
HAL Id: hal-01962914
https://laas.hal.science/hal-01962914

Submitted on 20 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the Effects of Real and Injected Software
Faults: Linux as a Case Study*

Tahar Jarboui, Jean Arlat, Yves Crouzet, Karama Kanoun, Thomas Marteau

To cite this version:
Tahar Jarboui, Jean Arlat, Yves Crouzet, Karama Kanoun, Thomas Marteau. Analysis of the Effects
of Real and Injected Software Faults: Linux as a Case Study*. Pacific Rim International Symposium
on Dependable Computing (PRDC’2002), Dec 2002, Tsukuba, Japan. pp.51-58. �hal-01962914�

https://laas.hal.science/hal-01962914
https://hal.archives-ouvertes.fr

Analysis of the Effects of Real and Injected Software Faults:
Linux as a Case Study*

Tahar Jarboui, Jean Arlat, Yves Crouzet, Karama Kanoun and Thomas Marteau
LAAS-CNRS

7 avenue du Colonel Roche
31077 Toulouse Cedex 4 � France

Abstract

The application of fault injection in the context of
dependability benchmarking is far from being
straightforward. One decisive issue to be addressed is to
what extent injected faults are representative of actual
faults. This paper proposes an approach to analyze the
effects of real and injected faults.

1. Introduction1

Fault injection has long been recognized as a pragmatic
means to assess the dependability of computer systems
[1], in some cases in complement with other more formal
approaches (e.g., see [2-4]). Numerous techniques and
tools were proposed [5, 6] that have been widely applied
both in research projects and industry.

Nevertheless, the plausibility of the fault models
supported with respect to real faults is a concern that has
often been related to fault injection-based experiments,
even when they were targeted to the evaluation of a
specific computer architecture.

Such a concern is indeed even more acute in the case of
dependability benchmarking, due to the fact that the
ultimate objective is to compare alternative systems.
Accordingly, among the various attributes (such as
workload, faultload, measurements and measures) that have
been introduced within the general framework defined by
the DBench project [7] to characterize a dependability
benchmark, the determination of a representative faultload
has been identified as one of the key challenges.

Based on the fact that similar errors can be induced by
different types of faults, we advocate that what actually
matters is not to establish a correspondence in the fault
domain, but rather in the error domain, i.e., among the
consequences that are provoked by the application of a set
of real faults or a set of injected faults. More precisely,
two main viewpoints and related questions have to be
considered:

* This work is partially supported by the European Commission: project
DBench - Dependability Benchmarking (IST-2000-25425)

1) Fault equivalence (between fault injection
techniques): To what extent do distinct fault
injection techniques lead to similar effects (errors
and failures) ?

2) Fault representativeness (of a given fault injection
technique): To what extent are the effects of
injected faults similar to those provoked by real
faults or by a representative fault model?

Concerning the types of systems or components that
can be considered as target systems, operating systems are
definitively privileged candidates for dependability
benchmarking. Indeed, any malfunction of the OS may
have a strong impact on the dependability of the global
system. Linux has been mainly used as the target OS to
carry out this study because of its open source status that
significantly facilitates the supporting of the internal
controllability and observability capabilities required by
the experiments to be conducted. Nevertheless, it is worth
noting that Linux is now considered a “real world” OS that
is being included in a wide range of applications including
those with dependability requirements.

This work proposes a comprehensive strategy to:
i) study the equivalence between the fault injection
techniques at the API level, ii) compare the effects of API
injected faults with internal injected faults, and iii) analyse
the representativeness of the injected faults with respect to
real faults.

We have developed an experimental framework that
support three injection techniques. It is well detailed in
[8].

The paper is structured as follows. Section 2 presents
the considered set of faults. Section 3 describes the
observation levels. Some of the results obtained are then
presented and discussed in Section 4. Finally, Section 5
concludes the paper.

2. Considered software faults

Many fault representativeness studies targeted the
physical faults and they all agreed on the fact that the bit-
flip is a representative fault model of physical faults (e.g.,
see [9]). However, besides a few studies [10, 11], less
attention has been paid to software faults, which are

arlat
To Appear in Proc. 9th Pacific Rim International Symposium on Dependable Computing (PRDC-2002)Tsukuba, Japan, December 16-18, 2002 (IEEE CS Press)

considered as the first causes of actual system outages
[12].

