Laguerre polynomials have been
also used in a Lyapunov framework.

Notations: Throughout the paper, the following notations
are used. The sets N, R, C represent the set of non negative
integer numbers, of real and complex number, respectively.
The set Rn×m is the set of matrices of n rows and m
columns. 1n and 0m×n denote respectively the identity matrix
of size n and null matrix of size m×n. If the context allows
it, the dimensions of these matrices will be omitted. For
two symmetric matrices, A and B, A > (≥) B means that
A−B is (semi-) positive definite. AT denotes the transpose
of A. A⊥ stands for a full rank matrix whose columns span
the null-space of A, i.e. AA⊥ = 0. diag(A,B) stands for
the block diagonal matrix diag(A,B) = [A 0

0 B ] = [A B ].
The notation A∗ represents the conjugate transpose of the
complex matrix A. L2 can be viewed as the space of
square integrable functions with a finite energy: ‖f‖2 =



∫∞
0
|f(t)|2dt. H2 is the function space which contains the

Laplace transform of signals in L2. H∞ is the set of all
functions F (s) such that supRe(s)≥0 σ̄(F (s)) ≤ ∞, where
σ̄ stands for the maximum singular value.

II. PROBLEM STATEMENT

Let us consider a distributed delay system of the form:

ẋ(t) = Ax(t) +Ad

∫ ∞
0

K(θ)x(t− θ − h)dθ, (1)

where x(t) ∈ Rn is the state vector and is assumed to belong
to L2, A and Ad ∈ Rn×n are constant matrices. The constant
delay h is unknown but belongs to an interval [hmin, hmax].
The initial condition is given by φ ∈ C1(−∞, 0], where
C1(−∞, 0] denotes the space of continuously differentiable
functions φ : (−∞, 0]→ Rn with the norm

‖φ‖C1 = sup
s∈(−∞,0]

|φ(s)|+ sup
s∈(−∞,0]

|φ̇(s)|.

The kernel function K is assumed to be a scalar function of
the form

K(θ) = f(θ)e−αθ,

where the scalar function f is continuous and verifies
∞∫
0

f(θ)e−αθdθ <∞ with α a positive scalar. Following [19],

this specific inequality allows us to ensure that the integral in
the distributed delay part is convergent. Taking the Laplace
transform of (1), we obtain:(

s1n −A−Ad
∫ ∞
0

K(θ)e−sθe−shdθ

)
x(s) = 0.

We aim at assessing the stability of system (1) for a given
kernel function K and a given maximal allowable constant
gap delay hmax. More precisely, following [9], the system is
asymptotically stable for all delays h belonging [0, hmax] if
and only if

∀h ∈ [0, hmax], ∀s ∈ C, Re(s) ≥ 0,

det(s1n −A−Ad
∫ ∞
0

K(θ)e−sθe−shdθ) 6= 0.

This paper proposes the use of a classical robust analysis
approach to address this problem. Firstly, we will model the
given system as an uncertain system [22]. Then in a second
stage, the stability of the uncertain system will be studied
using the Quadratic Separation approach [10], [14], recalled
in the following subsection.

III. PRELIMINARIES

A. Quadratic separation Approach

The quadratic separation principle is a specific approach to
the robust analysis/control [10], [14]. It consists of analyzing
the stability of a specific feedback system as illustrated in
Figure 1. This latter is composed of a linear singular system,
with two real constant matrices E and A, connected to a
linear operator, with a complex matrix ∇. Basically, this
operator encompasses the uncertain feature of the system,

which can stem from uncertain parameters, nonlinear dy-
namics, delay dynamics [2]. It is assumed to belong to an
uncertain set ∇∇. Hence, the methodological principle relies
on the modelling of the system under study so as to obtain
an interconnected system as shown in Figure 1. Then a
stability result, stated in Theorem 1, is applied to derive a
wellposedness condition for the original system. This last
condition allows also to prove the robust stability if the
uncertain set ∇∇ is well chosen.
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Fig. 1. Feedback system.

Theorem 1 ([14]): The uncertain feedback system of Fig-
ure 1 is well-posed and stable if and only if there exists a
Hermitian matrix Θ = Θ∗ satisfying both conditions[

E −A
]⊥∗

Θ
[
E −A

]⊥
> 0, (2)[

1
∇

]∗
Θ

[
1
∇

]
≤ 0 , ∀∇ ∈ ∇∇ . (3)

In practice, inequality (3) is defined at the modelling step,
according to the choice of operators in the feedback system.
Then, the second inequality (2) is studied so as to design a
stability condition to be tested.

