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Abstract 
 

This paper presents a dependability benchmark for 
general-purpose operating systems and its application to 
six versions of Windows operating system and four 
versions of Linux operating system. The benchmark 
measures are: operating system robustness (as regards 
possible erroneous inputs provided by the application 
software to the operating system via the application 
programming interface), reaction and restart times in the 
presence of faults. The workload is PostMark, a file 
system performance benchmark for operating systems. 

1. Introduction 
Software is playing an increasingly important role in our 
day-to-day life. In particular, operating systems (OSs) are 
more and more used even in critical application domains. 
Choosing the operating system that is best adapted to 
one’s needs is becoming a necessity. For a long time, 
performance was the main selection criterion for most 
users and several performance benchmarks were 
developed and are widely used. However, an OS should 
not only have good performance but also a high 
dependability level. Dependability benchmarks emerged 
as a consequence. Their role is to provide useful 
information regarding the dependability of software 
systems [4-6, 24, 25]. This paper is devoted to the 
specification, application and validation of a 
dependability benchmark of OSs using PostMark, a file 
system performance benchmark, as the workload. 
An OS dependability benchmark is intended to 
objectively characterize the OS behavior in the presence 
of faults. Its results are intended i) to characterize 
qualitatively and quantitatively the OS behavior in the 
presence of faults and ii) to evaluate performance-related 
measures in the presence of faults. Our dependability 
benchmark is a robustness benchmark. Robustness is 
defined as the degree to which a system operates correctly 
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in the presence of exceptional inputs or stressful 
environmental conditions. Robustness of OS can be 
viewed as its capacity to resist/react to faults induced by 
the applications running on top of it, or originating from 
the hardware layer or from device drivers. In this paper 
we address the OS robustness as regards possible 
erroneous inputs provided by the application software to 
the OS via the Application Programming Interface (API). 
More explicitly, we consider corrupted parameters in 
system calls. For sake of conciseness, such erroneous 
inputs are shortly referred to as faults. 
To be meaningful under acceptable conditions, a 
dependability benchmark should satisfy a set of 
properties. For example, a benchmark must be 
representative, reproducible, repeatable, portable and cost 
effective. These properties should be taken into 
consideration from the earliest phases of the benchmark 
specification as they have a deep impact on almost all 
benchmark components. Verification of the benchmark 
key properties constitutes a large part of the benchmark 
validation. The last section of the paper will outline the 
main benchmark properties that are meaningful to the 
current benchmark, and briefly show what has been 
achieved to ensure them.  
The work reported in this paper is part of the European 
project on Dependability Benchmarking, DBench [3, 13, 
17]. Our previously published work on OS dependability 
benchmarks was based on TPC-C Client performance 
benchmark for transactional systems and devoted to the 
comparison of Windows NT4 Workstation, Windows 
2000 Professional and Windows XP professional [12]. 
This paper extends our previous work using another 
performance benchmark workload, PostMark and 
 applying the benchmark to six Windows OSs and four 
Linux OSs. Also, we introduce the benchmark properties 
and show how they have been addressed. 
Several relevant attempts have already been proposed to 
help characterize the failure modes and robustness of 
software executives. A comprehensive analysis of the 
issues linking robustness and dependability can be found 
in [20]. The executives targeted in these studies 
encompass real time microkernels [2, 6, 9], general 
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purpose OSs [15, 24], as well as CORBA middleware 
implementations [18, 21]. The work reported in [22] 
addressed the robustness of the POSIX and Win32 API as 
in our case. However, they concentrated on OS "non-
robustness" while we are interested in robust and non-
robust behavior. Results concerning the robustness with 
respect to faults in device drivers can be found in [1, 7, 8]. 
The remainder of the paper is organized as follows. 
Section 2 gives the specification of the OS benchmark. 
Section 3 presents implementation prototypes developed 
to benchmark Windows and Linux families. Section 4 is 
devoted to benchmark results that are refined in Section 5. 
Section 6 addresses benchmark properties validation and 
Section 7 concludes the paper. 

2. Specification of the Benchmark  
A dependability benchmark should define clearly:  
1) The benchmark target and the benchmarking context. 
2) The benchmark measures to be evaluated and the 

measurements to be performed on the system to 
provide the information required for obtaining them. 

3) The benchmark execution profile to be used to 
activate the operating system.  

4) Guidelines for conducting benchmark experiments and 
implementing benchmark prototypes. 

These items items are summarized hereafter. It is worth 
mentioning that the benchmark results are meaningful, 
useful and interpretable only if all these items are 
provided with the results.  

