
HAL Id: hal-01962754
https://laas.hal.science/hal-01962754

Submitted on 20 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmarking the Dependability of Windows and Linux
using PostMark ™ Workloads *

Karama Kanoun, Yves Crouzet, Ali Kalakech, Ana-Elena Rugina, Philippe
Rumeau

To cite this version:
Karama Kanoun, Yves Crouzet, Ali Kalakech, Ana-Elena Rugina, Philippe Rumeau. Benchmarking
the Dependability of Windows and Linux using PostMark ™ Workloads *. 16th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2005, Nov 2005, Chicago, United States.
pp.11-20. �hal-01962754�

https://laas.hal.science/hal-01962754
https://hal.archives-ouvertes.fr

Benchmarking the Dependability of Windows and Linux
using PostMark™ Workloads *

Karama Kanoun, Yves Crouzet, Ali Kalakech, Ana-Elena Rugina and Philippe Rumeau

LAAS-CNRS, 7, Avenue Colonel Roche 31077 Toulouse Cedex 4, France
Karama.Kanoun@laas.fr

Abstract

This paper presents a dependability benchmark for
general-purpose operating systems and its application to
six versions of Windows operating system and four
versions of Linux operating system. The benchmark
measures are: operating system robustness (as regards
possible erroneous inputs provided by the application
software to the operating system via the application
programming interface), reaction and restart times in the
presence of faults. The workload is PostMark, a file
system performance benchmark for operating systems.

1. Introduction
Software is playing an increasingly important role in our
day-to-day life. In particular, operating systems (OSs) are
more and more used even in critical application domains.
Choosing the operating system that is best adapted to
one’s needs is becoming a necessity. For a long time,
performance was the main selection criterion for most
users and several performance benchmarks were
developed and are widely used. However, an OS should
not only have good performance but also a high
dependability level. Dependability benchmarks emerged
as a consequence. Their role is to provide useful
information regarding the dependability of software
systems [4-6, 24, 25]. This paper is devoted to the
specification, application and validation of a
dependability benchmark of OSs using PostMark, a file
system performance benchmark, as the workload.
An OS dependability benchmark is intended to
objectively characterize the OS behavior in the presence
of faults. Its results are intended i) to characterize
qualitatively and quantitatively the OS behavior in the
presence of faults and ii) to evaluate performance-related
measures in the presence of faults. Our dependability
benchmark is a robustness benchmark. Robustness is
defined as the degree to which a system operates correctly

* This work is partially supported by the European Commission - IST

DBench project (IST-2000-25425) http://www.laas.fr/DBench/

in the presence of exceptional inputs or stressful
environmental conditions. Robustness of OS can be
viewed as its capacity to resist/react to faults induced by
the applications running on top of it, or originating from
the hardware layer or from device drivers. In this paper
we address the OS robustness as regards possible
erroneous inputs provided by the application software to
the OS via the Application Programming Interface (API).
More explicitly, we consider corrupted parameters in
system calls. For sake of conciseness, such erroneous
inputs are shortly referred to as faults.
To be meaningful under acceptable conditions, a
dependability benchmark should satisfy a set of
properties. For example, a benchmark must be
representative, reproducible, repeatable, portable and cost
effective. These properties should be taken into
consideration from the earliest phases of the benchmark
specification as they have a deep impact on almost all
benchmark components. Verification of the benchmark
key properties constitutes a large part of the benchmark
validation. The last section of the paper will outline the
main benchmark properties that are meaningful to the
current benchmark, and briefly show what has been
achieved to ensure them.
The work reported in this paper is part of the European
project on Dependability Benchmarking, DBench [3, 13,
17]. Our previously published work on OS dependability
benchmarks was based on TPC-C Client performance
benchmark for transactional systems and devoted to the
comparison of Windows NT4 Workstation, Windows
2000 Professional and Windows XP professional [12].
This paper extends our previous work using another
performance benchmark workload, PostMark and
 applying the benchmark to six Windows OSs and four
Linux OSs. Also, we introduce the benchmark properties
and show how they have been addressed.
Several relevant attempts have already been proposed to
help characterize the failure modes and robustness of
software executives. A comprehensive analysis of the
issues linking robustness and dependability can be found
in [20]. The executives targeted in these studies
encompass real time microkernels [2, 6, 9], general

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

purpose OSs [15, 24], as well as CORBA middleware
implementations [18, 21]. The work reported in [22]
addressed the robustness of the POSIX and Win32 API as
in our case. However, they concentrated on OS "non-
robustness" while we are interested in robust and non-
robust behavior. Results concerning the robustness with
respect to faults in device drivers can be found in [1, 7, 8].
The remainder of the paper is organized as follows.
Section 2 gives the specification of the OS benchmark.
Section 3 presents implementation prototypes developed
to benchmark Windows and Linux families. Section 4 is
devoted to benchmark results that are refined in Section 5.
Section 6 addresses benchmark properties validation and
Section 7 concludes the paper.

2. Specification of the Benchmark
A dependability benchmark should define clearly:
1) The benchmark target and the benchmarking context.
2) The benchmark measures to be evaluated and the

measurements to be performed on the system to
provide the information required for obtaining them.

3) The benchmark execution profile to be used to
activate the operating system.

4) Guidelines for conducting benchmark experiments and
implementing benchmark prototypes.

These items items are summarized hereafter. It is worth
mentioning that the benchmark results are meaningful,
useful and interpretable only if all these items are
provided with the results.