2.1. Real software faults in Linux

The study of the real faults that are observed in the OS
kernel source code permits a better understanding of the
erroneous behaviors that are provoked in reality. One way
to collect such information is the analysis of the change
logs provided with each new kernel version. They include
comments about the various fixes and additions applied to
the previous version. However, it is not always easy to
associate a comment with its corresponding fix.

A meta-compiler, developed recently at the Stanford
University [13], permits the detection of real faults in OS
kernels. It is based on system-specific checkers defined
after a static analysis of the source code. The goal of a
checker is to verify programming rules inside the kernel.
The faults revealed by these checkers are published on the
web.

The types of real faults that we will consider are those
revealed by the BLOCK and the NULL checkers. The
outcomes that are likely to be induced by these faults are
respectively “Kernel hang” and “Exception”. The latter is
usually followed by a “kernel panic” mode. They
correspond respectively to 42% and 25% of the faults
revealed by the considered checkers. The analysis of their
eventual provoked errors allows us to develop some
assertions explained more in detail in Section 3.2.

2.2. Injected software faults

We present hereafter the considered model for the
software system from which we derive the injected fault
models. We distinguish between external and internal
faults.

2.2.1 Functional decomposition

Based on the work presented in [14], and to facilitate the
analysis of the Linux kernel, we decomposed it into five
functional components: scheduling, memory management,
synchronization, file system(s) management and
communication. This functional decomposition of Linux,
which is a monolithic operating system, is only used to
facilitate the analysis. Each functional component is
composed of elementary functions.

It is worthwhile to distinguish the elementary functions
that are reachable from the API (kernel calls) from those
that are not (internal functions). By modifying the gcc
compiler, building on work presented in [15], we were
able to generate, at kernel compilation, a call graph for
each kernel call. A call graph identifies the elementary
functions called by the considered kernel call. For each
kernel call, we define depth levels. As an example, Figure
1 describes the call graph for the kernel call
sched_setscheduler. It has three depth levels. The

“system_call” node is present in all call graphs associated
with any kernel call. It represents the kernel call entry
point.

Level 1

Level 2

Level 3

API

Fault injection location

setscheduler

find_process_by_pid move_first_runqueue

sched_setscheduler

system_call

Figure 1. sched_setscheduler Call graph

In this paper, three fault models are considered. The goal
is to analyze the degree of similarities of the erroneous
behaviors reported for the kernel as a consequence of fault
injection at the first level (API) and in lower levels. A
fault model is defined with respect to the fault type and to
the fault location. The fault types used are bit-flips and
invalid parameters. We consider two locations, either the
parameters of the targeted kernel call (i.e., external faults)
or the parameters of the underlying kernel functions (i.e.,
internal faults).

Another important fault parameter is the trigger
condition of the fault. The trigger condition is the event
that leads to the injection of the fault. The considered
trigger condition is the interception of the targeted system
call. The fault is thus injected depending on the selected
level (external or internal).

2.2.2. External faults

External faults mimic faults from the application level
and they test the robustness of the kernel.

The bit-flip is a generic fault model. It primarily
simulates hardware faults. The goal of the proposed
comparison is to determine to what extent it can simulate
the invalid argument injection technique, which is a more
focused fault model for software faults.

We compare error sets caused by bit-flips (as for
MAFALDA [16]) into system call parameters with those
caused by invalid parameters (as for Ballista [17]). The
parameter values are corrupted by i) issuing exhaustive
bit-flips (32 per parameter) or, ii) replacing them with
invalid values. Based on the work related to Ballista, and
especially its online demonstration site, eight classes of
invalid parameters are defined.

2.2.3. Internal faults

Internal faults emulate various classes of faults such as
those defined in the Orthogonal Defect Classification [18]

(e.g., assignment, checking, interface, etc). We consider
only the interface class. The set of experiments targets the
kernel internal functions that are not reachable via the
API.

3. Observation levels

The main objectives of the conducted experiments are
to:

• Study the possible equivalence between the fault
injection techniques at the API level,

• Compare the effects of API injected faults with
internal injected faults,

• Analyze the representativeness of the injected faults
with respect to real faults, based on the nature of
the produced errors.

