Online Leader Selection for Collective Tracking and Formation Control: the Second Order Case
Antonio Franchi, Paolo Robuffo Giordano, Giulia Michieletto

To cite this version:
Antonio Franchi, Paolo Robuffo Giordano, Giulia Michieletto. Online Leader Selection for Collective Tracking and Formation Control: the Second Order Case. IEEE Transactions on Control of Network Systems, 2019, 6 (4), pp.1415-1425. 10.1109/TCNS.2019.2891011. hal-01964754

HAL Id: hal-01964754
https://laas.hal.science/hal-01964754
Submitted on 23 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Online Leader Selection for Collective Tracking and Formation Control: the Second Order Case

Antonio Franchi1, Paolo Robuffo Giordano2, Giulia Michieletto3

\textbf{Abstract}—In this work, we deal with a double control task for a group of interacting agents having a second-order dynamics. Adopting the leader-follower paradigm, the given multi-agent system is required to maintain a desired formation and to collectively track a velocity reference provided by an external source only to a single agent at time, called the ‘leader’. We prove that it is possible to optimize the group performance by persistently selecting online the leader among the agents. To do this, we first define a suitable error metric able to capture the tracking performance of the multi-agent group while maintaining a desired formation through a (even time-varying) communication-graph topology. Then we show that this depends on the algebraic connectivity and on the maximum eigenvalue of the Laplacian matrix of a special directed graph depending on the selected leader. By exploiting these theoretical results, we finally design a fully-distributed adaptive procedure able to periodically select online the optimum leader among the neighbors of the current one. The effectiveness of the proposed solution against other possible strategies is confirmed by numerical simulations.

\textbf{I. INTRODUCTION}

For multi-agent systems, the tracking of a collective motion constitutes a well-studied problem in both the control and agentic communities (see, e.g., the recent \cite{1} but also \cite{2}, \cite{3}, \cite{4}). Most of the proposed tracking algorithms relies upon the leader-follower paradigm, a very popular technique \cite{5}, \cite{6}, \cite{2}, \cite{3}, \cite{7}, \cite{8}, \cite{9}, \cite{10}, \cite{11}, \cite{12} which envisages the presence of a special agent, referred to as the leader, that has access to the reference motion (often provided by an external source) to be propagated to the whole group. This approach arises as a very powerful tool in real applications, mainly because in many situations it is unfeasible to communicate at the same time with all the agents in the group especially if they are geographically distributed and the available bandwidth is limited.

Within the multi-agent context, the leader-follower solutions have to guarantee the propagation of the reference motion and its tracking with the smallest possible error/delay by means of proper local actions. For this reason, the selection of the leader plays an important role, and the literature distinguishes between static and online leader selection. In the first case, the leader is constantly assumed to be a certain agent within the group chosen at the beginning of the task by the whole multi-agent system. Contrarily, when adopting the online selection, the leader is left free to change over time.

\textbf{Related works} - Both in static and online case, the leader selection generally rests upon the optimization of a suitable index. For example, the authors of \cite{13} have addressed the static leader election task accounting for the maximization of the network coherence, defined as the ability of the consensus-network to reject stochastic disturbances, while in \cite{14} the Harmonic Influence Centrality measure is used to quantify the influence of a node on the opinion of the global network. Allowing for the presence of multiple (static) leaders, in \cite{15}, a fully distributed strategy is described to select the minimum set of leaders that ensures the structural controllability of the resulting communicating system, whereas a pre-specified number of leaders is assumed in \cite{16} focusing on the computation of bounds on the global optimal value in large stochastically forced consensus networks. Similar scenario is considered in \cite{17} where the K-leader selection problem (standard static leader selection issue) is investigated in ring and path graphs assuming that leaders are noise-free and followers obey noisy consensus dynamics. The authors of \cite{18} instead evaluate the effect of noise-corrupted leaders in the network performance through the definition of the joint centrality of a set of nodes. Finally, in \cite{19} the combinatorial nature of the problem of choosing k leaders among n agents is analyzed showing that the task can be efficiently faced via a semidefinite program, once applied a suitable sequence of relaxations.

