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Abstract 
 

The aim of this paper is to compare the dependability 
of three operating systems (Windows NT4, Windows 2000 
and Windows XP) with respect to erroneous behavior of 
the application layer. The results show a similar behavior 
of the three OSs with respect to robustness and a 
noticeable difference in OS reaction and restart times. 
They also show that the application state (mainly the 
hang and abort states) significantly impacts the restart 
time for the three OSs. 
 
1. Introduction* 
 

System developers are increasingly resorting to off-
the-shelf operating systems (commercial or open source), 
even in critical application domains. However, any 
malfunction of the Operating System (OS) may have a 
strong impact on the dependability of the global system. 
Therefore, it is important to make information about the 
OS dependability available, despite the lack of 
information issued from its development. The current 
trend is to use dependability benchmarks [1-3].  

The aim of an OS dependability benchmark is to 
objectively characterize the OS behavior in presence of 
faults. A dependability benchmark is based on 
experimentation on the OS. Its results are intended i) to 
characterize qualitatively and quantitatively the OS 
behavior in the presence of faults and ii) to evaluate 
performance-related measures in the presence of faults. 
These results can help in selecting the most appropriate 
OS, based on the benchmark measures evaluated, in 
complement to other criteria (e.g., performance, 
maintenance, etc.).  

The work reported here is part of the European project 
on Dependability Benchmarking, DBench [4, 5], whose 
objectives are to i) define a framework for designing 
dependability benchmarks for computer systems and to ii) 
implement examples of benchmark prototypes. Our 
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previous work, [6], gives the specification of an OS 
dependability benchmark and presents the experimental 
framework as well as some preliminary results related to 
Windows 2000. This paper is aimed at further exploring 
the portability and suitability of the proposed benchmark 
by applying it to two other OSs from the same family, 
namely Windows NT4 and Windows XP professional.  

Several relevant attempts have been previously 
proposed to help characterize the failure modes and 
robustness of software executives. A comprehensive 
analysis of the issues linking robustness and dependability 
can be found in [7]. The executives targeted in these 
studies encompass real time microkernels and general 
purpose OSs [1, 8]. The work reported in [9] specifically 
addressed the robustness of the Win32 application 
programming interface which is the case of our 
experiments.  

The remainder of the paper is organized as follows. 
Section 2 summarizes the benchmark and describes a 
particular prototype for Windows family. Section 3 
presents comparison results obtained using this prototype. 
Section 4 concludes the paper.  

 
2. OS Dependability Benchmark Summary 
 

A dependability benchmark should define clearly: 
i) the benchmarking context, ii) the benchmark measures 
and measurements to be performed on the system for 
obtaining them, iii) the  benchmark execution profile to be 
used and iv) the set-up and related implementation issues 
required for running a benchmark prototype. 

The benchmark results can be meaningful, useful and 
interpretable only if all these items are provided with the 
results. The detailed definition of these items, related to 
the OS benchmark used in this paper are given in [6]. 
They are summarized hereafter to allow understanding of 
the results presented in this paper. 
 
2.1. Benchmarking Context 

 
The benchmark target corresponds to an OS with the 

minimum set of device drivers necessary to run the OS 
under the benchmark execution profile. The three OS 



 

targets are Windows NT4 with Service Pack 6, Windows 
2000 Professional with Service Pack 4 and Windows XP 
Professional with Service Pack 1. All the experiments 
have been run on the same platform, composed of an Intel 
Pentium III Processor, 800 MHz, and a memory of 512 
MB. The hard disk is 18 GB, ULTRA 160 SCSI. 

Our dependability benchmark is a robustness 
benchmark. Robustness can be viewed as OS capacity to 
resist/react to faults induced by the applications running 
on top of it, or originating from the hardware layer or 
from device drivers.  