2.1. Benchmarking Context
An OS can be seen as a generic software layer that
manages all aspects of the underlying hardware. The OS
provides i) basic services to the applications through the
API and ii) communication with peripherals devices via
device drivers. From the dependability benchmarking
viewpoint, the benchmark target corresponds to the OS
with the minimum set of device drivers necessary to run
the OS under the benchmark execution profile. However,
for the benchmark target to be assessed, it is necessary to
run it on top of a hardware platform and to use a set of
libraries. Thus, the benchmark target along with the
hardware platform and libraries form the system under
benchmarking. Although, in practice, the benchmark
measures characterize the system under benchmarking
(e.g., the OS reaction and restart times are strongly
dependent on the underlying hardware), for clarity
purpose we will state that the benchmark results
characterize the OS.
The benchmark addresses the user perspective, i.e., it is
primarily intended to be performed by (and to be useful
for) someone or an entity who has no in depth knowledge
about the OS and whose aim is to significantly improve
her/his knowledge about its behavior in the presence of

faults. In practice, the user may well be the developer or
the integrator of a system including the OS.
The OS is considered as a “black box” and the source
code does not need to be available. The only required
information is the description of the OS in terms of
system calls (in addition of course to the description of
the services provided by the OS).

2.2. Benchmark Measures
The benchmark measures include a robustness measure
and two temporal measures.
After execution of a corrupted system call, the OS is in
one of the states summarized in Table 1.

Table 1: OS outcomes
SEr An error code is returned
SXp An exception is raised, processed and notified
SPc Panic state
SHg Hang state
SNS No-signaling state

SEr: corresponds to the case where the OS generates an
error code that is delivered to the application.
SXp: corresponds to the case where the OS issues an
exception. Two kinds of exceptions can be distinguished
depending on whether it is issued during the application
software execution (user mode) or during execution of the
kernel software (kernel mode). In the user mode, the OS
processes the exception and notifies the application (the
application may or may not take into account explicitly
this information). However, for some critical situations,
the OS aborts the application. An exception in the kernel
mode is automatically followed by a panic state (e.g., blue
screen for Windows and oops messages for Linux).
Hence, hereafter, the latter exceptions are included in the
panic state and the term exception refers only to user
mode exceptions.
SPc: In the panic state, the OS is still “alive” but it is not
servicing the application. In some cases, a soft reboot is
sufficient to restart the system.
SHg: In this state, a hard reboot of the OS is required.
SNS: In the no-signaling state, the OS does not detect the
presence of the erroneous parameter. As a consequence, it
accepts the erroneous system call and executes it. It may
thus abort, hang or complete its execution. However, the
response might be erroneous or correct. For some system
calls, the application may not require any explicit
response, so it simply continues execution after sending
the system call. SNS is presumed when none of the
previous outcomes (SEr, SXp, SPc, SHg) is observed.

Panic and hang outcomes are actual states in which the
OS can stay for a while. Conversely, SEr and SXp
characterize only events. They are easily identified when
the OS provides an error code or notifies an exception.

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

OS Robustness (POS) is defined as the percentages of
experiments leading to any of the outcomes listed in
Table 1. POS is thus a vector composed of 5 elements.
Reaction Time (Texec) corresponds to the average time
necessary for the OS to respond to a system call in
presence of faults, either by notifying an exception or by
returning an error code or by executing the required
instructions.
Restart Time (Tres) corresponds to the average time
necessary for the OS to restart after the execution of the
workload in the presence of faults. Although under
nominal operation the OS restart time is almost
deterministic, it may be impacted by the corrupted system
call. The OS might need additional time to make the
necessary checks and recovery actions, depending on the
impact of the fault applied.
The OS reaction time and restart time are also observed
in absence of faults for comparison purpose. They are
respectively denoted τexec and τres.

2.3. Benchmark Execution Profile
For performance benchmarks, the benchmark execution
profile is a workload that is as realistic and representative
as possible for the system under benchmarking. For a
dependability benchmark, the execution profile includes,
in addition, corrupted parameters in system calls. The set
of corrupted parameters is referred to as the faultload.
Our benchmark is defined so that the workload could be
any performance benchmark workload (and, more
generally, any user specific application) intended to run
on top of the target OS. In our previous work, we have
used the workload of TPC-C Client, [23]. We use the
workload of PostMark [14]. PostMark creates a large pool
of continually changing files and measures the transaction
rates for a workload approximating a large Internet
electronic mail server. It generates an initial pool of
random text files ranging in size from a configurable low
bound to a configurable high bound. The file pool is of
configurable size and can be located on any accessible file
system. The workload of this benchmark, referred to as
PostMark for simplicity, is responsible for realizing a
number of transactions. Each transaction consists of a pair
of smaller transactions: i) create file or delete file and ii)
read file or append file. PostMark is developed in C
language. From a practical point of view PostMark needs
to be compiled separately for each OS.
The faultload consists of corrupted parameters of system
calls. For Windows, system calls are provided to the OS
through the Win32 environment subsystem. In Linux
OSs, these system calls are provided to the OS via the
POSIX API. During runtime, the workload system calls
are intercepted, corrupted and re-inserted.
Depending on the OS version considered, PostMark
activates between 25 and 27 Win32 system calls for
Windows, and 16 or 17 POSIX system calls for Linux.