2.1. Benchmarking Context 
An OS can be seen as a generic software layer that 
manages all aspects of the underlying hardware. The OS 
provides i) basic services to the applications through the 
API and ii) communication with peripherals devices via 
device drivers. From the dependability benchmarking 
viewpoint, the benchmark target corresponds to the OS 
with the minimum set of device drivers necessary to run 
the OS under the benchmark execution profile. However, 
for the benchmark target to be assessed, it is necessary to 
run it on top of a hardware platform and to use a set of 
libraries. Thus, the benchmark target along with the 
hardware platform and libraries form the system under 
benchmarking. Although, in practice, the benchmark 
measures characterize the system under benchmarking 
(e.g., the OS reaction and restart times are strongly 
dependent on the underlying hardware), for clarity 
purpose we will state that the benchmark results 
characterize the OS.  
The benchmark addresses the user perspective, i.e., it is 
primarily intended to be performed by (and to be useful 
for) someone or an entity who has no in depth knowledge 
about the OS and whose aim is to significantly improve 
her/his knowledge about its behavior in the presence of 

faults. In practice, the user may well be the developer or 
the integrator of a system including the OS.  
The OS is considered as a “black box” and the source 
code does not need to be available. The only required 
information is the description of the OS in terms of 
system calls (in addition of course to the description of 
the services provided by the OS). 

2.2. Benchmark Measures 
The benchmark measures include a robustness measure 
and two temporal measures.  
After execution of a corrupted system call, the OS is in 
one of the states summarized in Table 1. 

Table 1: OS outcomes  
SEr An error code is returned 
SXp An exception is raised, processed and notified  
SPc Panic state 
SHg Hang state 
SNS No-signaling state 

SEr: corresponds to the case where the OS generates an 
error code that is delivered to the application.  
SXp: corresponds to the case where the OS issues an 
exception. Two kinds of exceptions can be distinguished 
depending on whether it is issued during the application 
software execution (user mode) or during execution of the 
kernel software (kernel mode). In the user mode, the OS 
processes the exception and notifies the application (the 
application may or may not take into account explicitly 
this information). However, for some critical situations, 
the OS aborts the application. An exception in the kernel 
mode is automatically followed by a panic state (e.g., blue 
screen for Windows and oops messages for Linux). 
Hence, hereafter, the latter exceptions are included in the 
panic state and the term exception refers only to user 
mode exceptions. 
SPc: In the panic state, the OS is still “alive” but it is not 
servicing the application. In some cases, a soft reboot is 
sufficient to restart the system.  
SHg: In this state, a hard reboot of the OS is required.  
SNS: In the no-signaling state, the OS does not detect the 
presence of the erroneous parameter. As a consequence, it 
accepts the erroneous system call and executes it. It may 
thus abort, hang or complete its execution. However, the 
response might be erroneous or correct. For some system 
calls, the application may not require any explicit 
response, so it simply continues execution after sending 
the system call. SNS is presumed when none of the 
previous outcomes (SEr, SXp, SPc, SHg) is observed. 

Panic and hang outcomes are actual states in which the 
OS can stay for a while. Conversely, SEr and SXp 
characterize only events. They are easily identified when 
the OS provides an error code or notifies an exception. 
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OS Robustness (POS) is defined as the percentages of 
experiments leading to any of the outcomes listed in 
Table 1. POS is thus a vector composed of 5 elements. 
Reaction Time (Texec) corresponds to the average time 
necessary for the OS to respond to a system call in 
presence of faults, either by notifying an exception or by 
returning an error code or by executing the required 
instructions.  
Restart Time (Tres) corresponds to the average time 
necessary for the OS to restart after the execution of the 
workload in the presence of faults. Although under 
nominal operation the OS restart time is almost 
deterministic, it may be impacted by the corrupted system 
call. The OS might need additional time to make the 
necessary checks and recovery actions, depending on the 
impact of the fault applied. 
The OS reaction time and restart time are also observed 
in absence of faults for comparison purpose. They are 
respectively denoted τexec and τres.  

2.3. Benchmark Execution Profile 
For performance benchmarks, the benchmark execution 
profile is a workload that is as realistic and representative 
as possible for the system under benchmarking. For a 
dependability benchmark, the execution profile includes, 
in addition, corrupted parameters in system calls. The set 
of corrupted parameters is referred to as the faultload.  
Our benchmark is defined so that the workload could be 
any performance benchmark workload (and, more 
generally, any user specific application) intended to run 
on top of the target OS. In our previous work, we have 
used the workload of TPC-C Client, [23]. We use the 
workload of PostMark [14]. PostMark creates a large pool 
of continually changing files and measures the transaction 
rates for a workload approximating a large Internet 
electronic mail server. It generates an initial pool of 
random text files ranging in size from a configurable low 
bound to a configurable high bound. The file pool is of 
configurable size and can be located on any accessible file 
system. The workload of this benchmark, referred to as 
PostMark for simplicity, is responsible for realizing a 
number of transactions. Each transaction consists of a pair 
of smaller transactions: i) create file or delete file and ii) 
read file or append file. PostMark is developed in C 
language. From a practical point of view PostMark needs 
to be compiled separately for each OS. 
The faultload consists of corrupted parameters of system 
calls. For Windows, system calls are provided to the OS 
through the Win32 environment subsystem. In Linux 
OSs, these system calls are provided to the OS via the 
POSIX API. During runtime, the workload system calls 
are intercepted, corrupted and re-inserted.  
Depending on the OS version considered, PostMark 
activates between 25 and 27 Win32 system calls for 
Windows, and 16 or 17 POSIX system calls for Linux. 