B. Laguerre Polynomials

In [16], a generalized integral inequality has been intro-
duced thanks to the use of the Bessel inequality together
with the orthogonal sequence of Legendre polynomials. This
formulation was adapted to the situation of distributed delay
on finite support [17], but cannot be directly extended to
the case of infinite support for the distributed delay term.
Therefore, there is a need to formulate a new Bessel-like
inequality dedicated to this situation, which is made possible
through the use of Laguerre polynomials.

We define by M the vector space of complex valued
square integrable functions on [0,∞) with an exponential
weight. For any functions in M, we define the Hermitian
inner product useful for deriving some stability tests:

〈x, y〉 =

∫ ∞
0

x(θ)ȳ(θ)e−αθdu, (4)

where x and y belong to M. As in the definition of the
kernel K(θ), the same coefficient α is used to define this
specific inner product. Associated to this inner product, the
Laguerre polynomials are also introduced.

Definition 1 (Laguerre polynomials): The Laguerre poly-
nomials are defined by

∀k ∈ N, Lk(u) =
eu

k!

dk

duk
[
e−uuk

]
,



with Lk(0) = 1, for all k ∈ N. These polynomials are
orthogonal with respect to the following inner product,
∀(k, l) ∈ N2,∫ ∞

0

Lk(u)Ll(u)e−udu =

{
0, k 6= l,
1, k = l.

(5)

In order to adapt the Laguerre polynomials to the inner
product (4), the polynomial definition is slightly modified
by a change of variable u = αθ. The new polynomials
considered in this paper are then of the form:

∀k ∈ N, Lk(θ) =
eαθ

k!

dk

dθk
[
e−αθθk

]
. (6)

Notice that in this case, we have:

〈Lk, Ll〉 =
1

α
κkl,

where κkl is the Kronecker function. We now propose a first
result that will be used later in the modelling part.

Lemma 1: The derivative of polynomials Lk, defined in
(6), can be expressed as a recurrence relation:{

d
dθLk(θ) = −αLk−1(θ) + d

dθLk−1(θ),

L0(θ) = 1.

Hence, we also have

d

dθ
Lk(θ) = −α

l−1∑
l=0

Ll(θ).

Proof: Let us express the derivative of (6):

d

dθ
Lk(θ) =

d

dθ
(
eαθ

k!

dk

dθk
[
e−αθθk

]
)

d

dθ
Lk(θ) =

eαθ

(k − 1)!

dk

dθk

[
e−αθθk−1

]
=

eαθ

(k − 1)!

dk−1

dθk−1

[
− αe−αθθk−1

]
︸ ︷︷ ︸

−αLk−1

+
eαθ

(k − 2)!

dk−1

dθk−1

[
e−αθθk−2

]
︸ ︷︷ ︸

d
dθLk−1

,

which concludes the proof.

IV. STABILITY ANALYSIS

A. Modeling of the original system
A first step is to model the original system into an

interconnected uncertain comparison system whose stability
ensures the stability of the original time delay system. In
order to benefit from the Laguerre polynomials properties,
function f is reworded as

f(θ) =

r∑
k=0

akLk(θ) + gr(θ)

where r is the degree of the polynomial and the coefficients
ai are computed with the orthogonal projection of the
function on the associated Laguerre polynomials,

ak =
〈f, Lk〉
〈Lk, Lk〉

, ∀k = 0, . . . , r.

The function gr is called the remainder at order r. The
original time-delay system (1) can then be rewritten as:

ẋ(t) = Ax(t) +

r∑
k=0

Adk

∫ ∞
0

Lk(θ)e−αθx(t− θ − h)dθ

+Ad

∫ ∞
0

gr(θ)e
−αθx(t− θ − h)dθ,

(7)
with Adk = akAd. Let us define new extra-states as:

xk(t) =

∫ ∞
0

Lk(θ)e−αθ x(t− θ − h) dθ, ∀k = 0, . . . , r

xgr (t) =

∫ ∞
0

gr(θ)e
−αθ x(t− θ − h) dθ.

The dynamics of the augmented states xk is written as:

ẋk(t) =

∫ ∞
0

Lk(θ)e−αθ
d

dt
x(t− θ − h) dθ,

=−
∫ ∞
0

Lk(θ)e−αθ
d

dθ
x(t− θ − h) dθ.