The comparison between two fault models is achieved
through the comparison of their respective effects. The
highest abstraction level consists in the quantification of
the observed failure modes. If the observed failure modes,
after the injection of two different fault models, are
different we can state that these fault models are not
equivalent. However, if the failure modes are similar, a
refinement of the observations might be needed to be able
to provide more affirmative conclusions. The first
refinement we are considering consists in taking into
account the error detection mechanisms built-in within the
kernel to enhance the observability capabilities. The
second refinement to further enhance the observability
consists in implementing extra internal assertions within
the kernel.

3.1. Experiment outcomes

We distinguish two main types of outcomes as the
result of a fault injection experiment: reported and non-
reported failures. For sake of conciseness, both types will
be considered as failure modes. The considered outcomes
are detailed hereafter.

3.1.1. Reported failures

The reported failures correspond to hardware raised
exception or to error codes returned by the kernel:
• A hardware exception is raised. If the exception is

raised in user mode, the kernel sends a signal to the
process that caused the exception. However, if it is
raised when running in kernel mode, either the
running process is killed or the kernel enters the
“panic” mode.

• An error code is returned. As the accuracy of the error
reports is not the main objective of our study, we do
not discriminate the cases when an incorrect error code
is returned (also termed “hindering” in [19]).

3.1.2. Non-reported failures

The non reported failures correspond to either a kernel or
an application hang:
• The kernel hangs. A kernel hang can be observed due

to an infinite loop within the kernel or when it is
waiting for an event that never occurs while interrupts
are disabled.

• An application hangs. This can be due to an infinite
loop that the application executes or it can be waiting
on a kernel wait queue for an event that will never
occur. In the latter case, the application does either
accept signals, in which case we can force it to quit,
or it does not accept signals, in which case we need
to reboot the kernel.

When none of the previous events is observed, then a
�no signaling� outcome is assumed.

3.2. Internal assertions

This section presents the additional observation
mechanisms that permit a finer tracing of the errors
provoked by the injected faults.

We define a kernel control flow as the sequence of
instructions carried out by the kernel following a kernel
call, an interruption or an exception. The code of Linux is
reentrant, i.e., several flows of control are carried out in
parallel.

We implement checkpoints by means of assertions
located at the level of internal functions. A checkpoint can
belong to several kernel control flows. The combination
of these values determines to some extent the consistency
of the kernel-state.

We have developed two types of assertions. The first
type is based on the analysis of propagation paths of some
real faults presented in Section 2.1. The second type
consists in implementing extra observation and error
detection mechanisms within the kernel. Such
mechanisms could easily be implemented by kernel
developers, but, they are seldom included, essentially for
performance reasons.

3.2.1. Assertions based on real faults

The Linux real faults database presented in Section 2.1
has shown that BLOCK and NULL fault classes are the
most frequent in the Linux kernel. They are most of the
time located in the Linux device drivers. For Linux
developers, while some errors can cause the kernel to enter
an endless loop and thus leading it to hang, most errors
manifest either as null pointer dereferences or by the use of
other incorrect pointer values (the usual outcome of such
errors is an “oops” message). As a consequence, we put
emphasis on BLOCK and NULL classes of faults.

We have analyzed the propagation of the effects induced
by these faults. We identified the errors that are likely to
be provoked by these faults at the kernel level. Then we

implemented assertions that were able to detect such
errors.

BLOCK faults correspond to calling blocking functions
when for example interrupts are disabled. We identified all
the internal functions present in the Stanford real fault
database (see Section 2.1) that are considered as blocking
functions. We implemented assertions at 8 of these
functions entry points to check whether interrupts are
disabled or not.

3.2.2. Other specific assertions

The development of this type of assertions is based on
the analysis of internal functions. They are inserted at the
entry and exit points of internal functions, part of the call
graph of a given kernel call.

As an example, the internal function
find_task_by_pid that is present in the call graph of the
sched_setscheduler kernel call, takes a process
identifier as an input parameter and returns a pointer to the
structure that characterizes the process. A simple assertion
is to verify that the process identifier associated to the
returned structure is correct, i.e., equal to the input
parameter.