We use a parameter corruption technique relying on
thorough analysis of system call parameters to define
selective substitutions to be applied to these parameters
(similar to the one used in [16]). A parameter is either a
data or an address. The value of a data can be substituted
either by an out-of-range value or by an incorrect (but not
out-of-range) value, while an address is substituted by an
incorrect (but existing) address (containing usually an
incorrect or out-of-range data). We use a mix of these
three corruption techniques.
To reduce the number of experiments, the parameter data
types are grouped into classes. A set of values is defined
for each class. They depend on the definition of the class.
Some values require a pre and a post processing such as
the creation and the destruction of temporary files. For
example, for Windows, we group the data types into 13
classes. Among these classes, 9 are pointer classes. Apart
from pvoid (pointer which points to anything), all other
pointers point to a particular data type. Substitution values
for these pointers are combination of pointer substitution
values and the corresponding data type substitution
values. Similarly, for Linux, we group the data types into
13 classes among which 5 are pointer classes. We use the
same substitution values for basic data types (i.e., integer)
both for Windows and Linux. Nevertheless, some data
types are system-dependent. Consequently, they have
specific substitution values. In Linux, for example, we
define a class corresponding to the type mode. A mode is
an integer with a particular meaning: read/write modes or
permission flags. As the validity domain of this data type
can be identified precisely, pertinent substitution values
are defined for it. Table 2 reviews the substitution values
associated with the basic data type classes.

Table 2: Parameter substitution values

 Data type
 class Substitution values

 Pvoid NULL 0xFFFFFFFF 1 0xFFFF -1 Random

 Integer 0 1 MAX INT MIN INT 0.5

 Unsigned
 integer 0 1 0xFFFFFFFF -1 0.5

 Boolean 0 0xFF (Max) 1 -1 0.5

 String Empty Large
(> 200)

Far
(+ 1000)

2.4. Benchmark Conduct
Since perturbing the operating system may lead the OS to
hang, a remote machine, referred to as the benchmark
controller, is required to reliably control the benchmark
experiments, mainly in case of OS Hang or Panic states or
workload hang or abort states (that cannot be reported by
the machine hosting the benchmark target). Accordingly,
for running an OS dependability benchmark we need at
least two computers: i) the Target Machine for hosting the

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

benchmarked OS and the workload, and ii) the
Benchmark Controller that is in charge of diagnosing and
collecting part or all benchmark data.
The two machines perform the following functions:
i) restart of the system before each experiment and launch
of the workload, ii) interception of system calls with
parameters, ii) corruption of system call parameters, iii)
re-insertion of corrupted system calls, vi) observation and
collection of OS outcomes.
The experiment steps in case of workload completion are
illustrated in Figure 1. In case of workload non-
completion state (i.e., the workload is in abort or hang
state), the end of the experiment is provided by a
watchdog timeout as illustrated in Figure 2. The timeout
duration is fixed to a value that is greater than the largest
workload execution time. The timeout used is 3 times the
workload execution time without faults.
3. Benchmark Implementation Prototype
Six versions of Windows OSs are targeted: Windows NT4
Workstation with SP6, Windows 2000 Professional with
SP4, Windows XP Professional with SP1, Windows NT4
Server with SP6, Windows 2000 Server with SP4 and
Windows 2003 Server. In the rest of this paper, Windows
2000 Professional and Windows NT4 Workstation will be
referred to as Windows 2000 and Windows NT4
respectively. Four Linux OSs are targeted (Debian
distribution): Linux 2.2.26, Linux 2.4.5, Linux 2.4.26 and
Linux 2.6.6. Each one of them is a revision of one of the
stable versions of Linux (2.2, 2.4, 2.6). Table 3
summarizes the number of system calls (SC) targeted by
the benchmark experiments carried out along with the
number of corresponding parameters (par) and the

number of experiments (Exp) for
each OS.
To intercept Win32 functions, we
used the Detours tool [10], a
library for intercepting arbitrary
Win32 binary functions on X86
machines. The part of Detours in
charge of system call interception
is composed of 30 Kilo lines of
code (KLOC). The modifications
we carried out on this tool concern
i) the replacement of system call
parameters by corrupted values
(this module is 3 KLOC) and ii)
the addition of modules to observe
the reactions of the OS after
parameter corruption, and to
collect the required measurements
(this module is 15 KLOC). To
intercept POSIX system calls, we
used another interception tool,
Strace [19]. Strace is composed of
26 KLOC. Also, we added two

modules to this tool to allow i) substitution of the
parameters and ii) observation of Linux behavior after
parameter corruption (these modules correspond to 4
KLOC together). To intercept POSIX system calls, we
used another interception tool, Strace [19]. Strace is
composed of 26 KLOC. Also, we added two modules to
this tool to allow i) substitution of the parameters and ii)
observation of Linux behavior after parameter corruption
(these modules correspond to 4 KLOC together).

Table 3: Number of system calls, corrupted
parameters and experiments for each OS

 Windows Family Linux Family

 NT4 2000 XP NT4S 2000S 2003S 2.2.26 2.4.5 2.4.26 2.6.6

#SC 25 27 26 25 27 27 16 16 16 17

#Par 53 64 64 53 64 64 38 38 38 44

#Exp 418 433 424 418 433 433 206 206 206 228

Figure 3 summarizes the various components of the
benchmark environment. All the experiments have been
run on the same target machine, composed of an Intel
Pentium III Processor, 800 MHz, and a memory of 512
Mega Bytes. The hard disk is 18 Giga Bytes, ULTRA 160
SCSI. The benchmark controller in both prototypes for
Windows and Linux is a Sun Microsystems workstation.
Before each benchmark run (i. e., before execution of the
series of experiments related to a given OS), the target
kernel is installed, and the interceptor is compiled for the
current kernel (interceptors are kernel-dependent both for
Windows and Linux). Once the benchmarking tool is
compiled, it is used to identify the set of system calls

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

activated by the workload. Parameters of these system
calls are then analyzed and placed into the corresponding
class. A database of corrupted values is then generated
accordingly.