An integration by parts and the use of Lemma 1 lead to

ẋk(t) = x(t− h)− α
k∑
l=0

xl(t).

This auxiliary dynamic is then appended to the initial
system (7) to obtain the following extended system:

ẋ(t) = Ax(t) +

r∑
k=0

Adkxk(t) +Adxgr (t),

ẋk(t) = x(t− h)− α
k∑
l=0

xl(t), k = 0, . . . , r.

(8)
with the particular initial conditions x(s) = φ(s), s ∈ (−∞, 0],

xk(0) =

∫ ∞
0

Lk(θ)e−αθ φ(−θ − h) dθ, ∀k = 0, . . . , r.

It is worth noting that the augmented system (8), omitting
the constraints on the initial conditions of the xk’s, represents
a wider class of system than the original distributed delay
system (1). However, the objective of the latter developments
is to assess stability of the (8) with the constrained initial
conditions in order to guarantee the stability of the initial
system (1).

Notice that in the Laplace domain, the original dynamical
system can be written as

sx(s) = Ax(s) +

r∑
k=0

Adk

∫ ∞
0

Lk(θ)e−sθe−αθdθ︸ ︷︷ ︸
δk(s)

e−shx(s)

+Ad

∫ ∞
0

gr(θ)e
−sθe−αθdθ︸ ︷︷ ︸

δgr (s)

e−shx(s),



emphasizing the relationship between the infinite part of the
system and the extra states xk and xgr . To this end, we
introduce a set of transfer functions as{

δk(s) =
∫∞
0
Lk(θ)e−sθe−αθdθ, k = 0, . . . , r,

δgr (s) =
∫∞
0
gr(θ)e

−sθe−αθdθ.

At this stage, the extended time delay system (8) can be
modeled as an uncertain interconnected system. It can be
done by considering the following complex valued matrix

∇(s) =



s−11(r+2)n

e−sh1n
1−e−sh

s 1n
δ01n

...
δr1n

δgr1n


.

(9)
interconnecting the signals

w(t) =



x(t)
x0(t)

...
xr(t)

x(t− h)
x(t)− x(t− h)

x0(t)
...

xr(t)
xg(t)


; z(t) =



ẋ(t)
ẋ0(t)

...
ẋr(t)
x(t)
ẋ(t)

x(t− h)
x(t− h)



with W (s) = ∇(s)Z(s), in the Laplace domain. Using the
definition of the augmented system (8), a linear transforma-
tion of the form EZ(s) = AW (s) linking W (s) and Z(s)
can be built with

E =

[
1(r+6)n

0(r+2)n×(r+6)n

]
, (10)

A =



A Ād 0 0 0 Ad
0 U E 0 0 0
1 0 0 0 0 0
A Ād 0 0 0 Ad
0 0 1 0 0 0
0 0 1 0 0 0
1 0 −1 −1 0 0
0 1 0 0 −1 0


, (11)

and

E =


1
1
...
1

 , U =


−α1 0 . . . 0
−α1 −α1 0

...
. . .

−α1 −α1 . . . −α1

 ,
Ād =

[
Ad0 Ad1 . . . Adr

]
.

B. Construction of quadratic constraints

The original time-delay has been modeled as an inter-
connected system depicted in Figure 1 and the next step
is to find a so-called separator Θ such the inequality (3) is
satisfied. Since, the uncertain complex valued matrix ∇(s) is
a block diagonal matrix, a separator of the same structure is
developed, that is a separator for each component of ∇(s).
The next Lemmas recall some separators classically used in
the literature of robust analysis of time-delay systems [2].

Lemma 2: A quadratic constraint for s−1 is given by the
following inequality for any positive definite matrix P in
Rn×n,

∀s ∈ C, Re(s) ≥ 0, s 6= 0,[
1n

s−11n

]∗ [
0 −P
−P 0

] [
1n

s−11n

]
≤ 0.

Lemma 3: A quadratic constraint for e−hs is given by the
following inequality for any positive definite matrix Q1 in
Rn×n,

∀s ∈ C, Re(s) ≥ 0,[
1n

e−hs1n

]∗ [ −Q1 0
0 Q1

] [
1n

e−hs1n

]
≤ 0.