We use a parameter corruption technique relying on 
thorough analysis of system call parameters to define 
selective substitutions to be applied to these parameters 
(similar to the one used in [16]). A parameter is either a 
data or an address. The value of a data can be substituted 
either by an out-of-range value or by an incorrect (but not 
out-of-range) value, while an address is substituted by an 
incorrect (but existing) address (containing usually an 
incorrect or out-of-range data). We use a mix of these 
three corruption techniques.  
To reduce the number of experiments, the parameter data 
types are grouped into classes. A set of values is defined 
for each class. They depend on the definition of the class. 
Some values require a pre and a post processing such as 
the creation and the destruction of temporary files. For 
example, for Windows, we group the data types into 13 
classes. Among these classes, 9 are pointer classes. Apart 
from pvoid (pointer which points to anything), all other 
pointers point to a particular data type. Substitution values 
for these pointers are combination of pointer substitution 
values and the corresponding data type substitution 
values. Similarly, for Linux, we group the data types into 
13 classes among which 5 are pointer classes. We use the 
same substitution values for basic data types (i.e., integer) 
both for Windows and Linux. Nevertheless, some data 
types are system-dependent. Consequently, they have 
specific substitution values. In Linux, for example, we 
define a class corresponding to the type mode. A mode is 
an integer with a particular meaning: read/write modes or 
permission flags. As the validity domain of this data type 
can be identified precisely, pertinent substitution values 
are defined for it. Table 2 reviews the substitution values 
associated with the basic data type classes.  

Table 2: Parameter substitution values 

 Data type  
 class Substitution values 

 Pvoid NULL 0xFFFFFFFF 1 0xFFFF -1 Random 

 Integer 0 1 MAX INT MIN INT 0.5  

 Unsigned 
 integer 0 1 0xFFFFFFFF -1 0.5  

 Boolean 0 0xFF (Max) 1 -1 0.5  

 String Empty Large  
(> 200) 

Far  
(+ 1000)    

2.4. Benchmark Conduct 
Since perturbing the operating system may lead the OS to 
hang, a remote machine, referred to as the benchmark 
controller, is required to reliably control the benchmark 
experiments, mainly in case of OS Hang or Panic states or 
workload hang or abort states (that cannot be reported by 
the machine hosting the benchmark target). Accordingly, 
for running an OS dependability benchmark we need at 
least two computers: i) the Target Machine for hosting the 
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benchmarked OS and the workload, and ii) the 
Benchmark Controller that is in charge of diagnosing and 
collecting part or all benchmark data. 
The two machines perform the following functions: 
i) restart of the system before each experiment and launch 
of the workload, ii) interception of system calls with 
parameters, ii) corruption of system call parameters, iii) 
re-insertion of corrupted system calls, vi) observation and 
collection of OS outcomes.  
The experiment steps in case of workload completion are 
illustrated in Figure 1. In case of workload non-
completion state (i.e., the workload is in abort or hang 
state), the end of the experiment is provided by a 
watchdog timeout as illustrated in Figure 2. The timeout 
duration is fixed to a value that is greater than the largest 
workload execution time. The timeout used is 3 times the 
workload execution time without faults. 
3. Benchmark Implementation Prototype  
Six versions of Windows OSs are targeted: Windows NT4 
Workstation with SP6, Windows 2000 Professional with 
SP4, Windows XP Professional with SP1, Windows NT4 
Server with SP6, Windows 2000 Server with SP4 and 
Windows 2003 Server. In the rest of this paper, Windows 
2000 Professional and Windows NT4 Workstation will be 
referred to as Windows 2000 and Windows NT4 
respectively. Four Linux OSs are targeted (Debian 
distribution): Linux 2.2.26, Linux 2.4.5, Linux 2.4.26 and 
Linux 2.6.6. Each one of them is a revision of one of the 
stable versions of Linux (2.2, 2.4, 2.6). Table 3 
summarizes the number of system calls (SC) targeted by 
the benchmark experiments carried out along with the 
number of corresponding parameters (par) and the 