Although the literature about online leader selection is more limited, the authors of \cite{20} have addressed this problem by investigating the instantaneous impact of the (time-varying) leaders on the remaining agents through the notion of manipulability. In \cite{21}, instead, both the total and the maximum variance of the deviation from a desired trajectory are taken into account to face the so-called in-network leader selection problem designing a self-stabilizing algorithm that, after a topology change, ensures the network stability until the online determination of the optimal leader for the new topology. Such approach rests on agents cooperation: the determination of a distributed control protocol guaranteeing the leadership uniqueness constitutes the main challenge of both static and online leader selection. Within the static context, this issue has been tackled in \cite{22} by using explicit message passing among the formation, while a fault detection strategy without explicit communication need is exploited in \cite{23}. Allowing for a time-varying leadership, the leader identity becomes as an additional degree of freedom that has to be handled over time by the network in a distributed manner limiting the selection duration and its computational burden.

\textbf{Contributions} - Differently from all the aforementioned works in \cite{24} we have proposed to perform the online leader
selection to simultaneously optimize the collective tracking performance from an external source and the maintenance of a desired formation shape. The goal of this work is to considerably extend the results achieved in [24] by considering a more complex dynamics for the multi-agent group; while in [24] the agents behave as first-order systems, we now consider a second-order dynamics, thus assuming the linear accelerations as control input. The presentation of the contributions follows the same structure of [24] to clearly highlight the differences arising from the adoption of the double-integrator dynamic model. These are clearly stated at the end of this work and mainly derive from the fact that the metrics introduced in [24] are not valid anymore in the second-order case.

For a group of agents modeled as second-order systems, we first formalize the problem of tracking an external reference motion while maintaining a desired formation assuming that the leader identity and the interaction graph topology can be turned correspond with the \mathcal{G} of this set represents the of agents with which the i-th one can interact. The cardinality $|\mathcal{V}_i|$ of the node i denotes thus the set neighborhood. The position between agents $i, j \in \{1 \ldots N\}$ of the group is considered as a point mass in \mathbb{R}^d, with $d \in \{2, 3\}$. The i-th agent position is denoted by $p_i \in \mathbb{R}^d$ and its linear velocity by $v_i \in \mathbb{R}^d$. The set of the linear accelerations $\{\ddot{v}_i\}_{i=1}^N$ will be considered as the control input set in the following development.

An undirected graph \mathcal{G}, called interaction graph, describes the inter-agent sensing and communication capabilities so that the corresponding adjacency matrix $A \in \{0, 1\}^{N \times N}$ is such that $[A]_{ij} = 1$ if agents i and $j, j \neq i$, can communicate and measure their relative position $p_{ij} = p_i - p_j \in \mathbb{R}^d$, and $[A]_{ij} = 0$ otherwise, $\forall i, j \in \{1 \ldots N\}$. The neighborhood $\mathcal{N}_i = \{j | [A]_{ij} = 1\}$ of the node i in \mathcal{G} denotes thus the set of agents with which the i-th one can interact. The cardinality of this set represents the degree of the i-th agent, which in turns corresponds with the i-th element in the main diagonal of $D = \text{diag}(A1) \in \mathbb{R}^{N \times N}$, i.e., in the diagonal matrix associated to the vector $A1$ with $1 \in \mathbb{R}^N$ representing a column vector of all ones. The degree matrix D contributes to the definition of the Laplacian matrix $L \in \mathbb{R}^{N \times N}$ of \mathcal{G}, i.e., $L = D - A$. We assume that the second smallest eigenvalue λ_2 of L (algebraic connectivity of \mathcal{G}) is positive, or equivalently, that the Laplacian matrix has rank $N - 1$. This condition is guaranteed by the existence of at least one communication path (i.e., a sequence of edges) for any pair of agents in the group, so that the graph \mathcal{G} is connected.

In this work, the multi-agent swarm is required to track a collective motion command provided to the group by an external ‘entity’ (such as another agent, a planner, or a human operator), referred to as the reference source. We assume that this transmits a certain velocity reference $u_r \in \mathbb{R}^d$, which is supposed to be a piecewise constant function with period T_r (reference command period). In addition, we assume that the current value of u_r is communicated by the reference source to only one agent of the group at a time, called the ‘current’ leader and denoted with the, possibly time-varying, index l.