Lemma 4: A quadratic constraint for µ = (1− e−hs)s−1
is given by the following inequality for any positive definite
matrix Q2 in Rn×n,

∀s ∈ C, Re(s) ≥ 0,[
1n
µ1n

]∗ [ −h2maxQ2 0
0 Q2

] [
1n
µ1n

]
≤ 0.

Proofs of Lemma 2, 3 and 4 can be found in [2]. The next
Lemma is dedicated to the design of a separator for the new
operator

[
δ01n . . . δr1n

]T
.

Lemma 5: A quadratic constraint for
[
δ01n . . . δr1n

]T
is given by the following inequality for any positive definite
matrix R1 in Rn×n,

1n
δ01n

...
δr1n


T 
− 1
α2R1 0 . . . 0
0 R1

...
. . .

0 R1




1n
δ01n

...
δr1n

 ≤ 0.

Proof: Let us apply the Bessel inequality to the
delay transfer function e−sθ with the orthonormal sequence
{L0, . . . ,

√
αLk, . . . ,

√
αLr}:

〈e−sθ, e−sθ〉 ≥
r∑

k=0

|〈e−sθ,
√
αLk〉|2

≥
r∑

k=0

αδkδ
∗
k.

Since 〈e−sθ, e−sθ〉 is bounded by 1/α, we have
r∑

k=0

αδkδ
∗
k ≤

1

α
,

r∑
k=0

δkδ
∗
k ≤

1

α2
.



This last inequality can then be directly extended to[
δ01n . . . δr1n

]T
using a matrix R1 > 0 following the

approach proposed in [2], which concludes the proof.
The next step is therefore to propose a separator for δgr .
Lemma 6: A quadratic constraint for δgr is given by the

following inequality for any positive definite matrix R2 in
Rn×n,

∀s ∈ C, Re(s) ≥ 0,[
1n
δgr1n

]∗ [ −λrR2 0
0 R2

] [
1n
δgr1n

]
≤ 0,

with

λr =

 ∞∫
0

|g(θ)|e−αθ dθ

2

.

Proof: Let us express the norm of δg:

δgrδ
∗
gr =

∣∣∣∣∣∣
∞∫
0

gr(θ)e
−αθe−sθ dθ

∣∣∣∣∣∣
2

≤

 ∞∫
0

|gr(θ)e−αθe−sθ| dθ

2

≤

 ∞∫
0

|gr(θ)|e−αθ dθ

2

= λr .

This last inequality can then be extended straightforwardly
to δgr1n introducing a weighting matrix R2 [2].

Finally, concatenating all the separators for each operator,
we proposed the following separator for ∇(s).

Lemma 7: Assume there exist positive definite matrices
P,Q1, Q2, R1, R2, then a matrix Θ of the form

Θ =

[
Θ11 Θ12

ΘT
12 Θ22

]
(12)

with

Θ11 = diag(0,−Q1,−h2maxQ2,− 1
α2R1,−λrR2),

Θ12 = diag(−P, 0, 0, 0, 0),

Θ22 = diag(0, Q1, Q2, R1, . . . , R1, R2),

is a separator for ∇(s) defined by equation (9). The inequal-
ity (3) is then fulfilled, for all s ∈ C, Re(s) ≥ 0, s 6= 0.

Proof: The proof is omitted because it is a direct
combination of previous Lemmas.

C. Stability results

Having modeled the system (1) as an uncertain intercon-
nected system and having characterized the uncertainty ∇(s)
with Lemma 7, a stability theorem is proposed.

Theorem 2: For a given constant hmax, if there exist
positive definite matrices P ∈ Rn(r+2)×n(r+2), Q1,Q2, R1

and R2 ∈ Rn×n, such that the following LMI is satisfied:[
E −A

]⊥∗
Θ
[
E −A

]⊥
> 0,

where matrices E , A and Θ are defined in (10), (11) and (12),
then the system (1) is asymptotically stable for any constant
gap h ≤ hmax.