number of experiments (Exp) for 
each OS.  
To intercept Win32 functions, we 
used the Detours tool [10], a 
library for intercepting arbitrary 
Win32 binary functions on X86 
machines. The part of Detours in 
charge of system call interception 
is composed of 30 Kilo lines of 
code (KLOC). The modifications 
we carried out on this tool concern 
i) the replacement of system call 
parameters by corrupted values 
(this module is 3 KLOC) and ii) 
the addition of modules to observe 
the reactions of the OS after 
parameter corruption, and to 
collect the required measurements 
(this module is 15 KLOC). To 
intercept POSIX system calls, we 
used another interception tool, 
Strace [19]. Strace is composed of 
26 KLOC. Also, we added two 

modules to this tool to allow i) substitution of the 
parameters and ii) observation of Linux behavior after 
parameter corruption (these modules correspond to 4 
KLOC together). To intercept POSIX system calls, we 
used another interception tool, Strace [19]. Strace is 
composed of 26 KLOC. Also, we added two modules to 
this tool to allow i) substitution of the parameters and ii) 
observation of Linux behavior after parameter corruption 
(these modules correspond to 4 KLOC together). 

Table 3: Number of system calls, corrupted 
parameters and experiments for each OS 

 Windows Family Linux Family 

 NT4    2000     XP    NT4S  2000S    2003S  2.2.26  2.4.5  2.4.26       2.6.6 

#SC  25 27 26 25 27 27 16 16 16 17 

#Par 53 64 64 53 64 64 38 38 38 44 

#Exp 418 433 424 418 433 433 206 206 206 228 
 

Figure 3 summarizes the various components of the 
benchmark environment. All the experiments have been 
run on the same target machine, composed of an Intel 
Pentium III Processor, 800 MHz, and a memory of 512 
Mega Bytes. The hard disk is 18 Giga Bytes, ULTRA 160 
SCSI. The benchmark controller in both prototypes for 
Windows and Linux is a Sun Microsystems workstation. 
Before each benchmark run (i. e., before execution of the 
series of experiments related to a given OS), the target 
kernel is installed, and the interceptor is compiled for the 
current kernel (interceptors are kernel-dependent both for 
Windows and Linux). Once the benchmarking tool is 
compiled, it is used to identify the set of system calls 
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activated by the workload. Parameters of these system 
calls are then analyzed and placed into the corresponding 
class. A database of corrupted values is then generated 
accordingly. 

Figure 3. Benchmark environment  

Following the benchmark execution sequence presented 
in Figures 1 and 2, at the beginning of each experiment, 
the target machine (TM) records the experiment start 
instant tExpStart and sends it to the benchmark controller 
(BC) along with a notification of experiment start-up. The 
workload starts its execution. The Observer module 
records, in the experiment execution trace, the start-up 
instant of the workload, the activated system calls and 
their responses. This trace also collects the relevant data 
concerning states SEr, SXp and SNS. The recorded trace 
is sent to the BC at the beginning of the next experiment. 
The parameter substitution module checks whether the 
current system call has parameters. If it is not the case, the 
execution is simply resumed; otherwise, the execution is 
interrupted, a parameter value is substituted and the 
execution is resumed with the corrupted parameter value 
(tResume is saved in the experiment execution trace). The 
state of the OS is monitored so as to diagnose SEr, SXp, 
SNS. The corresponding OS response time (tResponse) is 
recorded in the experiment execution trace. For each run, 
the OS reaction time is calculated as the difference 
between tResponse and tResume. 
At the end of the execution of PostMark, the OS notifies 
the end of the experiment to the BC by sending an end 
signal along with the experiment end instant, tExpEnd. If 
the workload does not complete, then tExpEnd is governed 
by the value of a watchdog timer. The BC collects the 
SHg state and the workload abort/hang states. It is in 
charge of restarting the system in such cases. When no 
faultload is applied, the average time necessary for the OS 
to execute PostMark is far less than 1 minute for 
Windows and for Linux. We have fixed the watchdog 
timer to 3 minutes. If, at the end of this watchdog timer, 
the BC has not received the end signal from the OS, it 
then attempts to connect to the OS. If this connection is 

successful, then a workload abort or hang state is 
diagnosed, otherwise SHg is assumed.  
At the end of a benchmark execution, all files containing 
raw results corresponding to all experiments are on the 
BC. A processing module extracts automatically the 
relevant information from these files (two specific 
modules are required for Windows and Linux families). 
The relevant information is then used to evaluate 
automatically the benchmark measures (the same module 
is used for Windows and Linux).  

4. Benchmark Results 
The robustness measure is given in Figure 4. It shows that 
all OSs of the same family are equivalent, which is in 
conformance with our previous results, related to 
Windows using TPC-C Client [12]. It also shows that 
none of the catastrophic outcomes (Panic or Hang OS 
states) occurred for all Windows and Linux OSs. Linux 
OSs notified more error codes (59-67%) than Windows 
(23-27%), while more exceptions were raised with 
Windows (17-22%) than with Linux (8-10%). More no-
signaling cases have been observed for Windows (55-
56%) than for Linux (25-32%). In [22] it was observed 
that on the one hand Windows 95, 98, 98SE and CE had a 
few Catastrophic failures and on the other hand Windows 
NT, Windows 2000 and Linux are more robust and did 
not have any Catastrophic failures as in our case.  
 