In addition to these extra detection mechanisms, we
implement assertions that monitor global kernel variables
indicating the global kernel-state. They give us an internal
view of the whole impact of the injected faults. We select
indicators for each functional component. The memory
pressure for example reveals the capacity of the kernel to
serve user applications in term of memory allocation.
Thus, in the main function of Linux dealing with memory
allocation, we placed an assertion that gives us the value
of such variable in order to post-analyze the evolution of
memory pressure during an experience.

3.3. Implementation

The experimental set-up is composed of a target
machine (Pentium III PC running Linux 2.4.0) on which
the faults are injected and a host machine (SUN
workstation) that manages the experiments. The execution
trace that contains the assertions and the detection modes
are stored on the target machine. Whereas, the failure
modes such as the kernel or the application hang are stored
on the host machine. These two sets form the results.

A module is inserted into the target kernel to retrieve the
execution trace. The checkpoints along with their
associated assertions are inserted within the kernel before
compilation. The execution trace is saved on a file and
analyzed afterward.

We recall that the reported failures include returned error
codes and exceptions. We have identified from the source
code 20 error codes for the scheduling and the memory
components. These outcomes are deduced from the
analysis of the application and the kernel execution traces.

The host machine is able to notify the non-reported
failures, i.e., the kernel and application hangs. The target
machine signals to the host machine the beginning and the
end of an experiment. After an experiment start, the host
machine waits two minutes. If the target machine doesn’t
signal an experiment end within this interval, the host
tries to establish a connection with the target. If it
succeeds, we assume an application hang, and the host
reboots the target automatically. Else, we assume a kernel
hang, in which case the target needs to be rebooted
manually. When the observed behavior does not match any
of the previous outcomes, a “no signaling” is reported.

4. Results

The conducted experiments addressed the scheduling and
the memory components. We carried out 4470
experiments. Bit-flips in internal function parameters
target 340 internal functions. These internal functions
belong to the call graphs of six scheduling kernel calls and
four memory kernel calls, target of the external injections.
Table 1 summarizes the experiment distribution per
functional component.

Table 1 Experiment distribution

Invalid
argument

Bit-flip in
API

parameters

Bit-flip in
internal function

parameters
Scheduling 507 1890 552

Memory 101 1019 401
Total 608 2909 953

The number of experiments when injecting invalid
values is less than when injecting bit-flips. In fact,
between 3 and 6 invalid values are associated to each
kernel call parameter for the former injection technique,
while 32 bit-flips are issued to each kernel call parameter
for the latter. That’s why the injection of invalid
parameters is eight times faster. However, it requires more
time for preparation.

4.1. Analysis of the failure modes

In the following we propose three kinds of analyses.
The first one will permit us to compare the provoked
errors of the external fault models. Then we intend to
compare the errors provoked by all the injected fault
models. Finally, we present details about the influence of
the target kernel functional component. The failure modes
are given in Figure 2.

The two external fault models provoke approximately
the same failure modes in terms of nature and quantity.
The dominant failure mode (Figure 2-a and 2-b) is
returning error codes (57% and 45% respectively). This
shows the effectiveness of the checks implemented at the
Linux kernel API level. A detailed analysis of the nature
of the returned codes is presented in Section 4.2.1.

Error code
4 5 %

No signal ing
4 2 %

Except ion
6 %

Kernel hang
1 %

App. hang
6 %

Error code
5 7 %

No signal ing
2 8 % Except ion

9 %

App. hang
5 % Kernel hang

1 %

a- API invalid parameters b- Bit-flip in API parameters
App. hang

2 2 %

Kernel hang
1 0 %

Except ion
2 8 %

Error code
2 %

No signaling
3 8 %

c- Bit-flip in internal function parameters

Figure 2. Failure mode distributions

API invalid parameters provoke less “no signaling”
cases. Such an outcome is unusable and cannot be
interpreted. However, it could lead to a failure in a different
context than the one being considered in these
experiments.

With respect to all injected faults, we notice in Figure 2
the difference in the generated failure modes between the
injections at the kernel API level (Figure 2-a and 2-b) and
in its internal functions (Figure 2-c). The error code rate
when injecting inside the kernel is low (2%). On the other
hand, 28% of faults have been detected by hardware-
generated exceptions, which means that 30% of faults have
lead to detected errors.