Proof: It has been proved that using extended states
xk, the original system (1) could be modeled as in Figure
1 with the uncertain matrix ∇(s) defined in (9) and the
linear transformation defined by (10), (11). Using Lemma 7,
a separator Θ defined in (12) allows to satisfy the condition
(3). Hence, Applying Theorem 1, the feedback system is
well-posed if the first condition (2) is also satisfied with E ,
A and Θ defined in (10), (11) and (12). Following therefore
[2], it can be proved that the well-posedness of the feedback
system implies that there do not exist eigenvalues of the
distributed delay system on the right half plane, that is

∀h ≤ hmax, ∀s ∈ C, Re(s) ≥ 0,

det(s1n −A−Ad
∫ ∞
0

K(θ)e−sθe−shdθ) 6= 0.

which concludes the proof.
Remark 1: The stability condition as stated in Theorem 2

is delay-dependent since it proves the stability of (1) for any
constant gap h lower than a prescribed upper bound hmax. If
the third operator (1− e−sh)/s in (9) is removed, adjusting
correspondingly1 matrices E , A and Θ in (10)-(11)-(12), an
independent-of-delay (IOD) stability condition is provided.

Remark 2: Theorem 2 can be viewed as the robust ap-
proach counterpart of a Lyapunov-Krasovskii functional pro-
posed recently in [12] defined by

Vr(xt) = ζTr (t)Pζr(t) + h

∫ 0

−h

∫ t

t+θ

ẋT (s)Q2ẋ(s)dsdθ

+

∫ ∞
0

∫ t

t− 1
α θ−h

e−θxT (s)R1x(s)dsdθ,

where P,Q2, R1 are postive definite matrices and ζr(t) is
an extended state which takes into account the projections
of the state on Laguerre polynomials

ζr(t) =



x(t)∫ +∞

0

L0(θ)x(t− 1

α
θ − h)e−θdθ

...∫ +∞

0

Lr(θ)x(t− 1

α
θ − h)e−θdθ


.

V. NUMERICAL EXAMPLES

A. Example 1

The model in this first example is extracted from [19], and
represents the traffic flow dynamic of cars on a ring [13]. The
system is expressed as (1) with

A =

[
−2 0
0 −2

]
and Ad =

[
0 2
2 0

]
.

1That is, removing the fourth and seventh rows from matrices E and A,
and removing the fourth column in A and the two rows/columns associated
to the matrix Q2 in the separator Θ.



TABLE I
STABILITY OF (13): MAXIMUM ALLOWABLE GAP.

sequence
order r

maximum allowable
gap h

remainder
bound λr

0 2.96 4.1× 10−5

1 3.39 2.1× 10−7

2 3.43 2.3× 10−9

3 3.43 4.3× 10−11

The kernel is a gamma distribution

K(θ) =
θN−1e−

θ
T

TN (N − 1)!
,

for a given N and a given T . For N = 1 and N = 2, [19]
has shown that the system is stable for (T, h) ∈ [0 , 1000]×
[0 , 1000]. This result is recovered with Theorem 2. It can be
proved that it is actually IOD stable, for both N = 1 and
N = 2, with a slight modification in Theorem 2 (see Remark
1). Note that for N = 1, it is sufficient to set r = 0 since
in that case the function f is constant: f(θ) = 1

T . When
N = 2, a zero r is not enough for this example and a first
order Laguerre polynomial (r ≥ 1) is necessary to prove
the stability, the remainder operator bound λ being too high
otherwise. For instance, for T = 2 and h = 100, when r = 0
the bound λ equals 0.54 while it vanishes to 0 when r = 1.

B. Example 2

Let consider the following scalar example:

ẋ(t) = 0.2 x(t)− 5

∞∫
0

1 + θ

5 + θ
e−4θ x(t− θ − h) dθ. (13)

Notice that removing the delayed part, the system is
unstable. According to our modeling, we have f(θ) = 1+θ

5+θ
and α = 4. The function f being a rational fraction, the
projection on the Laguerre polynomials sequence won’t be
exact. Theorem 2 allows to establish the stability of (13) for
any value of the gap h lower than a certain upperbound as
stated in Table I. One can observe that the higher the order r
of the Laguerre polynomial basis is, the lower the remainder
bound λr is. Hence, conservatism is reduced as r increases
and a larger maximum allowable gap is found.

VI. CONCLUSION

In this paper, we have studied the stability of a class of
distributed delay systems with infinite support. Unlike the
classical approach based on the construction of Lyapunov
functionals, we have transform the problem as a robust
stability problem. Within this framework, using quadratic
separation, all the distributed delay transfer functions are
embedded into uncertainties. These uncertainties are then
characterized by quadratic inequalities. To this end, we
proposed to develop new inequalities based on the use of La-
guerre polynomials and the Bessel-Laguerre inequality. This
last inequality makes it possible to obtain LMI conditions
whose conservatism depends on the chosen degree for the
Laguerre polynomials.