Figure 3. Benchmark environment

Following the benchmark execution sequence presented
in Figures 1 and 2, at the beginning of each experiment,
the target machine (TM) records the experiment start
instant tExpStart and sends it to the benchmark controller
(BC) along with a notification of experiment start-up. The
workload starts its execution. The Observer module
records, in the experiment execution trace, the start-up
instant of the workload, the activated system calls and
their responses. This trace also collects the relevant data
concerning states SEr, SXp and SNS. The recorded trace
is sent to the BC at the beginning of the next experiment.
The parameter substitution module checks whether the
current system call has parameters. If it is not the case, the
execution is simply resumed; otherwise, the execution is
interrupted, a parameter value is substituted and the
execution is resumed with the corrupted parameter value
(tResume is saved in the experiment execution trace). The
state of the OS is monitored so as to diagnose SEr, SXp,
SNS. The corresponding OS response time (tResponse) is
recorded in the experiment execution trace. For each run,
the OS reaction time is calculated as the difference
between tResponse and tResume.
At the end of the execution of PostMark, the OS notifies
the end of the experiment to the BC by sending an end
signal along with the experiment end instant, tExpEnd. If
the workload does not complete, then tExpEnd is governed
by the value of a watchdog timer. The BC collects the
SHg state and the workload abort/hang states. It is in
charge of restarting the system in such cases. When no
faultload is applied, the average time necessary for the OS
to execute PostMark is far less than 1 minute for
Windows and for Linux. We have fixed the watchdog
timer to 3 minutes. If, at the end of this watchdog timer,
the BC has not received the end signal from the OS, it
then attempts to connect to the OS. If this connection is

successful, then a workload abort or hang state is
diagnosed, otherwise SHg is assumed.
At the end of a benchmark execution, all files containing
raw results corresponding to all experiments are on the
BC. A processing module extracts automatically the
relevant information from these files (two specific
modules are required for Windows and Linux families).
The relevant information is then used to evaluate
automatically the benchmark measures (the same module
is used for Windows and Linux).

4. Benchmark Results
The robustness measure is given in Figure 4. It shows that
all OSs of the same family are equivalent, which is in
conformance with our previous results, related to
Windows using TPC-C Client [12]. It also shows that
none of the catastrophic outcomes (Panic or Hang OS
states) occurred for all Windows and Linux OSs. Linux
OSs notified more error codes (59-67%) than Windows
(23-27%), while more exceptions were raised with
Windows (17-22%) than with Linux (8-10%). More no-
signaling cases have been observed for Windows (55-
56%) than for Linux (25-32%). In [22] it was observed
that on the one hand Windows 95, 98, 98SE and CE had a
few Catastrophic failures and on the other hand Windows
NT, Windows 2000 and Linux are more robust and did
not have any Catastrophic failures as in our case.

Windows Family Linux Family

Figure 4: OS Robustness (%)
The reaction time is given in Table 4. Globally, Windows
OSs have shorter response times than Linux OSs. The
standard deviation is significantly larger than the average
for all OSs. Except for the two revisions of Linux
2.4, τexec is always larger than Texec, the reaction time
in the presence of faults. This can be explained by the fact
that after parameter corruption, the OS detects the
anomaly in almost 45% of cases for Windows and 75% of
cases for Linux, and stops system call execution, returns
an error code or notifies an exception.
Note that for the Windows family, Windows XP has the
best reaction time in the presence of faults and for the
Linux family, Linux 2.6.6 has the lowest reaction time.
For Linux 2.6.6, we notice that τexec is almost two times
larger than for the other revisions. A detailed analysis of
the results showed that this is due to one system call,

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

execve, for which the execution time is 15000 µs for
Linux 2.6.6 and 6000 µs for other versions.

Table 4: Reaction time
Windows Family
 NT4 2000 XP
 Avg. S. Dev. Avg. S. Dev. Avg. S. Dev.
 τexec 248 µs 136 µs 315 µs
Texec 148 µs 219 µs 118 µs 148 µs 219 µs 118 µs
 NT4 Server 2000 Server 2003 Server
 τexec 125 µs 175 µs 173 µs
Texec 110 µs 221 µs 131 µs 110 µs 221 µs 131 µs
Linux Family
 2.2.26 2.4.5 2.4.26
 τexec 485 µs 479 µs 450 µs
Texec 465 µs 1505 µs 695 µs 2499 µs 465 µs 1505 µs

The restart times are shown in Table 5. The average
restart time without faults, τres, is always lower than the
average restart time with faults (Tres), but the difference
is not significant. Linux seems to be globally faster (71-
83s) than Windows (74-112s). However, if we consider
only OS versions introduced in the market after 2001, the
other OSs rank as follows: Linux 2.2.26 (71s), Windows
XP (74s), Windows 2003 server (77s), Linux 2.4.5 (79s),
Linux 2.6.6 (82s), Linux 2.4.26 (83s).