Let us analyze the reasons for the difference between the
injections at the kernel API level and in its internal
functions. Generally, the kernel calls in Linux consist in
up calls to internal functions as illustrated in Figure 1.
The latter calls one function (setscheduler), which
fulfills the required service. One may assume that
injections at the second depth level of this kind of kernel
calls (sched_setscheduler, gettimeofday and
setitimer) lead to the same error code. This is true for
the sched_setscheduler kernel call where “Invalid
Argument” and “Non existent process” error codes are
generated even when injecting in the third level of the
kernel function call graph. However, injections in the
second level of the setitimer kernel call do not provoke
“Bad Address” error code and provoke only an “Invalid
argument” error code. This means that the error detection
mechanisms for this function are implemented only at the
first level. The analysis of the source code of the
underlying function supports this statement. In fact only
the value of the first parameter is checked in the
underlying elementary function, which explains the
presence of the “Invalid argument” error code alone in
some experiments.

Figure 2-c shows that 10% of the injected faults in
internal function parameters, leads to kernel hang, which
is significantly higher than the 1% observed when
injecting external faults. Also, 22% of the faults injected
in internal function parameters, leads to application hang,
which is four times more than the observed percentage of
external faults (5% and 6%).

4.2. Analysis of the returned error codes

Based on the returned error codes, two kinds of analysis
can be carried out. The first consists of the analysis of the
nature of error codes, and the second consists of the
analysis of whether other subsequent kernel calls return
error codes.

4.2.1. Error codes provoked

Figure 2-a and 2-b show that the rate of error codes is
greater when injecting invalid arguments than when
injecting bit-flips. Figure 3-a and 3-b refine these results
and show that generally, for a given kernel call, all error
codes generated by the two injection techniques at the API
level are of the same nature. Yet, we notice a slight
advantage for the bit-flip injection technique that provides
more error codes than the invalid parameters. Also, the rate
associated with each error code is not always equivalent,
except for certain cases such as wait4.

sched_setscheduler wait4 mmap mprotect

Out of memory
Invalid argument
No such device
Bad address
Bad file number
No child processes

37%

63%

3%

37%

60%
65%

35%

a- Inva l id parameters

82%

18%
11%

23%

66%

1%

29%
33%

29%

8%

53%
47%

100%

b- b i t - f l i p

Figure 3. Returned error code analysis

The mmap kernel call provides a singular behavior. As
illustrated in Figure 3, five error codes were observed when
injecting bit flips (“Out of memory”, “Invalid argument”,
“No such device”, “Bad address”, “Bad file number”), while

only one error code is returned when injecting invalid
parameters (“Bad address”).

4.2.2. Error propagation

When injecting within the kernel calls of the memory
component issued by the memory workload, we observed
error propagation to other functional components. We did
not notice such propagation for the scheduling component.

Figure 4 illustrates error propagation rates when
injecting faults in brk, mprotect and munmap kernel
calls. The mmap kernel call doesn’t provoke such
propagation when injecting either invalid parameters or
bit-flips. For each arc, the first percentage is associated
with invalid argument technique and the second is
associated with the bit-flip technique. We take into
account all cases where an error code is observed. Error
codes are returned either by open (file system component)
or by both open and wait4 (scheduling component). For
example, corrupting the brk kernel call with invalid
argument lead in 30% of the cases to open returning an
error code and in 55% of the cases to both open and wait4
returning error code. That does not mean that in 15% of
the cases an error code is returned by brk. Figure 4
illustrates only the error propagation cases.

Injecting invalid parameters promotes error propagation
for the three kernel calls among the four considered
memory kernel calls. However, injecting bit-flips
propagates errors only in the case of mprotect, with rates
equivalent to those of invalid parameter technique (7%
versus 9% propagate to open and 87% versus 64%
propagate to both open and wait4).

brk()

Open()

Wait4()

30% [0%]

55% [0%]

mprotect()

Open()

9% [7%]

64% [87%]

munmap()

Open()

11% [0%]

89% [0%]Open()
&

Wait4()

Open()
&

Wait4()

Open()
&

Invalid argument [Bit-flip]

Figure 4. Error propagation

4.3. Assertion analysis

We detail hereafter the observations made thanks to the
implemented assertions. We recall that these assertions are
implemented after the analysis of the source code. We are
considering successively the two assertions that lead to
relevant results.