We emphasize in this work the OS robustness as 
regards possible erroneous inputs provided by the 
application software to the OS via the Application 
Programming Interface (API). We mainly consider 
corrupted parameters in system calls. For the sake of 
conciseness, such erroneous inputs are shortly referred to 
as faults. Results concerning the robustness with respect 
to faults in device drivers can be found in [10-12]. 

The benchmark addresses the user perspective, i.e., it 
is primarily intended to be performed by (and to be useful 
for) someone or an entity who has no in depth knowledge 
about the OS and whose aim is to significantly improve 
her/his knowledge about its behavior in presence of faults. 
In practice, the user may well be the developer or the 
integrator of a system including the OS. The OS is 
considered as a “black box” and the source code does not 
need to be available. The only required information is the 
description of the services provided by the OS and the 
description of the OS in terms of system calls. 
 
2.2. Benchmark Measures 
 

Corrupted system calls are provided to the OS through 
the Win32 environment subsystem, as the three 
considered OSs cannot run without it [13]. Win32 is thus 
the API considered in our current benchmark 
environment. 

The OS behavior is characterized by the various 
outcomes at the API level, while the impact of OS on the 
application behavior is observed at the workload level.  
After execution of a corrupted system call, the OS is in 
one of the states defined in Table 1. 

Table 1: OS outcomes  

SEr An error code is returned 

SXp An exception is raised, processed and notified to the application 

SPc Panic state 

SHg Hang state 

SNS None of the above situations is observed (No-signaling state) 

 

The OS Robustness Measure is defined as the 
percentage of experiments leading to any of the outcomes 
listed in Table 1. 

Reaction Time (Texec) corresponds to the mean time 
necessary for the OS to respond to a system call in 
presence of faults, either by signaling an exception or by 
issuing an error code or by executing the required 
instructions.  

Restart Time (Tres) corresponds to the mean time 
necessary for the OS to restart after the execution of the 
workload in the presence of faults.  

Texec and Tres are also observed in absence of faults, 
for comparison purpose. They are respectively denoted 
τexec and τres.  

The benchmark temporal measures are primarily 
evaluated as a mean time over all experiments categorized 
by a specific outcome. However, standard deviation is of 
prime interest as well. Table 2 recapitulates these 
temporal measures. 

Table 2: OS temporal measures  
τexec Time for the OS to execute a system call in absence of faults 

Texec Time for the OS to execute a system call in presence of faults 

τres Duration of OS restart in absence of faults 

Tres Duration of OS restart in presence of faults 

 
The workload is characterized by one of the following 

outcomes: i) the workload completes with correct results, 
ii) it completes with erroneous results and iii) the 
workload is aborted or hangs. Clearly, the workload can 
end up in any of the three states irrespective of the 
outcomes of the OS. Conversely, whenever the OS is in 
the Panic state, this can only lead the workload to abort or 
hang, while an OS Hang necessarily leads the workload to 
hang. In [6], we have detailed all possible combined 
outcomes and defined a set of measures characterizing the 
OS taking into account the workload states. In this paper, 
we mainly use information on the workload final states to 
examine the impact of the workload state on system 
restart time.  

 
2.3. Benchmark Execution Profile 

 
In the case of performance benchmarks, the 

benchmark execution profile is simply a workload that is 
as representative as possible for the system under test. For 
dependability benchmarks, the execution profile includes 
in addition corrupted parameters in system calls. The set 
of corrupted parameters is referred to as the faultload.  

From a practical point of view, the faultload can be 
either integrated within the workload (i.e., the faults are 
embedded in the program being executed) or provided in 
a separate module. For enhanced flexibility, we made the 



 

latter choice: the workload and the faultload are 
implemented separately.  

The prototype we have developed uses a TPC-C client 
[14] as a privileged workload to be in conformance with 
the experiments performed on transactional systems in 
DBench [15, 16]. We simply use the TPC-C client as a 
workload, but we do not use the performance measures 
specified by TPC-C as they are far from being suitable to 
characterize the behavior of an OS.   