Table 5: Restart time
Windows Family
 NT4 2000 XP
 Avg. S. Dev. Avg. S. Dev. Avg. S. Dev.
 τres 91 s 95 s 74 s
Tres 92 s 4 s 96 s 92 s 4 s 118 µs
 NT4 Server 2000 Server 2003 Server
 τres 90 s 111 s 76 s
Tres 91 s 4 s 112 s 91 s 4 s 112 s
Linux Family
 2.2.26 2.4.5 2.4.26
 τres 64 s 74 s 82 s
Tres 71 s 32 s 79 s 23 s 71 s 32 s

Concerning Linux family, we note that i) the standard
deviations are important and ii) the restart time decreases
with new versions or revisions, except for Linux 2.6.6.
This exception is justified by the fact that the Linux
kernel was restructured in its version 2.6.

5. Results Refinement
The benchmark temporal measures are refined to provide
more insights into those presented in Section 4.

5.1. Reaction Time
Table 6 presents the detailed reaction times with respect
to OS outcomes after execution of corrupted system calls
(Error Code, Exception and No Signaling). Thus, three
average times are added to detail Texec: TSEr, TSXp (the
times necessary to return respectively an error code or an
exception) and TSNS (the execution time of the corrupted
system call, in case of no-signaling state).

Table 6: Detailed reaction time
Windows Family
 NT4 2000 XP
 Avg. S. Dev. Avg. S. Dev. Avg. S. Dev.
Texec 148 µs 219 µs 118 µs 289 µs 114 µs 218 µs
TSEr 45 µs 107 µs 34 µs 61 µs 45 µs 118 µs
TSXp 40 µs 15 µs 37 µs 15 µs 50 µs 96 µs
TSNS 234 µs 437 µs 186 µs 375 µs 168 µs 265 µs
 NT4 Server 2000 Server 2003 Server
Texec 110 µs 221 µs 131 µs 289 µs 102 µs 198 µs
TSEr 41 µs 66 µs 29 µs 33 µs 25 µs 61 µs
TSXp 35 µs 15 µs 37 µs 15 µs 48 µs 20 µs
TSNS 166 µs 280 µs 210 µs 396 µs 156 µs 252 µs
Linux Family
 2.2.26 2.4.5 2.4.26
Texec 167 µs 300 µs 466 µs 2276 µs 167 µs 300 µs
TSEr 208 µs 361 µs 92 µs 105 µs 208 µs 361 µs
TSXp 88 µs 5 µs 91 µs 8 µs 88 µs 5 µs
TSNS 85 µs 5 µs 1545 µs 4332 µs 85 µs 5 µs

For Windows family, it can be seen that for Windows
2000, 2000 Server, XP and 2003 Server, returning an
error code takes less time than notifying an exception.
This can be explained by the fact that when returning an
error code, tests are carried out on the parameter values at
the beginning of the system call code and the system call
is abandoned, while the exceptions are raised from a
lower level of the system under benchmarking.
Nevertheless, in the cases of Windows NT4 and NT4
Server, TSEr is higher than TSXp. The cause of this
anomaly lies in the long duration of time necessary to
GetCPInfo system call to return an error code when its
first parameter is corrupted.
Concerning Linux family, the averages presented in this
table do not take into account execve system call
execution time. For Linux OSs, we notice the high values
of TSNS corresponding to the two revisions of version
2.4, compared to the two other versions. Also, the very
high standard deviation suggests a large variation around
the average, which is confirmed in Figure 5 that gives the
OS reaction time for all system calls leading to the no-
signaling state for all Linux OSs. We can clearly see that

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

for Linux 2.4 the average time necessary for executing
mkdir is larger than for all other system calls.
Also, a very large average time to return an error code is
observed for Linux 2.2.26, with a high standard deviation.
Figure 6 details the times necessary to return error codes
for Linux system calls. It is clear that these times are very
similar except for unlink system call in Linux 2.2.26,
which explains the high TSEr of Linux 2.2.26 compared
to the other versions. After discarding the exceptional
values corresponding to execve, mkdir and unlink system
calls, the average reaction times Τexec of the four
targeted Linux OSs become very close. Furthermore,
 τexec and Τexec become very close.

0

40

80

120

160

200

_l
ls
ee
k

br
k

cl
os
e

m
kd
ir

m
un
m
ap

ol
d_
m
m
ap

op
en

re
ad

w
ri
te

2.2.26 2.4.5 2.4.26 2.6.6

ba

a=14070

b=12739

Figure 5: Linux reaction time in case of SNS

0

40

80

120

160

200

_l
ls
ee
k

ac
ce
ss

cl
os
e

fs
ta
t6
4

m
kd
ir

m
un
m
ap

ol
d_
m
m
ap

op
en

re
ad

rm
di
r

un
am
e

un
lin
k

w
ri
te

2.2.26 2.4.5 2.4.26 2.6.6

a=863

a

Figure 6: Linux reaction time in case of SER

5.2. Restart Time
The detailed analysis of the restart time showed that all
OSs of the same family have similar behavior and that the
two families exhibit very different behaviors.
For Windows, there is a correlation between the restart
time and the state of the workload at the end of the
experiment. When the workload is completed, the average
restart time is statistically equal to the restart time without
parameter substitution. On the other hand, the restart time
is larger and statistically equal for all experiments with
workload abort/hang. This is illustrated in Figure 7 for
Windows XP in which the average restart time in case of
workload completion is 73 seconds and 80 seconds in
case of workload abort/hang.
Linux restart time is not affected by the workload final
state. Detailing Linux restart times shows high values
appearing periodically. These values correspond to a
“check-disk” performed by the Linux kernel every 26

Target Machine restarts. This is illustrated for Linux
2.2.26 in Figure 7, and explains the important standard
deviation on this measure.