The connectivity assumption on the interaction network ensures that the reference velocity can be transmitted to the whole group of agents by exploiting a multi-hop propagation algorithm. Without focusing on particular propagation schemes, we consider the following consensus-based strategy

$$\dot{u}_l = u_r,$$ \hspace{1cm} (1)$$ $$\dot{u}_i = -k_u \sum_{j \in \mathcal{N}_i}(u_l - u_j), \forall i \neq l,$$ \hspace{1cm} (2)$$
where $u_i \in \mathbb{R}^d$ is the estimation of u_l performed by the i-th agent, while the positive scalar gain k_u tunes the algorithm convergence speed allowing to model both fast or slow propagation technologies, e.g., high-bandwidth LAN networks or ultrasonic underwater communication, respectively. Note that, for the leader, $u_l = u_r$, since the reference is directly available.

To compactly rewrite the propagation model (1)-(2), we introduce the ‘in-degree’ Laplacian matrix $L_l \in \mathbb{R}^{N \times N}$ of the directed graph \mathcal{G}_l, that is obtained from \mathcal{G} by removing all the ingoing-edges of l. In other words, the matrix L_l is derived from L by zeroing its l-th row so that

$$L_l = \begin{bmatrix} M_{l,1} & \ell_{l,1} & M_{l,2} \\ 0 & 0 & 0 \\ M_{l,3} & \ell_{l,2} & M_{l,4} \end{bmatrix},$$ \hspace{1cm} (3)$$
where $M_{l,1}, M_{l,2}, M_{l,3}, M_{l,4}, \ell_{l,1}, \ell_{l,2},$ and 0 are matrices and column vectors of proper dimensions. By introducing also the matrix $G_l = -(L_l \otimes I_d) \in \mathbb{R}^{2N \times dN}$ where \otimes denotes the Kronecker product, and the vector $\bar{u} = [\bar{u}^T_1 \ldots \bar{u}^T_N]^T \in \mathbb{R}^{dN}$, the estimation dynamics (1)-(2) can be compactly rewritten as

$$\dot{\bar{u}} = -k_u(L_l \otimes I_d)\bar{u} = k_uG_l\bar{u}.$$ \hspace{1cm} (4)$$
As further task, the agents group needs to maintain a desired formation shape defined through the set of constant (absolute) positions $d = [d^T_1 \ldots d^T_N]^T \in \mathbb{R}^{dN}$. Based on the actuation and sensing properties of the agents, this goal can be accomplished through several control strategies. For sake of model generality, we here consider a classical consensus-like solution applied to second-order agents, namely

$$\dot{p}_i = v_i,$$ \hspace{1cm} (5)$$ $$\dot{v}_i = b(u_i - v_i),$$ \hspace{1cm} (6)$$ $$\ddot{v}_i = b(\ddot{u}_i - v_i) - k_p \sum_{j \in \mathcal{N}_i}(p_{ij} - d_{ij}), \forall i \neq l,$$ \hspace{1cm} (7)$$
where $d_{ij} = d_i - d_j \in \mathbb{R}^d$ represents the desired relative position between agents i and j. The positive scalar gains b and k_p determine the velocity tracking performances and the ‘stiffness’ of the formation control, i.e., how strongly the agents will react to deviations from their desired formation.

The convergence towards the desired configuration is guaranteed by the connectivity of the network interaction graph [25].

Preprint version final version at http://ieeexplore.ieee.org/ 2 Accepted for IEEE Transactions on Control of Network Systems 2019
Exploiting the matrix G_t (previously introduced) and the vectors $p = [p_1^T \ldots p_N^T]^T \in \mathbb{R}^{dN}$, $v = [v_1^T \ldots v_N^T]^T \in \mathbb{R}^{dN}$, and $d = [d_1^T \ldots d_N^T] \in \mathbb{R}^{dN}$, the complete agents group dynamics can be shortened as follows

$$\dot{p} = v,$$
$$\dot{v} = b(u - v) + k_c G_t (p - d).$$

Let us then introduce the formation tracking error, the velocity tracking error and the velocity estimation error, namely

$$e_p = (p - 1 \otimes p_t) - (d - 1 \otimes d_t),$$
$$e_v = v - 1 \otimes v_t,$$
$$e_u = \hat{u} - 1 \otimes u_t.$$

The first one provides a measure of accuracy in tracking and maintaining the desired formation shape encoded in d, while the second and the third ones represent, respectively, the tracking accuracy of the leader velocity v_t, and the error in estimation the reference u_t.