The faultload is defined by: i) the technique used for 
corrupting the system call parameters and ii) the set of 
system calls to be faulted.  

Parameter Corruption Technique: We use a 
parameter corruption technique similar to the one used in 
[17], relying on thorough analysis of system call 
parameters to define selective substitutions to be applied 
to these parameters. A parameter is either a data element 
or an address. The value of a data can be substituted either 
by an out-of-range value or by an incorrect (but not out-
of-range) value, while an address can be substituted by an 
incorrect (but existing) address (containing usually an 
incorrect or out-of-range data). We have used a mix of 
these three corruption techniques.  

System Calls Corrupted: Ideally, and without any 
time limitation, all system calls used in the workload with 
parameters should be corrupted. For small workloads this 
might be possible. However, for workloads such as TPC-
C client (that involves more than 130 system calls, with 
several occurrences in the program), this would require 
several weeks of experimentation. In addition, all system 
calls are not necessarily interesting to be corrupted. 
Indeed, using a fully automated benchmark set up, an 
experiment lasts 5 minutes on average and, roughly 
speaking, about 1400 experiments can be achieved in 5 
days. This leads to consider 30 to 60 system calls to be 
corrupted for a 5-day fully automated benchmark 
execution. Accordingly, we have targeted system calls 
related to the following components: Processes and 
Threads, File Input/Output, Memory Management and 
Configuration Manager. Thus 28 system calls have been 
targeted, for which 75 parameters have been corrupted 
leading to 552 corrupted values, hence to 552 experiments 
using the benchmark experimental set-up presented 
hereafter.  
 
2.4. Benchmark Set-up 

 
Since perturbing the operating system may lead the 

OS to hang, a remote machine is required to reliably 
control the benchmark experiments. This machine is 
called the benchmark controller. Accordingly, for running 
an OS dependability benchmark we need at least two 
computers: i) the Target Machine for hosting the 
benchmarked OS and the workload, and ii) the 

Benchmark Controller that is primarily in charge of 
diagnosing and collecting data in case of a hang or an 
abort. Furthermore, as we are using a TPC-C client as 
workload, the (Oracle) Data Base Management System 
(DBMS), that processes the TPC-C client requests, can be 
installed on the benchmark controller or on another 
machine. Accordingly, Figure 1 illustrates the various 
components that characterize the proposed OS 
dependability benchmark prototype, for Windows 2000. 
The same set-up is used for the three OS targets, only the 
benchmark target is changed. 

To intercept the Win32 functions (i.e., system calls), 
we have modified the “Detours” tool [18], a library for 
intercepting arbitrary Win32 functions on x86 machines. 
This modification was made to facilitate their replacement 
by substitution values. Also, we have added several 
modules in the library to observe the reactions of the OS 
after parameter substitution, and to retrieve the required 
measurements. 

 

Figure 1. Experimental set-up 

The experiment steps are illustrated in Figure 2 in case 
of workload completion. In case of workload abort/hang 
state, the end of the experiment is provided by a watchdog 
timeout. As the average time necessary for the OS to 
execute the TPC-C client is about 70 seconds when no 
faultload is applied, the timeout is of 5 minutes.  
 

 
Figure 2. Benchmark execution sequence  

 
2.5. Benchmarking Time  

 
The benchmarking time corresponds to the benchmark 

implementation time and to the benchmark execution 
time.  

The implementation of the benchmark itself was not 
very time consuming.  



 

• The TPC-C client implementation used in the current 
set up is the same as the one used by other DBench 
partners (see e.g., [19]). The installation took three 
days.  

• The implementation of the different components of 
the controller took about 10 days.  

• The implementation of the faultload took one week, 
during which we have i) defined the set of the 
values related to the 28 system call with their 75 
parameters to be corrupted and ii) created the 
database of the corrupted values. 