Figure 7: Detailed restart time

6. Benchmark Validation
In order to gain confidence in dependability benchmark
results, one has to check that the key properties are
fulfilled. These properties are addressed successively in
the rest of this section. We first define the property, then
we show what has been achieved to satisfy and check it.

6.1. Representativeness
Representativeness concerns the benchmark measures, the
workload and the faultload.
The measures evaluated provide information on the OS
state and temporal behavior after execution of corrupted
system calls. We emphasize that these measures are of
interest to a system developer (or integrator) for selecting
the most appropriate OS for his/her own application. Of
course other measures would help.
PostMark workload is representative if the OS is used as
a file server (60 % of system calls activated by PostMark
belong to the file management functional component). If
the OS is used for other purposes, other workloads should
be investigated. Nevertheless, the selection of any other
workload does not affect the concepts and specification of
our benchmark. Currently, we are investigating the Java
Virtual Machine.
The faultload is without any doubt the most critical
component of the OS benchmark and more generally of
any dependability benchmark. Faultload representa-
tiveness concerns i) the parameter corruption technique
used and ii) the set of corrupted parameters.

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

Parameter corruption technique
In our previous work [11], performed for Linux, we have
used two techniques for system call parameter corruption:
the systematic bit-flip technique consisting in flipping
systematically all bits of the target parameters (i.e.,
flipping the 32 bits of each considered parameter) and the
selective substitution technique described in Section 2.
This work showed the equivalence of the errors induced
by the two techniques. In [12] we obtained the same
robustness for Windows 2000 using the systematic bit-flip
technique and the selective substitution technique.
The application of the bit-flip technique requires much
more experimentation time compared to the application of
selective substitution technique. Indeed, in the latter case,
the set of values to be substituted is simply determined by
the data type of the parameter (see Section 2), which leads
to a more focused set of experiments. We have thus
preferred the selective substitution technique for
pragmatic reasons: it allows derivation of results that are
similar to those obtained using the well-known and
accepted bit-flip fault injection technique, with much less
experiments. Our benchmark is based on selective
substitutions of system call parameters to be corrupted.

Parameters to be corrupted
The selective substitution technique used is composed of
a mix of three corruption techniques as mentioned in
Section 2: out-of-range data (OORD), incorrect data (ID)
and incorrect addresses (IA). Let us denote the faultload
used in our benchmarks by FL0. To analyze the impact of
the faultload, we consider two subsets, including
respectively i) IA and ODRD only (denoted FL1), and ii)
ODRD only (denoted FL2). These faultloads are
summarized in Table 7, which gives also the number of
substitutions (hence the number of experiments) for
Windows NT4 and Linux 2.4 as examples.
We ran the benchmarks of all OSs considered using
successively FL0, FL1 and FL2. The results obtained
confirm the equivalence between Linux family OSs as
well as the equivalence between Windows family OSs,
using the same faultload (FL0, FL1 or FL2). Figure 8
shows the robustness of Windows NT4, 2000 and XP
with respect to FL1 and FL2. (robustness with respect to
FL0 is given in Figure 3). Note that for each OS, its
robustness with respect to FL0, FL1 or FL2 is different
but the robustness of all OSs of the same family with
respect to the same faultload is equivalent. The same
results have been obtained in [12], using TPC-C Client as
workload.

Further validation concerning selective substitution
For each parameter type class, we performed a sensitivity
analysis regarding specific values of parameter
substitution. This analysis revealed that different random
values chosen to substitute the original parameter lead to
the same outcome of benchmark experiments. Hence the

benchmark results are not sensitive to the specific values
given to the corrupted parameters as substitution values.
Moreover, we checked the representativeness of incorrect
data faults. One could argue that the OS is not assumed to
detect this kind of faults as the substitution values are
inside the validity domain of the parameter type. The
analysis of the execution traces corresponding to
experiments with incorrect data substitution that led to
notification of error codes in the case of Linux, revealed
that 88.6% of the faults correspond to out-of-range data in
the very particular context of the workload execution.
Consequently, the notification of error codes was a
normal outcome in these cases. Incorrect data are thus
very useful: they can provide a practical way for
generating out-of-range data in the execution context.
Note that an enormous effort would be needed to analyze
all execution contexts for all system calls to define
pertinent substitution values for each execution context.

Table 7: Faultloads considered

 ID IA OORD
experiments

 (Windows NT4)
experiments

(Linux 2.4)

FL0 x x x 418 206
FL1 x x 331 135
FL2 x 77 55

FL1 FL2

Figure 8: OS Robustness using FL1 and FL2 (%)

6.2. Repeatability and Reproducibility
The benchmarking of a given system can be based either
on an existing benchmark implementation (an existing
prototype) or on an existing specification only.
Repeatability concerns the benchmark prototype while
reproducibility is related to the benchmark specification.
Repeatability is the property that guarantees statistically
equivalent results when the benchmark is run more than
once in the same environment (i.e., using the same system
under benchmark and the same prototype). This property
is central to benchmarking. Our OS dependability
benchmark is composed of a series of experiments. Each
experiment is run after system restart. The experiments
are independent from each other and the order in which
the experiments are run is not important at all. Hence,
once the system calls to be corrupted are selected and the

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

substitution values defined, the benchmark is fully
repeatable. We have repeated all the benchmarks
presented three times to check for repeatability.
Reproducibility is the property that guarantees that
another party obtains statistically equivalent results when
the benchmark is implemented from the same specifica-
tion and is used to benchmark the same system under
benchmarking. Reproducibility is strongly related to the
amount of details given in the specification. The specifi-
cation should be at the same time i) general enough to be
applied to the class of systems addressed by the bench-
mark and ii) specific enough to be implemented without
distorting the original specification. We managed to sat-
isfy such a tradeoff. Unfortunately, we have not checked
explicitly the reproducibility of the benchmark results by
developing several prototypes by different people. On the
other hand, the results seem to be independent from the
technique used to corrupt system call parameters. This
makes us confident about reproducibility. However, more
verification is still required.