Using the properties $b(u - v - 1) \otimes v_t = b(e_u - e_v)$, $\dot{e}_p = e_v$, $G_t (p - d) = G_t e_p$, and taking into account (4), and (8)-(9), the dynamics of the overall error $e = [e_p^T e_v^T e_u^T]^T$ takes the expression

$$\dot{e} = \begin{bmatrix} 0 & I_d N & 0 \\ k_c G_t & -b I_d N & b I_d N \\ 0 & -k_c G_t \end{bmatrix} e,$$

where the reference velocity is assumed constant ($\dot{u}_t = 0$).

The system (13) presents some interesting properties whose role is fundamental for deriving the main contributions of this work. In this perspective, we first define

$$\ell_l = [\ell_{l,1}^T \ell_{l,2}^T]^T \in \mathbb{R}^{N-1},$$
$$M_l = \begin{bmatrix} M_{l,1} & M_{l,2} \\ M_{l,3} & M_{l,4} \end{bmatrix} \in \mathbb{R}^{(N-1) \times (N-1)},$$

where M_l is the matrix obtained from L_l by removing its l-th row and column. Moreover, we report here the following (known) facts important for the next developments.

Property 1 (Prop. 1 in [24]). If the graph G is connected, the following properties hold:

1) $L_1 1 = 0$, $\forall l = 1 \ldots N$;
2) $M_1 3 = (1^T M_1)^T = -\ell_1$;
3) M_l is symmetric and positive definite;
4) $\sigma(L_l) = \sigma(M_1) \cup \{0\}$, where $\sigma(S)$ represents the spectrum of a square matrix S.

A consequence of this properties is that the matrix L_l has N real non negative eigenvalues even though it is not symmetric. Let $\sigma(L_l) = \{\lambda_{l,i}, i = 1 \ldots N \mid 0 = \lambda_{l,1} \leq \ldots \leq \lambda_{l,N}\}$ and $\sigma(L) = \{\lambda_i, i = 1 \ldots N \mid 0 = \lambda_1 \leq \ldots \leq \lambda_N\}$ be the spectrum of L_l and L, then the following property holds.

Property 2 (Prop. 2 in [24]). For a graph G and an induced graph G_t, it is $\lambda_{l,i} \leq \lambda_i$ for all $i = 1 \ldots N$.

Prop. 2 descends from the Cauchy interlacing theorem applied to matrices L and M_l and it implies that, if G is connected, then both $\lambda_2 > 0$ and $\lambda_{2,l} > 0$, where by analogy we denote $\lambda_{2,l}$ as the ‘algebraic connectivity’ of G_t. Given these premises, we conclude this behavioring section by formally proving the stability of the system (13).

Proposition 1. If graph G is connected, the system (13) is asymptotically stable for any positive constants k_p, b, k_u.

Furthermore, if

$$b > b_c = 2 \sqrt{k_p \lambda_N}$$

the system evolution has no oscillatory modes, where $\lambda_{N,t} = \max \sigma(M_1)$, i.e., the largest positive eigenvalue of L_t. Finally, the rates of convergence of $[e_p^T e_v^T e_u^T]^T$ and \dot{e}_u are dictated by

$$-\frac{b}{2} - \frac{1}{2} \sqrt{b^2 - 4 k_p \lambda_{2,l}}$$

respectively, where $\lambda_{2,l} = \min \sigma(M_1)$, i.e., the smallest positive eigenvalue of L_t (algebraic connectivity of G_t).