Windows Family    Linux Family 

 

Figure 4: OS Robustness (%)  
The reaction time is given in Table 4. Globally, Windows 
OSs have shorter response times than Linux OSs. The 
standard deviation is significantly larger than the average 
for all OSs. Except for the two revisions of Linux 
2.4, τexec is always larger than Texec, the reaction time 
in the presence of faults. This can be explained by the fact 
that after parameter corruption, the OS detects the 
anomaly in almost 45% of cases for Windows and 75% of 
cases for Linux, and stops system call execution, returns 
an error code or notifies an exception.  
Note that for the Windows family, Windows XP has the 
best reaction time in the presence of faults and for the 
Linux family, Linux 2.6.6 has the lowest reaction time.  
For Linux 2.6.6, we notice that  τexec is almost two times 
larger than for the other revisions. A detailed analysis of 
the results showed that this is due to one system call, 
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execve, for which the execution time is 15000 µs for 
Linux 2.6.6 and 6000 µs for other versions. 

Table 4: Reaction time 
Windows Family 
 NT4 2000 XP 
 Avg. S. Dev. Avg. S. Dev. Avg. S. Dev. 
 τexec       248 µs       136 µs        315 µs 
Texec 148 µs 219 µs 118 µs 148 µs 219 µs 118 µs 
 NT4 Server 2000 Server 2003 Server 
 τexec       125 µs       175 µs       173 µs 
Texec 110 µs 221 µs 131 µs 110 µs 221 µs 131 µs 
Linux Family 
 2.2.26 2.4.5 2.4.26 
 τexec     485 µs    479 µs    450 µs 
Texec 465 µs 1505 µs 695 µs 2499 µs 465 µs 1505 µs 
 
The restart times are shown in Table 5. The average 
restart time without faults, τres, is always lower than the 
average restart time with faults (Tres), but the difference 
is not significant. Linux seems to be globally faster (71-
83s) than Windows (74-112s). However, if we consider 
only OS versions introduced in the market after 2001, the 
other OSs rank as follows: Linux 2.2.26 (71s), Windows 
XP (74s), Windows 2003 server (77s), Linux 2.4.5 (79s), 
Linux 2.6.6 (82s), Linux 2.4.26 (83s). 

Table 5: Restart time 
Windows Family 
 NT4 2000 XP 
 Avg. S. Dev. Avg. S. Dev. Avg. S. Dev. 
 τres         91 s         95 s         74 s 
Tres 92 s 4 s 96 s 92 s 4 s 118 µs 
 NT4 Server 2000 Server 2003 Server 
 τres         90 s        111 s         76 s 
Tres 91 s 4 s 112 s 91 s 4 s 112 s 
Linux Family 
 2.2.26 2.4.5 2.4.26 
 τres      64 s      74 s      82 s 
Tres 71 s 32 s 79 s 23 s 71 s 32 s 
 
Concerning Linux family, we note that i) the standard 
deviations are important and ii) the restart time decreases 
with new versions or revisions, except for Linux 2.6.6. 
This exception is justified by the fact that the Linux 
kernel was restructured in its version 2.6.  

5. Results Refinement 
The benchmark temporal measures are refined to provide 
more insights into those presented in Section 4. 

5.1. Reaction Time  
Table 6 presents the detailed reaction times with respect 
to OS outcomes after execution of corrupted system calls 
(Error Code, Exception and No Signaling). Thus, three 
average times are added to detail Texec: TSEr, TSXp (the 
times necessary to return respectively an error code or an 
exception) and TSNS (the execution time of the corrupted 
system call, in case of no-signaling state).  

Table 6:  Detailed reaction time 
Windows Family 
 NT4 2000 XP 
 Avg. S. Dev. Avg. S. Dev. Avg. S. Dev. 
Texec 148 µs 219 µs 118 µs 289 µs 114 µs 218 µs 
TSEr 45 µs 107 µs 34 µs 61 µs 45 µs 118 µs 
TSXp 40 µs 15 µs 37 µs 15 µs 50 µs 96 µs 
TSNS 234 µs 437 µs 186 µs 375 µs 168 µs 265 µs 
 NT4 Server 2000 Server 2003 Server 
Texec 110 µs 221 µs 131 µs 289 µs 102 µs 198 µs 
TSEr 41 µs 66 µs 29 µs 33 µs 25 µs 61 µs 
TSXp 35 µs 15 µs 37 µs 15 µs 48 µs 20 µs 
TSNS 166 µs 280 µs 210 µs 396 µs 156 µs 252 µs 
Linux Family 
 2.2.26 2.4.5 2.4.26 
Texec 167 µs 300 µs 466 µs 2276 µs 167 µs 300 µs 
TSEr 208 µs 361 µs 92 µs 105 µs 208 µs 361 µs 
TSXp 88 µs 5 µs 91 µs 8 µs 88 µs 5 µs 
TSNS 85 µs 5 µs 1545 µs 4332 µs 85 µs 5 µs 