6.3. Portability
Portability concerns essentially the faultload (i.e., its
applicability to different OS families).
At the specification level, in order to ensure portability of
the faultload, the system calls to be corrupted are not
identified individually. We decided to corrupt all system
calls of the workload. This is because OSs from different
families do not necessarily comprise the very same
system calls as they may have different APIs. However,
most OSs feature comparable functional components. At
the implementation level, portability can only be ensured
for OSs from the same family because different OS
families have different API sets.
The first prototype developed concerns Windows 2000. It
revealed to be portable without modification for Windows
2000 Server and Windows 2003 Server (PostMark
activates the same 27 system calls with parameters), and
with minor adaptations for the others. One system call
(FreeEnvironmentStringA) is not activated under
Windows NT4, NT4 Server and XP and another system
call (LockResource) is not activated under NT4 and NT4
Server. In these cases, the system calls that are not
activated are dropped from the corrupted values database.
For Linux, the prototype revealed to be portable across all
OSs except the interceptor Strace that is kernel-
dependent. Consequently, we used one version of Strace
for Linux 2.2 and 2.4 and another version for Linux 2.6.
Also, PostMark activates the same system calls for Linux
2.2.26 and 2.4 while it activates a supplementary system
call (mmap2) for Linux 2.6.6. Consequently, we added
this system call to the set of activated system calls and an
entry in the corrupted values database.

6.4. Cost
Cost is expressed in terms of effort required to develop
the benchmark, run it and obtain results. These steps
require some effort that is relatively affordable. In our
case, most of the effort was spent in defining the
concepts, characterizing the faultload and studying its
representativeness. The installation of PostMark took one
day both for Windows and Linux. The implementation of
the different components of the controller took about two
weeks for each OS family, including the customization of
the respective interceptors (Detours and Strace). The
implementation of the faultload took one week for each
OS family, during which we have i) defined the set of
corrupted values related to each data type and ii) created
the database of corrupted values. Both databases are
portable on OSs belonging to their family (one database
for Windows family and one database for Linux family).
However, small adaptations were necessary.
The benchmark execution time for each OS is less than
two days. More precisely, the duration of an experiment
with workload completion is less than 3 min (including
the workload completion time and the restart time), while
it is less than 6 min without workload completion
(including the watchdog timeout and the restart time).
Thus, on average, an experiment lasts less than 5 min.

7. Conclusion
We presented the specification of a dependability
benchmark for OSs with respect to erroneous parameters
in system calls, along with prototypes for two families of
OSs, Windows and Linux. These prototypes allowed us to
obtain the benchmark measures defined in the
specification. We stress that the measures obtained for the
different OSs are comparable as i) the same workload
(PostMark) was used to activate all OSs, ii) the faultload
corresponds to similar selective substitution techniques
applied to all system calls activated by the workload and
iii) the benchmark conduct was the same for all OSs.
Concerning the robustness measure, the benchmark
results show that all OSs of the same family are
equivalent. They also show that none of the catastrophic
states of the OS (Panic or Hang) occurred for any of the
Windows and Linux OSs considered. Linux OSs notified
more error codes (59-67 %) than Windows (23-27 %),
while more exceptions were raised with Windows (17-
22%) than with Linux (8-10 %). More no-signaling cases
have been observed for Windows (55-56 %) than for
Linux (25-32 %).
Concerning the OS reaction time measure, results show
that globally Linux reaction time, related to system calls
activated by the workload (450-953 µs) is longer than
Windows reaction time (102-148 µs). Refinement of this
measure revealed a great variation around the average and
that a minority of system calls with large execution times

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

dodged the average. When these system calls are not
considered, the reaction times of all the OSs of the same
family become equivalent.
With respect to the restart time measure, Linux seems to
be globally faster (71-83s) compared to Windows (74-
112 s). However, if we consider only OS versions
introduced after 2001, the restart times of the other OSs
are ranked as follows: Linux 2.2.26 (71 s), Windows XP
(74 s), Windows 2003 server (77 s), Linux 2.4.5 (79 s),
Linux 2.6.6 (82 s), Linux 2.4.26 (83 s). Detailed analysis
of the restart time showed i) a correlation between
Windows restart time and the workload final state (in case
of workload hang or abort, the restart time is 10 % higher
than in case of workload completion) and ii) that Linux
performs a “check disk” after each 26 restarts after which
the restart time is 3 times higher than the average.
We validated our benchmark paying a particular attention
to representativeness of faultload, and to the properties of
repeatability, reproducibility, portability and cost
effectiveness of the benchmark.

Acknowledgement
We would like to thank all the DBench colleagues who,
through the numerous discussions all over the project,
helped us in defining the OS benchmark as it is in this
paper. In particular, we are grateful to Jean Arlat who
contributed to the OS benchmark based on TPC-C Client.