The first assertion reports the brk kernel call activity.
We have observed in normal operation (in the absence of
faults) that the size of the memory data segment has not to
be changed in 64% of the cases (brk doesn’t carry out a
specific treatment). Figure 5 illustrates the cases where we
noticed a deviation from this normal invocation. Injected

faults in the internal functions used by the mmap kernel call
for example improve this rate by 0.5%, which is not the
case for the bit-flip and the invalid parameter techniques at
the API where the rate decrements respectively by 1.5%
and 2.5%. This rate decreases by 7%, which is the worst
case, when injecting faults in the parameters of the
internal functions called by the munmap kernel call.

No such deviation has been observed when we inject
faults in the kernel calls of the scheduling component.
This is likely due to the fact that there is no error
propagation from the scheduling component to the
memory component.

The second assertion concerns the “memory pressure”. It
represents the number of allocation requests that the kernel
is trying to satisfy and thus the current memory load. The
greater this value, the more the memory becomes a critical
issue. Figure 6 presents the percentages of experiments
where the memory pressure increases by more than 50%
after a fault injection in the memory kernel calls.

7

6

5

4

3

2

1

0

1

External Bit-flip

Invalid argument

Internal Bit-flip

brk mmap munmap mprotect

(%)

Figure 5. brk failure rate variations

The average value of memory pressure is calculated
before and after a fault injection. No such behavior has
been observed in the experiments targeting the scheduling
component.

The influence of injecting faults in internal function
parameters on the “memory pressure” is constant. For all
the memory kernel calls, about 90% of the experiments
lead to a memory pressure increase.

0

10

20

30

40

50

60

70

80

90

100

brk mmap munmap mprotect

External Bit-flip

Invalid argument

Internal Bit-flip

(%)

Figure 6. Memory pressure variation

For the external faults, we remark an advantage when
injecting invalid parameters since they tend to stress the
kernel in more cases than the bit-flip technique. The cases
where the bit-flip technique is equivalent to the invalid

parameter technique is when targeting the mprotect and
the brk kernel calls.

4.4. Real vs. injected faults

In this section we compare the consequences of the
considered real faults (those revealed by the BLOCK and the
NULL checkers) and of all the injected faults.

The first observations are based on the failure modes.
Let us consider the BLOCK category of real faults. They
represent 42% of real faults and lead to “Kernel hang”.
However, as presented in Figure 2-a and Figure 2-b, only
1% of the external faults, lead to “Kernel hang”, while
10% of the internal faults provoke a “Kernel hang”.

The second category of real faults that we have
considered concerns NULL faults. They constitute 25% of
the real faults observed in version 2.4.0 of the Linux
kernel. This kind of faults leads to an “Exception”. Only
9% and 6% of the external faults lead to an “Exception”,
while 28% of internal faults provoke an “Exception”.

In addition to failure modes, the implemented assertions
give an additional observation view point. Their goal is to
observe the possible correlation between real errors (caused
by real faults) and errors provoked by the three considered
injection techniques. The source code inserted assertions
are designed to detect the targeted real errors. However, we
were not able to activate these assertions with the three
injection techniques.

This is due to the difference in the contexts in which the
faults are activated. The real faults are revealed in the
device drivers. Even though kernel calls and device drivers
share some of the kernel internal functions, they are not
activated in the same manner, i.e., the injected faults in
the parameters of these internal functions are not activated
in the same context. This is supported by a specific
experiment in which we were able to activate a real fault
based assertion. The experiment consisted in injecting
faults in the parameters of internal functions called by the
device driver functions. The considered workload inserted
the network card device driver into the kernel. Although,
the activated assertion is designed to detect errors provoked
by the faults revealed by the BLOCK checker, no kernel
hang was observed. Accordingly, we can conclude that the
error remains hidden.

Further work is on going to better assess the
representativeness of injected faults with respect to real
faults affecting device drivers.