REFERENCES

[1] Y. Ariba, F. Gouaisbaut, and A. Seuret. Bessel inequality for robust
stability analysis of time-delay system. In 52nd IEEE Conference on
Decision and Control (CDC’13), 2013.

[2] Y. Ariba, F. Gouaisbaut, A. Seuret, and D. Peaucelle. Stability analysis
of time-delay systems via Bessel inequality: A quadratic separation
approach. International Journal of Robust and Nonlinear Control,
28(5):1507–1527, 2018.

[3] W. Chen and W. Zheng. Delay-dependent robust stabilization for un-
certain neutral systems with distributed delays. Automatica, 43(1):95
– 104, 2007.

[4] Z. Feng and J. Lam. Integral partitioning approach to robust stabiliza-
tion for uncertain distributed time-delay systems. International Journal
of Robust and Nonlinear Control, 22(6):676 – 689, 2012.

[5] E. Fridman. Introduction to Time-Delay Systems. Springer, 2014.
[6] F. Gouaisbaut, Y. Ariba, and A. Seuret. Stability of distributed delay

systems via a robust approach. In 2015 European Control Conference
(ECC), pages 2068–2073, July 2015.

[7] F. Gouaisbaut and D. Peaucelle. Delay-dependent stability analysis of
linear time delay systems. In IFAC workshop on time delay system,
Aquila,Italy, 2006.

[8] K. Gu. An integral inequality in the stability problem of time-delay
systems. IEEE Conference on Decision and Control, 2000.

[9] K. Gu, V.-L. Kharitonov, and J. Chen. Stability of time-delay systems.
Birkhauser, 2003.

[10] T. Iwasaki and S. Hara. Well-posedness of feedback systems: insights
into exact robustness analysis and approximate computations. IEEE
Trans. on Automatic Control, 43(5):619–630, May 1998.

[11] K. Liu, E. Fridman, K. H. Johansson, and Y. Xia. Generalized jensen
inequalities with application to stability analysis of systems with dis-
tributed delays over infinite time-horizons. Automatica, 69:222–231,
2016.

[12] K. Liu, A. Seuret, Y. Xia, F. Gouaisbaut, and Y. Ariba. Bessel-Laguerre
inequality and its application to systems with infinite distributed
delays. Submitted, 2018.

[13] C. Morarescu, S. Niculescu, and K. Gu. Stability crossing curves of
shifted gamma-distributed delay systems. SIAM Journal on Applied
Dynamical Systems, 6(2):475–493, 2007.

[14] D Peaucelle, D Arzelier, D Henrion, and F Gouaisbaut. Quadratic
separation for feedback connection of an uncertain matrix and an
implicit linear transformation. Automatica, 43(5):795–804, 2007.

[15] A. Seuret and F. Gouaisbaut. Wirtinger-based integral inequality:
Application to time-delay systems. Automatica, 49(9):2860 – 2866,
2013.

[16] A. Seuret and F. Gouaisbaut. Hierarchy of LMI conditions for the
stability analysis of time-delay systems. Systems & Control Letters,
81:1–7, 2015.

[17] A. Seuret, F. Gouaisbaut, and Y.Ariba. Complete quadratic Lyapunov
functionals for distributed delay systems. Automatica, 62:168 – 176,
2015.

[18] R. Sipahi, F. M. Atay, and S. I. Niculescu. Stability of traffic flow
behavior with distributed delays modeling the memory effects of the
drivers. SIAM Journal on Applied Mathematics, 68(3):738–759, 2007.

[19] O. Solomon and E. Fridman. New stability conditions for systems
with distributed delays. Automatica, 49(11):3467 – 3475, 2013.

[20] E. Witrant, E. Fridman, O.Sename, and L. Dugard, editors. Recent
Results on Time-Delay Systems. Number 5 in Advances in Delays and
Dynamics. Springer, 2016.

[21] H.B. Zeng, Y. He, M. Wu, and J. She. New results on stability analysis
for systems with discrete distributed delay. Automatica, 60:189 – 192,
2015.

[22] J. Zhang, C. R. Knopse, and P. Tsiotras. Stability of time-delay
systems: Equivalence between Lyapunov and scaled small-gain con-
ditions. IEEE Trans. on Automatic Control, 46(3):482–486, March
2001.