References
[1] A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of

the Impact of Faulty Drivers on the Robustness of the
Linux Kernel”, Int. Conf. on Dependable Systems and
Network, Florence, Italy, 2004, pp. 867-876.

[2] J. Arlat et al., “Dependability of COTS Microkernel-Based
Systems”, IEEE Trans. on Computers, Vol.51 (2), pp. 138-
163, 2002.

[3] J. Arlat et al., “The DBench Framework for Dependability
Benchmarking”, http://www.laas.fr/DBench, 2002.

[4] A. Brown, L. C. Chung, and D. A. Patterson, “Including
the Human Factor in Dependability Benchmarks”, DSN
2002 Workshop on Dependability Benchmarking,
Washington, D.C., USA, 2002, pp. F-9-14.

[5] A. Brown and D. A. Patterson, “Towards Availability
Benchmarks: A Case study of Software RAID Systems”,
USEUNIX 2000, San Diego, CA, USA, 2000

[6] P. Chevochot and I. Puaut, “Experimental Evaluation of
the Fail-Silent Behavior of a Distributed Real-Time Run-
Time Support Built from COTS Components”, Int.
Conference on Dependable Systems and Networks,
Göteborg, Sweden, 2001, pp. 304-313.

[7] A. Chou et al. “An Empirical Study of Operating Systems
Errors”, 18th ACM Symp. on Operating Systems
Principles Banff, AL, Canada, 2001, pp. 73-88.

[8] J. Durães and H. Madeira, “Characterization of Operating
Systems Behavior in the Presence of Faulty Drivers
through Software Fault Emulation”, Pacific Rim Int. Sym.

on Dependable Computing, Tsukuba, Japan, 2002,
pp. 201-209.

[9] W. Gu, Z. Kalbarczyk, and R. K. Iyer, “Error Sensitivity of
the Linux Kernel Executing on PowerPC G4 and Pentium
4 Processors”, Int. Conf. on Dependable Systems and
Networks, Florence, Italy, 2004, pp. 887-896.

[10] G. Hunt and D. Brubaher, “Detours: Binary Interception of
Win32 Functions”, 3rd USENIX Windows NT Symp.,
Seattle, Washington, USA, 1999, pp. 135-144.

[11] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun and T.
Marteau, “Analysis of the Effects of Real and Injected
Software Faults: Linux as a Case Study”, 2002 Pacific Rim
International Symposium on Dependable Computing,
Tsukuba, Japan, 2002, pp. 51-58.

[12] A. Kalakech, K. Kanoun, Y. Crouzet, and A. Arlat,
“Benchmarking the Dependability of Windows NT, 2000
and XP”, Int. Conf. on Dependable Systems and Networks,
Florence, Italy, 2004, pp. 681-686.

[13] K. Kanoun et al., “DBench – Dependability
Benchmarking”, Supplement of the Int. Conf. on
Dependable Systems and Networks, Göteborg, Sweden,
2001, pp. D.12-D.15.

[14] J. Katcher, “Postmark: A New File System Benchmark”,
Network Appliance,
www.netapp.com/tech_library/3022.html 3022, 1997.

[15] P. Koopman and J. DeVale, “Comparing the Robustness of
POSIX Operating Systems”, 29th Int. Symp. on Fault-
Tolerant Computing, Madison, 1999, pp. 30-37.

[16] P. J. Koopman et al., “Comparing Operating Systems using
Robustness Benchmarks”, 16th Int. Symp. on Reliable
Distributed Systems, Durham, USA, 1997, pp. 72-79.

[17] H. Madeira et al. “Dependability Benchmark Definition:
DBench Prototypes”, DBench Project deliverable, 2002
http://www.laas.fr/DBench

[18] E. Marsden, J.-C. Fabre, and J. Arlat, “Dependability of
CORBA Systems: Service Characterization by Fault
Injection”, 21st Int. Symposium on Reliable Distributed
Systems, Osaka, Japan, 2002, pp. 276-285.

[19] R. McGrath and W. Akkerman, “Source Forge Strace
Project, http://sourceforge.net/projects/strace/”, 2004.

[20] A. Mukherjee and D. P. Siewiorek, “Measuring Software
Dependability by Robustness Benchmarking”, IEEE Trans.
of Software Engineering, Vol. 23 (6), pp. 366-378, 1997.

[21] J. Pan et al. “Robustness Testing and Hardening of
CORBA ORB Implementations”, Int. Conference on
Dependable Systems and Networks, Göteborg, Sweden,
2001, pp. 141-150.

[22] C. Shelton et al., “Robustness Testing of the Microsoft
Win32 API”, Int. Conf. on Dependable Systems and
Networks, New York, 2000, pp. 261-270.

[23] TPC-C, “TPC Benchmark C, Standard Specification 5.1,
available at http://www.tpc.org/tpcc/.” 2002.

[24] T. K. Tsai et al., “An Approach Towards Benchmarking of
Fault-Tolerant Commercial Systems”, 26th Int. Symp. on
Fault-Tolerant Computing, Sendai, Japan, 1996, pp. 314-
323.

[25] J. Zhu, J. Mauro, and I. Pramanick, “R3: Rate, Robustness,
and Recovery - An Availability Benchmark Framework”,
Sun Microsystems Lab, CA TR-2002-109, 2002.

International Symposium on Software Reliability Engineering, Chicago, 8-11 Novembre 2005