 
For Windows family, it can be seen that for Windows 
2000, 2000 Server, XP and 2003 Server, returning an 
error code takes less time than notifying an exception. 
This can be explained by the fact that when returning an 
error code, tests are carried out on the parameter values at 
the beginning of the system call code and the system call 
is abandoned, while the exceptions are raised from a 
lower level of the system under benchmarking. 
Nevertheless, in the cases of Windows NT4 and NT4 
Server, TSEr is higher than TSXp. The cause of this 
anomaly lies in the long duration of time necessary to 
GetCPInfo system call to return an error code when its 
first parameter is corrupted.   
Concerning Linux family, the averages presented in this 
table do not take into account execve system call 
execution time. For Linux OSs, we notice the high values 
of TSNS corresponding to the two revisions of version 
2.4, compared to the two other versions. Also, the very 
high standard deviation suggests a large variation around 
the average, which is confirmed in Figure 5 that gives the 
OS reaction time for all system calls leading to the no-
signaling state for all Linux OSs. We can clearly see that 
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for Linux 2.4 the average time necessary for executing 
mkdir is larger than for all other system calls. 
Also, a very large average time to return an error code is 
observed for Linux 2.2.26, with a high standard deviation. 
Figure 6 details the times necessary to return error codes 
for Linux system calls. It is clear that these times are very 
similar except for unlink system call in Linux 2.2.26, 
which explains the high TSEr of Linux 2.2.26 compared 
to the other versions. After discarding the exceptional 
values corresponding to execve, mkdir and unlink system 
calls, the average reaction times  Τexec of the four 
targeted Linux OSs become very close. Furthermore, 
 τexec and  Τexec become very close. 
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Figure 5: Linux reaction time in case of SNS 
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Figure 6: Linux reaction time in case of SER 

5.2. Restart Time  
The detailed analysis of the restart time showed that all 
OSs of the same family have similar behavior and that the 
two families exhibit very different behaviors.  
For Windows, there is a correlation between the restart 
time and the state of the workload at the end of the 
experiment. When the workload is completed, the average 
restart time is statistically equal to the restart time without 
parameter substitution. On the other hand, the restart time 
is larger and statistically equal for all experiments with 
workload abort/hang. This is illustrated in Figure 7 for 
Windows XP in which the average restart time in case of 
workload completion is 73 seconds and 80 seconds in 
case of workload abort/hang. 
Linux restart time is not affected by the workload final 
state. Detailing Linux restart times shows high values 
appearing periodically. These values correspond to a 
“check-disk” performed by the Linux kernel every 26 

Target Machine restarts. This is illustrated for Linux 
2.2.26 in Figure 7, and explains the important standard 
deviation on this measure. 

 

 
Figure 7: Detailed restart time  

6. Benchmark Validation 
In order to gain confidence in dependability benchmark 
results, one has to check that the key properties are 
fulfilled. These properties are addressed successively in 
the rest of this section. We first define the property, then 
we show what has been achieved to satisfy and check it. 

6.1. Representativeness 
Representativeness concerns the benchmark measures, the 
workload and the faultload. 
The measures evaluated provide information on the OS 
state and temporal behavior after execution of corrupted 
system calls. We emphasize that these measures are of 
interest to a system developer (or integrator) for selecting 
the most appropriate OS for his/her own application. Of 
course other measures would help. 
PostMark workload is representative if the OS is used as 
a file server (60 % of system calls activated by PostMark 
belong to the file management functional component). If 
the OS is used for other purposes, other workloads should 
be investigated. Nevertheless, the selection of any other 
workload does not affect the concepts and specification of 
our benchmark. Currently, we are investigating the Java 
Virtual Machine.  
The faultload is without any doubt the most critical 
component of the OS benchmark and more generally of 
any dependability benchmark. Faultload representa-
tiveness concerns i) the parameter corruption technique 
used and ii) the set of corrupted parameters.  
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Parameter corruption technique 
In our previous work [11], performed for Linux, we have 
used two techniques for system call parameter corruption: 
the systematic bit-flip technique consisting in flipping 
systematically all bits of the target parameters (i.e., 
flipping the 32 bits of each considered parameter) and the 
selective substitution technique described in Section 2. 
This work showed the equivalence of the errors induced 
by the two techniques. In [12] we obtained the same 
robustness for Windows 2000 using the systematic bit-flip 
technique and the selective substitution technique.  
The application of the bit-flip technique requires much 
more experimentation time compared to the application of 
selective substitution technique. Indeed, in the latter case, 
the set of values to be substituted is simply determined by 
the data type of the parameter (see Section 2), which leads 
to a more focused set of experiments. We have thus 
preferred the selective substitution technique for 
pragmatic reasons: it allows derivation of results that are 
similar to those obtained using the well-known and 
accepted bit-flip fault injection technique, with much less 
experiments. Our benchmark is based on selective 
substitutions of system call parameters to be corrupted.  