The duration of an experiment with workload 
completion is less than 3 minutes (including the time to 
workload completion and the restart time), while it is 
about 7 minutes without workload completion (including 
the workload watchdog timeout of 5 minutes and the 

restart time). Thus, on average, an experiment lasts less 
than 5 minutes. These experiments are fully automated 
and the whole benchmark execution duration (552 
experiments for each OS) is thus about 46h for each OS.  

 
3. Comparison of the three OSs  

 
The benchmark defined in the previous section is used 

to compare the behavior of Windows NT4, 2000 and XP. 
We first evaluate the three benchmark measures defined 
in Section 2.2 (robustness, reaction time and restart time). 
These measures give information on the global behavior 
of the OSs. We will then show how they can be refined 
and complemented by making sensitivity analyses taking 
into account the workload states after execution of a 
corrupted system call.  

 
3.1. Benchmark Measures  

 
The robustness measures are given in Figure 3. No 

panic and hang states were observed for the three OSs. 
Exceptions have been notified in 11.4 % to 12 % of the 
cases, while the number of experiments with error code 
return varies between 31.2 % and 34.1 %. More than half 
of the experiments led to a No signaling outcome. 

Figure 3 shows a similar behavior for the three OSs with 
respect to robustness. Sensitivity analyses with respect to 
the faultload selection is performed in Section 3.2.1. 

The system reaction time in absence of faults,  τexec, 
is evaluated as the mean reaction time of the 28 selected 
system calls whose parameters are being corrupted for the 
experiments. Table 3 shows that, in absence of faults, the 
three OS have different reaction times. 

Table 3: OS reaction time 

 Windows NT4 Windows 2000 Windows XP 

 Mean  SD Mean  SD Mean SD 
 τexec         344 µs       1782 µs        111 µs 

Texec 128 µs 230 µs 1241 µs 3359 µs 114 µs 176 µs 

 

The OS reaction time in the presence of faults, Texec, 
corresponds to the mean reaction time of the selected 28 
system calls. Table 3 shows that the shortest time is 
obtained for Windows XP while the longest one 
corresponds to Windows 2000. For Windows XP, this 
time is slightly longer than the reaction time in absence of 
faults while it is significantly lower for the two others. 
This may be explained by the fact that in about 45% of 
cases the OS detects the injected fault. It does not execute 
the faulted system call and returns an error code or signals 
an exception. The standard deviation (SD) is significantly 
longer than the mean for the three OSs. Section 3.2.2 will 
provide more detailed information to explain the various 
behaviors. 

The system restart time is given in Table 4 which 
shows that Windows XP restart time is 70% of that of 
Windows 2000, without faults and 73% of this time in the 
presence of faults. For all systems, the restart time is only 
few seconds longer than without faults.  

Table 4: System restart time  

 Windows NT4 Windows 2000 Windows XP 
 Mean  SD Mean  SD. Mean  SD 

τres 92 s 105 s 74 s 

Tres 96 s 4 s 109 s 8 s 80 s 8 s 

 



 

Summary  
The above results show that the Windows NT4, 

Windows 2000  and Windows XP kernels have equivalent 
robustness. This is not surprising as the three OSs are 
from the same family. They also show that Windows XP 
has the shortest system call execution time as well as the 
shortest restart times, both with and without faults. These 
results do not contradict well-known information about 
Windows XP's behavior in absence of faults. They 
confirm that they also hold in the presence of faults.  

 
3.2. Measure Refinement 

 
We will consider successively the three benchmark 

measures and show how they can be enriched by 
examining additional information that can be provided by 
the current benchmark set up. 

 
3.2.1. Robustness Measure. The faultload used in the 
previous section includes a mix of the three corruption 
techniques presented in Section 2.3: i) out-of-range data 
(or out of the boundaries of accepted parameter values), 
ii) incorrect data (but within the boundaries of accepted 
parameter values) and iii) incorrect addresses. In total 552 
corrupted values for the 75 parameters related to the 
28 selected system calls. This faultload is referred to as 
FL0. 