Proof. Since $e_p = e_p t = e_v t = e_v, l = e_u t = e_u a t = 0$, the stability of (13) is determined by the real part of the eigenvalues of the $3(N-1) \times 3(N-1)$ matrix

$$R = \begin{bmatrix} 0 & I_{(N-1)} & 0 \\ -k_p M_l & -b I_{(N-1)} & 0 \\ 0 & -k_c G_t \end{bmatrix} \otimes I_d,$$

that is required to be negative definite. Thanks to the properties of the Kronecker product, we can focus on the first matrix composing R. Being a block upper triangular matrix, it is $\sigma(R) = \sigma(R_{11}) \cup \sigma(R_{22})$, where

$$R_{11} = \begin{bmatrix} 0 & I_{(N-1)} \\ -k_p M_l & -b I_{(N-1)} \end{bmatrix} \quad \text{and} \quad R_{22} = -k_u M_l.$$

The spectrum of R_{22} is clearly $\sigma(R_{22}) = \{-k_u \lambda_{2,l}, \ldots, -k_u \lambda_N\}$. On the other hand, for any eigenvalue $\mu_j, j \in \{1 \ldots 2(N-1)\}$ of R_{11} it follows that

$$R_{11} v_j = \mu_j v_j,$$

where $v_j = [v_{j,1}^T v_{j,2}^T]^T \in \mathbb{R}^{2(N-1)}$ is the unit-norm eigenvector of R_{11} associated to μ_j. Consider the matrix $(I_2 \otimes w_i) \in \mathbb{R}^{2 \times 2(N-1)}$, where $w_i \in \mathbb{R}^{(N-1)}$ is the unit-norm eigenvector of M_i associated to the eigenvalue $\lambda_{i,j}$, $i \in \{2 \ldots N\}$. Left-multiplying both sides of (16) with $(I_2 \otimes w_i)$ and exploiting the symmetry of M_i, we obtain

$$\begin{bmatrix} 0 & 1 \\ -k_p \lambda_{i,j} & -b \end{bmatrix} \begin{bmatrix} w_{i,1}^T v_{j,1} \\ w_{i,2}^T v_{j,2} \end{bmatrix} = \mu_j \begin{bmatrix} w_{i,1}^T v_{i,1} \\ w_{i,2}^T v_{i,2} \end{bmatrix}.$$

Hence μ_j must also be an eigenvalue of the 2×2 matrix $R_{i,j}$ for every $\lambda_{i,j} \in \sigma(M_i), i = 2 \ldots N$. This directly leads to

$$\mu_{2i-1} = \frac{b}{2} + \frac{1}{2} \sqrt{b^2 - 4 k_p \lambda_{i+1,l}};$$

$$\mu_{2i} = \frac{b}{2} - \frac{1}{2} \sqrt{b^2 - 4 k_p \lambda_{i+1,l}},$$

for $i = 1 \ldots N - 1$, and then concludes the proof.

Therefore, both the agent velocities v and the estimation vector \hat{u} asymptotically converge to the common reference velocity u_t, while the agent positions p converge to the desired shape $1 \otimes p_t + d - 1 \otimes d_t$. Furthermore, the value of $\lambda_{2,l}$ directly affects the convergence rate of the three error vectors e_p, e_v, e_u over time. Since, for a given graph topology G. Preprint version final version at http://ieeexplore.ieee.org/ 3 Accepted for IEEE Transactions on Control of Network Systems 2019
of the error vector is affected by changing the leader source/leader interaction, we suppose obtaining a faster convergence through online leader selection.

We rewrite the dynamics of the velocity estimation (4) and of the system (3-9) among consecutive sampling times, i.e., during the interval $[t_k, t_{k+1})$, we obtain

$$\dot{\hat{u}} = k_u G_{lk} \hat{u}, \quad t \in [t_k, t_{k+1}),$$

$$\hat{v} = b(\hat{u} - v) + k_p G_{lk} (p - d), \quad t \in [t_k, t_{k+1}),$$

with the following initial conditions where t_k^- coincides with the right extreme of the previous time interval

$$\hat{u}(t_k^-) = \hat{u}(t_k^-) + (\hat{S}_{lk} \otimes I_d) (1 \otimes u_r(t_k) - \hat{u}(t_k^-)).$$

The matrix $\hat{S}_{lk} \in \mathbb{R}^{N \times N}$ in (22) realizes the reset action \[1\] on the components of \hat{u} related to the new leader l_k. This is a diagonal matrix having all zeros on the main diagonal except for the l_k-th entry which is set to one as $u_r(t_k) = u_r(t_k^-)$. Its complement is defined as $S_{lk} = I_N - \hat{S}_{lk}$.