Parameters to be corrupted  
The selective substitution technique used is composed of 
a mix of three corruption techniques as mentioned in 
Section 2: out-of-range data (OORD), incorrect data (ID) 
and incorrect addresses (IA). Let us denote the faultload 
used in our benchmarks by FL0. To analyze the impact of 
the faultload, we consider two subsets, including 
respectively i) IA and ODRD only (denoted FL1), and ii) 
ODRD only (denoted FL2). These faultloads are 
summarized in Table 7, which gives also the number of 
substitutions (hence the number of experiments) for 
Windows NT4 and Linux 2.4 as examples. 
We ran the benchmarks of all OSs considered using 
successively FL0, FL1 and FL2. The results obtained 
confirm the equivalence between Linux family OSs as 
well as the equivalence between Windows family OSs, 
using the same faultload (FL0, FL1 or FL2). Figure 8 
shows the robustness of Windows NT4, 2000 and XP 
with respect to FL1 and FL2. (robustness with respect to 
FL0 is given in Figure 3). Note that for each OS, its 
robustness with respect to FL0, FL1 or FL2 is different 
but the robustness of all OSs of the same family with 
respect to the same faultload is equivalent. The same 
results have been obtained in [12], using TPC-C Client as 
workload.   

Further validation concerning selective substitution 
For each parameter type class, we performed a sensitivity 
analysis regarding specific values of parameter 
substitution. This analysis revealed that different random 
values chosen to substitute the original parameter lead to 
the same outcome of benchmark experiments. Hence the 

benchmark results are not sensitive to the specific values 
given to the corrupted parameters as substitution values. 
Moreover, we checked the representativeness of incorrect 
data faults. One could argue that the OS is not assumed to 
detect this kind of faults as the substitution values are 
inside the validity domain of the parameter type. The 
analysis of the execution traces corresponding to 
experiments with incorrect data substitution that led to 
notification of error codes in the case of Linux, revealed 
that 88.6% of the faults correspond to out-of-range data in 
the very particular context of the workload execution. 
Consequently, the notification of error codes was a 
normal outcome in these cases. Incorrect data are thus 
very useful: they can provide a practical way for 
generating out-of-range data in the execution context. 
Note that an enormous effort would be needed to analyze 
all execution contexts for all system calls to define 
pertinent substitution values for each execution context.  

Table 7: Faultloads considered 

 ID IA OORD 
# experiments  

   (Windows NT4) 
# experiments  

(Linux 2.4) 

FL0 x x x 418 206 
FL1  x x 331 135 
FL2   x 77 55 

 
FL1            FL2 

 

Figure 8: OS Robustness using FL1 and FL2 (%) 

6.2. Repeatability and Reproducibility 
The benchmarking of a given system can be based either 
on an existing benchmark implementation (an existing 
prototype) or on an existing specification only. 
Repeatability concerns the benchmark prototype while 
reproducibility is related to the benchmark specification.  
Repeatability is the property that guarantees statistically 
equivalent results when the benchmark is run more than 
once in the same environment (i.e., using the same system 
under benchmark and the same prototype). This property 
is central to benchmarking. Our OS dependability 
benchmark is composed of a series of experiments. Each 
experiment is run after system restart. The experiments 
are independent from each other and the order in which 
the experiments are run is not important at all. Hence, 
once the system calls to be corrupted are selected and the 
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substitution values defined, the benchmark is fully 
repeatable. We have repeated all the benchmarks 
presented three times to check for repeatability. 
Reproducibility is the property that guarantees that 
another party obtains statistically equivalent results when 
the benchmark is implemented from the same specifica-
tion and is used to benchmark the same system under 
benchmarking. Reproducibility is strongly related to the 
amount of details given in the specification. The specifi-
cation should be at the same time i) general enough to be 
applied to the class of systems addressed by the bench-
mark and ii) specific enough to be implemented without 
distorting the original specification. We managed to sat-
isfy such a tradeoff. Unfortunately, we have not checked 
explicitly the reproducibility of the benchmark results by 
developing several prototypes by different people. On the 
other hand, the results seem to be independent from the 
technique used to corrupt system call parameters. This 
makes us confident about reproducibility. However, more 
verification is still required. 