It can be argued that incorrect data is not 
representative of application faults that should be detected 
by the OS. In order to analyze its impact on the 
benchmark results, we have considered a reduced 
faultload FL1 including only out-of-range data and 
incorrect addresses. Thus FL1 is composed of 325 
corrupted values. The comparison shows that even though 
the robustness of each OS has been slightly affected by 
the corruption technique used, the three OSs have still 
very similar robustness.  

Incorrect addresses usually point to out-of range or 
incorrect data. Taking a pessimistic view, let us assume 
that they only point to incorrect data and could be 
discarded as in FL1. We have thus considered a faultload, 
FL2, comprising only out-of-range data (composed of 113 
corrupted values). Comparison also shows that using FL2 
leads to similar robustness of the three OSs.  

This latter result encourages corruption of the 
parameters of all system calls involved in the workload 
using only the out-of-range technique, without increasing 
significantly the benchmark run duration. We have thus 
considered a faultload, FL3, composed of only out-of-
range data, targeting all of the 132 system calls with their 
353 parameters. 468 experiments have been performed for 
each OS. The results show that the three OSs still have 
similar robustness, when corrupting all system calls 
involved in TPC-C client workload.  

The faultloads considered are summarized in Table 5. 
FL0 to FL3 use a selective substitution technique. 

Table 5: Faultloads considered 

 Incorrect 
data 

Incorrect 
address 

Out-of-
range data 

Bit-Flip # System 
calls 

# 
exp 

FL0 x x x  28 552 
FL1  x x  28 325 

FL2   x  28 113 

FL3   x  All (132) 468 

FL4    x 28 2400 

 
The sensitivity of the robustness measure to the 

parameter corruption technique can be further analyzed, 
using a bit-flip parameter corruption technique, referred to 
as FL4. We use it here to corrupt the same set of 75 
parameters in a systematic way (i.e., flipping the 32 bits 
of each parameter considered). This leads to 2400 
corrupted values (i.e., 2400 experiments). The results are 
given in Figure 4 for Windows 2000. This figure shows 
that the OS robustness is very similar using the two 
parameter corruption techniques, which confirms our 
previous work on fault representativeness [20]. 

We conclude that the results obtained for a subset of 
system calls related to the most frequently used functions 
of Windows (corresponding to Processes and Threads, 
File Input/Output, Memory Management and 
Configuration Manager) are similar to those obtained 
when considering all system calls. This is why we have 
targeted these four functions for the Windows family. 
 

    
     Selective substitution (552 exp.)          Systematic bit-flip (2400 

exp.) 

Figure 4: Sensitivity to corruption technique 
 
3.2.2. OS Reaction Time. Table 6 completes the 
information provided in Table 3. It gives the OS reaction 
time with respect to OS outcomes after execution of a 
corrupted system call. It can be seen that i) the time to 
issue an error code is very short and comparable for the 
three systems, ii) the time to signal an exception is higher 
than that of error code return, but it is still acceptable for 
Windows NT4 and XP, but very large for Windows 2000 
and iii) the largest execution time is obtained when the 
OS does not signal the error (SNS).  



 

Table 6: Detailed OS reaction times  

 Windows NT4 Windows 2000 Windows XP 

 Mean  SD Mean  SD Mean  SD 

Error code 17 µs 18 µs 22 µs 28 µs 23 µs 17 µs 

Exception 86 µs 138 µs 973 µs 2978 µs 108 µs 162 µs 

No signaling 203 µs 281 µs 2013 µs 4147 µs 165 µs 204 µs 

 
The very high standard deviation (SD) is due to a 

large variation around the mean. As an example, Figure 4 
shows this variation in the case of SNS. This figure 
identifies the system calls that led to SNS with the mean 
execution time of each of them. The large standard 
deviation is mainly due to two system calls. 