5. Summary and conclusion

This work compares the impact of three types of SWIFI
techniques on the Linux OS (version 2.4.0). Two of them
target the kernel call parameters at the API (external faults)
with two different fault models, namely: i) bit-flip
corruption and ii) provision of invalid parameters. The

third one applies bit-flips targeting the parameters of the
internal functions of the kernel.

In addition to the observed failure modes, either
explicitly reported (e.g., exceptions) or not (e.g., hangs),
specific assertions were implemented to provide a finer
grain reporting; in particular, some of these assertions
were deduced from the analysis of the effects caused by real
faults.

API-level fault injection is good candidate to assess
kernel robustness. Flipping bits in kernel call parameters
is easy to implement and does not need any a priori
analysis of the parameter data types. However, it requires a
lot of time, as it needs 32 injections per parameter for a
32-bit kernel and simple data types. Applying invalid
parameters is eight times faster, for a complete campaign
compared to a bit-flip campaign. But it needs an a priori
analysis of the kernel call parameters.

Although the provoked failure modes are comparable for
both techniques independently from the functional
component, the bit-flip injection technique provokes a
larger range of error codes than the invalid parameter
injection technique. In particular, we have detailed the case
of a kernel call (mmap) where out of the five error codes
provoked by bit-flips only one was provoked by the
application of invalid parameters. Nevertheless, applying
invalid parameters is more prone than flipping bits to
propagate errors, especially from the memory component
to other kernel functional components as previously noted.
Also, the proportion of experiments that lead to an
increase of the memory pressure is more important when
injecting invalid parameters.

Table 2 summarizes the pros and cons for each
technique. It shows that the invalid parameter technique
provides more advantages than the bit-flip technique. In
addition, it is worth noting that the a priori analysis could
be done only once, as is the case for the Ballista-based
POSIX test suite, which can be applied to all POSIX
compliant systems.

Table 2 Bit-flip vs invalid arguments

Experiment
duration

Ease
of

application

Error
codes

provoked

Error
propagation

Memory
pressure

Significance
of

experiments

bit-flip – + + – – –

Invalid
argument

+ – – + + +

Compared to the effects induced by external faults,
flipping bits in internal function parameters provoked
distinct erroneous behaviors. Indeed, many hardware
exceptions were triggered by this technique, and the
proportion of error codes observed was lower than for the
other two techniques. The implemented assertions exhibit
further such behavioral differences.

Concerning the representativeness viewpoint, we
observed that external faults provoked very distinct
behaviors compared to those induced by the real internal
faults we considered (device driver faults). In particular,
external faults were not able to activate the assertions
based on real faults. This tends to indicate that it is
unlikely that device driver faults could be easily emulated
by injecting only at the API level, at least for the Linux
kernel.

The workloads used were selected to activate the kernel
functional components in a typical way. The targeted
kernel calls we have considered in this work are the most
used in practice. However it would be interesting to target
additional kernel calls for a each functional component.

Even though the two experimented kernel functional
components are judged to be the most critical components,
more work is needed to target the other kernel functional
components.

Acknowledgment

This work has largely benefited from many fruitful
discussions with Jean-Claude Laprie from LAAS. Also,
we would like to thank Moslem Belkhiria and Benjamin
Lussier who contributed to the experiments during their
training period at LAAS.

References

[1] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C.
Fabre, J.-C. Laprie, E. Martins and D. Powell, “Fault
Injection for Dependability Validation — A Methodology and
Some Applications”, IEEE Transactions on Software
Engineering, vol. 16, no. 2, pp. 166-182, February 1990.

[2] S. Ayache, P. Humbert, E. Conquet, C. Rodriguez, J .
Sifakis and R. Gerlich, “Formal Methods for the Validation of
Fault Tolerance in Autonomous Spacecraft”, in Proc. 26th Int.
Symp. on Fault-Tolerant Computing (FTCS-26), Sendai,
Japan, 1996, pp. 353-357 (IEEE Computer Society Press).

[3] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie and D.
Powell, “Fault Injection and Dependability Evaluation of
Fault-Tolerant Systems”, IEEE Transactions on Computers,
vol. 42, no. 8, pp. 913-923, August 1993.

[4] A. Arazo and Y. Crouzet, “Formal Guides for
Experimentally Verifying Complex Software-Implemented
Fault Tolerance Mechanisms”, in Proc. 7th Int. Conference on
Engineering of Complex Computer Systems (ICECCS'2001),
Skövde, Sweden, 2001, pp. 69-79 (IEEE CS Press).