6.3. Portability 
Portability concerns essentially the faultload (i.e., its 
applicability to different OS families).  
At the specification level, in order to ensure portability of 
the faultload, the system calls to be corrupted are not 
identified individually. We decided to corrupt all system 
calls of the workload. This is because OSs from different 
families do not necessarily comprise the very same 
system calls as they may have different APIs. However, 
most OSs feature comparable functional components. At 
the implementation level, portability can only be ensured 
for OSs from the same family because different OS 
families have different API sets.  
The first prototype developed concerns Windows 2000. It 
revealed to be portable without modification for Windows 
2000 Server and Windows 2003 Server (PostMark 
activates the same 27 system calls with parameters), and 
with minor adaptations for the others. One system call 
(FreeEnvironmentStringA) is not activated under 
Windows NT4, NT4 Server and XP and another system 
call (LockResource) is not activated under NT4 and NT4 
Server. In these cases, the system calls that are not 
activated are dropped from the corrupted values database.  
For Linux, the prototype revealed to be portable across all 
OSs except the interceptor Strace that is kernel-
dependent. Consequently, we used one version of Strace 
for Linux 2.2 and 2.4 and another version for Linux 2.6. 
Also, PostMark activates the same system calls for Linux 
2.2.26 and 2.4 while it activates a supplementary system 
call (mmap2) for Linux 2.6.6. Consequently, we added 
this system call to the set of activated system calls and an 
entry in the corrupted values database.  

6.4. Cost  
Cost is expressed in terms of effort required to develop 
the benchmark, run it and obtain results. These steps 
require some effort that is relatively affordable. In our 
case, most of the effort was spent in defining the 
concepts, characterizing the faultload and studying its 
representativeness. The installation of PostMark took one 
day both for Windows and Linux. The implementation of 
the different components of the controller took about two 
weeks for each OS family, including the customization of 
the respective interceptors (Detours and Strace). The 
implementation of the faultload took one week for each 
OS family, during which we have i) defined the set of 
corrupted values related to each data type and ii) created 
the database of corrupted values. Both databases are 
portable on OSs belonging to their family (one database 
for Windows family and one database for Linux family). 
However, small adaptations were necessary. 
The benchmark execution time for each OS is less than 
two days. More precisely, the duration of an experiment 
with workload completion is less than 3 min (including 
the workload completion time and the restart time), while 
it is less than 6 min without workload completion 
(including the watchdog timeout and the restart time). 
Thus, on average, an experiment lasts less than 5 min. 

7. Conclusion 
We presented the specification of a dependability 
benchmark for OSs with respect to erroneous parameters 
in system calls, along with prototypes for two families of 
OSs, Windows and Linux. These prototypes allowed us to 
obtain the benchmark measures defined in the 
specification. We stress that the measures obtained for the 
different OSs are comparable as i) the same workload 
(PostMark) was used to activate all OSs, ii) the faultload 
corresponds to similar selective substitution techniques 
applied to all system calls activated by the workload and 
iii) the benchmark conduct was the same for all OSs. 
Concerning the robustness measure, the benchmark 
results show that all OSs of the same family are 
equivalent. They also show that none of the catastrophic 
states of the OS (Panic or Hang) occurred for any of the 
Windows and Linux OSs considered. Linux OSs notified 
more error codes (59-67 %) than Windows (23-27 %), 
while more exceptions were raised with Windows (17-
22%) than with Linux (8-10 %). More no-signaling cases 
have been observed for Windows (55-56 %) than for 
Linux (25-32 %).  
Concerning the OS reaction time measure, results show 
that globally Linux reaction time, related to system calls 
activated by the workload (450-953 µs) is longer than 
Windows reaction time (102-148 µs). Refinement of this 
measure revealed a great variation around the average and 
that a minority of system calls with large execution times 
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dodged the average. When these system calls are not 
considered, the reaction times of all the OSs of the same 
family become equivalent.  
With respect to the restart time measure, Linux seems to 
be globally faster (71-83s) compared to Windows (74-
112 s). However, if we consider only OS versions 
introduced after 2001, the restart times of the other OSs 
are ranked as follows: Linux 2.2.26 (71 s), Windows XP 
(74 s), Windows 2003 server (77 s), Linux 2.4.5 (79 s), 
Linux 2.6.6 (82 s), Linux 2.4.26 (83 s). Detailed analysis 
of the restart time showed i) a correlation between 
Windows restart time and the workload final state (in case 
of workload hang or abort, the restart time is 10 % higher 
than in case of workload completion) and ii) that Linux 
performs a “check disk” after each 26 restarts after which 
the restart time is 3 times higher than the average. 
We validated our benchmark paying a particular attention 
to representativeness of faultload, and to the properties of 
repeatability, reproducibility, portability and cost 
effectiveness of the benchmark.  
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