 

 

Figure 5: OS reaction time in case of SNS 
 
3.2.3 OS Restart Time. Careful analysis of the collected 
data revealed a correlation between the system restart 
time and the state of the workload. When the workload is 
completed, the mean restart time is very close to τres 
(obtained without fault injection), and when the workload 
is aborted or hangs, the restart time is 8% to 18% higher. 
Indeed, the number of experiments that led to workload 
abort/hang was respectively 101, 107 and 128 for 
Windows NT4, 2000 and XP. Even though Windows XP 
had induced more workload abort/hang outcomes, it still 
has the lowest system restart time as indicated in Table 7. 
The latter gives in rows 1 and 2 the restart times without 
faults, τres, and in presence of faults, Tres, and refines in 
the last two rows Tres according to the workload state, 
irrespective of the OS outcome.  

Table 7: Restart time and workload state 

4. Conclusion 
 
In this paper we have briefly presented a dependability 

benchmark for OSs and an example of implementation 
prototype, then we have used the prototype to benchmark 
Windows NT4, 2000 and XP.  

The benchmark addresses the user perspective. The 
OS is considered as a black box and the only required 
information is its description in terms of services and 
functions (system calls). We emphasize the OS robustness 
as regards application induced erroneous behavior.  

The comparison of the three OSs showed that i) they 
are equivalent from the robustness point of view and that 
ii) Windows XP has the shortest reaction and restart 
times. Detailed information provided by the current 
benchmark prototype allowed refinement of the 
benchmark measures and confirmed the benchmark 
measure results. Sensitivity analyses with respect to the 
parameter corruption technique showed that, even though 
for each OS the robustness is slightly impacted by the 
technique used, the three OSs are impacted similarly. 

Finally, the results obtained showed that using a 
reduced set of experiments (113) targeting only out-of-
range data led to results similar to those obtained from the 
552 initial experiments targeting additionally incorrect 
data and addresses. If this is confirmed for other OS 
families, this would divide the benchmark execution 
duration (that is proportional to the number of 
experiments) by almost 5, which is substantial.  

 

References 
 

[1] T. K. Tsai, R. K. Iyer and D. Jewitt, “An Approach Towards 
Benchmarking of Fault-Tolerant Commercial Systems”, in Proc. 
26th Int. Symp. on Fault-Tolerant Computing (FTCS-26), Sendai, 
Japan, 1996, pp. 314-323. 
[2] A. Brown, “Availability Benchmarking of a Database System”, 
EECS Computer Science Division, University of California at 
Berkley, 2002. 

[3] J. Zhu, J. Mauro and I. Pramanick, “R3 - A Framwork for 
Availability Benchmarking”, in Int. Conf. on Dependable Systems 
and Networks (DSN 2003), San Francisco, CA, USA, 2003, pp. B-
86-87. 

[4] K. Kanoun, J. Arlat, D. J. G. Costa, M. Dal Cin, P. Gil, J.-C. 
Laprie, H. Madeira and N. Suri, “DBench – Dependability 
Benchmarking”, in Supplement of the 2001 Int. Conf. on 
Dependable Systems and Networks (DSN-2001), Göteborg, Sweden, 
2001, pp. D.12-15. 

[5] K. Kanoun, H. Madeira, Y. Crouzet, M. Dal Cin, F. Moreira and 
Ruiz J.-C, “DBench Dependability Benchmarks”, LAAS-report no. 
04-120, 2004. 

[6] A. Kalakech, T. Jarboui, A. Arlat, Y. Crouzet and K. Kanoun, 
“Benchmarking Operating Systems Dependability: Windows as a 
Case Study”, in 2004 Pacific Rim International Symposium on 
Dependable Computing (PRDC 2004), Papeete, Polynesia, 2004, 
pp. 262-271. 