[5] J. V. Carreira, D. Costa and J. G. Silva, “Fault
Injection Spot-checks Computer System Dependability”,
IEEE Spectrum, vol. 36, 50-55, August 1999.

[6] M.-C. Hsueh, T. K. Tsai and R. K. Iyer, “Fault
Injection Techniques and Tools”, Computer, vol. 30, no. 4 ,
pp. 75-82, April 1997.

[7] H. Madeira, K. Kanoun, J. Arlat, Y. Crouzet, A.
Johanson and R. Lindström, “Preliminary Dependability
Benchmark Framework”, DBench Project IST 2000-25425

Deliverable. CF2, Available at
http://www.laas.fr/dbench/delivrables.html , 2001.

[8] T. Jarboui, J. Arlat, Y. Crouzet and K. Kanoun,
“Experimental Analysis of the Errors Induced into Linux by
Three Fault Injection Techniques”, in Proc. Int. Conf. on
Dependable Systems and Networks (DSN-2002), Washington,
DC, USA, 2002 (IEEE CS Press).

[9] P. Cheynet, B. Nicolescu, R. Velazco, M.
Rebaudengo, M. Sonza Reorda and M. Violante,
“Experimentally Evaluating an Automatic Approach for
Generating Safety-Critical Software with respect to Transient
Errors”, IEEE Transactions on Nuclear Science, vol. 47, no. 6 ,
pp. 2231-2236, December 2000.

[10] J. Christmansson and R. Chillarege, “Generation of
an Error Set that Emulates Software Faults-Based on Field
Data”, in 26th Int. Symp. on Fault Tolerant Computing,
Sendai, Japan, 1996.

[11] H. Madeira, D. Costa and M. Vieira, “On the
Emulation of Software Faults by Software Fault Injection”, in
Proc. Int. Conference on Dependable Systems and Networks
(DSN-2000), New York, NY, USA, 2000, pp. 417-426 (IEEE
CS Press).

[12] I. Lee and R. K. Iyer, “Software Dependability in the
Tandem GUARDIAN System”, IEEE Transactions of Software
Engineering, vol. 21, no. 5, pp. 455-467, 1995.

[13] D. Engler, B. Chelf, A. Chou and S. Hallem,
“Checking System Rules Using System-Specific Programmer-
Written Compiler Extensions”, in Proc. 4th Symp. on
Operating Systems Design and Implementation (OSDI-2000),
San Diego, CA, USA, 2000 (USENIX).

[14] I. T. Bowman, R. C. Holt and N. V. Brewster, “Linux
as a case study: Its Extracted Software Architecture”, in 21st
Int. Conf. on Sofware Engineering, Los Angeles, CA, USA,
1999.

[15] M. Devera, Devik's MM Gallery
http://luxik.cdi.cz/~devik/mm.htm , 2001.

[16] M. Rodríguez, F. Salles, J.-C. Fabre and J. Arlat,
“MAFALDA: Microkernel Assessment by Fault Injection and
Design Aid”, in Proc. 3rd European Dependable Computing
Conf. (EDCC-3), Prague, Czech Republic, 1999, pp. 143-160
(Springer).

[17] P. Koopman and J. DeVale, “Comparing the
Robustness of POSIX Operating Systems”, in Proc. 29th Int.
Symp. on Fault-Tolerant Computing (FTCS-29), Madison,
WI, USA, 1999, pp. 30-37 (IEEE CS Press).

[18] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J .
Halliday, D. S. Moebus, B. K. Ray and M. Y. Wong,
“Orthogonal Defect Classification - A Concept for In-Process
Measurements”, IEEE Transactions of software engineering,
vol. 18, no. 11, pp. 943-956, November 1992.

[19] P. J. Koopman, J. Sung, C. Dingman, D. P.
Siewiorek and T. Marz, “Comparing Operating Systems using
Robustness Benchmarks”, in Proc. 16th Int. Symp. on
Reliable Distributed Systems (SRDS-16), Durham, NC, USA,
1997, pp. 72-79 (IEEE Computer Society Press).