 Wind. NT4 Wind. 2000 Wind. XP 

τres 92 s  105 s  74 s  

Tres 96 s 109 s 80 s  

Tres after WL completion 95 s  106 s  76 s  

Tres after WL abort/hang 102 s  123 s  90 s  



 

[7] A. Mukherjee and D. P. Siewiorek, “Measuring Software 
Dependability by Robustness Benchmarking”, IEEE Transactions of 
Software Engineering, vol. 23, no. 6, pp. 366-378, 1997. 
[8] P. Koopman and J. DeVale, “Comparing the Robustness of 
POSIX Operating Systems”, in Proc. 29th Int. Symp. on Fault-
Tolerant Computing (FTCS-29), Madison, WI, USA, 1999, pp. 30-
37. 

[9] C. Shelton, P. Koopman and K. Devale, “Robustness Testing of 
the Microsoft Win32 API”, in. Int. Conference on Dependable 
Systems and Networks (DSN’2000), New York, NY, USA, 2000, pp. 
261-270. 

[10] J. Durães and H. Madeira, “Characterization of Operating 
Systems Behavior in the Presence of Faulty Drivers through 
Software Fault Emulation”, in 2002 Pacific Rim Int. Sym. on 
Dependable Computing, Tsukuba City, Ibaraki, Japan, 2002, pp. 
201-209. 

[11] A. Chou, J. Yang, B. Chelf, S. Hallem and D. Engler, “An 
Empirical Study of Operating Systems Errors”, in Proc. 18th ACM 
Symp. on Operating Systems Principles (SOSP-2001), Banff, AL, 
Canada, 2001, pp. 73-88. 

[12] A. Albinet, J. Arlat and J.-C. Fabre, “Characterization of the 
Impact of Faulty Drivers on the Robustness of the Linux Kernel”, in 
Int. Conf. on Dependable Systems and Networks (DSN 2004), 
Florence, Italy, 2004. 

[13] D. A. Solomon and M. E. Russinovich, Inside Microsoft 
Windows 2000, Third Edition, 2000. 

[14] TPC-C, TPC Benchmark C, Standard Specification 5.1, 
available at http://www.tpc.org/tpcc/. 2002. 

[15] M. Vieira and H. Madeira, “Definition of Faultloads Based on 
Operator Faults for DBMS Recovery Benchmarking”, in 2002 
Pacific Rim International Symposium on Dependable Computing, 
Tsukuba city, Ibaraki, Japan, 2002. 

[16] K. Buchacker, M. Dal Cin, H. J. Höxer, R. Karch, V. Sieh and 
O. Tschäche, “Reproducible Dependability Benchmarking 
Experiments Based on Unambiguous Benchmark Setup 
Descriptions”, in Int. Conf. on Dependable Systems and Networks, 
San Francisco, Ca, 2003, pp. 469-478. 

[17] P. J. Koopman, J. Sung, C. Dingman, D. P. Siewiorek and T. 
Marz, “Comparing Operating Systems using Robustness 
Benchmarks”, in Proc. 16th Int. Symp. on Reliable Distributed 
Systems (SRDS-16), Durham, NC, USA, 1997, pp. 72-79. 

[18] G. Hunt and D. Brubaher, “Detours: Binary Interception of 
Win32 Functions”, in 3rd USENIX Windows NT Symposium, 
Seattle, Washington, USA, 1999, pp. 135-144. 

[19] M. Vieira and H. Madeira, “A Dependability Benchmark for 
OLTP Application Environments”, in 29th Int. Conference on Very 
Large Data Bases (VLDB 2003), Berlin, Germany, 2003, pp. 742-
753. 

[20] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun and T. Marteau, 
“Analysis of the Effects of Real and Injected Software Faults: Linux 
as a Case Study”, in. 2002 Pacific Rim Int. Symposium on 
Dependable Computing (PRDC 2002), Tsukuba, Japan, 2002, pp. 
51-58. 

 