Recalling that $u_r(t)$ is constant in $[t_k, t_{k+1})$, the dynamics of the error vector $e(t) = ([p(t) - d] \otimes [v(t) - d])$ in this interval is correctly described by the system (13). Using (22-24), we can derive the initial conditions $e(t_k^-)$ as a function of the chosen leader l_k and of the received external command $u_r(t_k)$:

$$e_p(t_k^-) = (S_{lk} \otimes I_d) \left((p(t_k^-) - d) - 1 \otimes (p_l(t_k^-) - d_l) \right),$$

$$e_v(t_k^-) = (S_{lk} \otimes I_d) \left(v(t_k^-) - 1 \otimes v_l(t_k^-) \right),$$

$$e_u(t_k^-) = (S_{lk} \otimes I_d) \left(u(t_k^-) - 1 \otimes u_r(t_k^-) \right).$$

From (25-27) it is straightforward to see that the choice of the leader l_k directly affects $e(t_k^-)$. For this reason, whenever appropriate we will use the notation $e(t_k, l_k)$ to explicitly indicate this (important) dependency.

In order to define a valid metric for the error vector, we first state the following result which holds for any positive semi-definite matrix and then we provide a lemma which is preliminary to the main result of the section.

\[\lambda_2 = \text{max} \{\lambda_{1}\text{, \ldots,} \lambda_{N}\}\]

Proposition 2. Consider the Laplacian matrix $L \in \mathbb{R}^{N \times N}$ of any connected graph with N vertices and denote by λ_N the largest eigenvalue of L. Assuming three constants $k_{n_1}, k_{n_2}, k_{n_3} \in \mathbb{R}$ such that

$$k_{n_1} > 0, \ k_{n_2} > 0 \text{ and } 0 < k_{n_3} < k_{n_1}/\sqrt{\lambda_N},$$

the matrix

$$P_L := \begin{bmatrix} k_{n_1} G + k_{n_3} I_{dN} & k_{n_2} G & 0 \\ k_{n_2} G & k_{n_1} I_{dN} & 0 \\ 0 & 0 & I_{dN} \end{bmatrix} \in \mathbb{R}^{3dN \times 3dN},$$

where $G = (L \otimes I_d) \in \mathbb{R}^{dN \times dN}$, is positive definite.

Proof. In order to prove the statement it is sufficient to show that the eigenvalues of the symmetric matrix

$$P^* := \begin{bmatrix} k_{n_1} L + k_{n_3} I_N & k_{n_2} L & 0 \\ k_{n_2} L & k_{n_1} L & 0 \\ 0 & 0 & I_{dN} \end{bmatrix} \in \mathbb{R}^{2N \times 2N},$$

are all positive. Any eigenvalue μ_j, $j \in \{1 \ldots 2N\}$ of P^* must satisfy the relation $P^* v_j = \mu_j v_j$, where $v_j \in \mathbb{R}^{2N}$ is the eigenvector associated to μ_j. If we left-multiply both sides of the previous relation with $(w_j^T \otimes I_2) \in \mathbb{R}^{2 \times 2N}$, where $w_j \in \mathbb{R}^N$ is the left-eigenvector of L associated to the generic eigenvalue λ_i, $i \in \{1 \ldots N\}$, we obtain

$$\begin{bmatrix} k_{n_1} \lambda_i + k_{n_3} & k_{n_2} \lambda_i & 0 \\ k_{n_2} \lambda_i & k_{n_1} \lambda_i & 0 \\ 0 & 0 & 1 \end{bmatrix} w_j = \mu_j \begin{bmatrix} w_j^T v_j, 1 \\ w_j^T v_j, 2 \end{bmatrix},$$

with $v_j = [v_{j,1}^T, v_{j,2}^T]^T$. This, in turn, implies that μ_j must be an eigenvalue of the 2-by-2 matrix $P_{\lambda_i}^*$ for every $\lambda_i \in \sigma(L)$. Analytically computing the eigenvalues of $P_{\lambda_i}^*$ by solving a quadratic equation we obtain

$$\mu_{1j} = \frac{1}{2} \left(k_{n_1} (\lambda_i + 1) + k_{n_3} - \sqrt{\Delta} \right),$$

$$\mu_{2j} = \frac{1}{2} \left(k_{n_1} (\lambda_i + 1) + k_{n_3} + \sqrt{\Delta} \right),$$

where

$$\Delta = (k_{n_1} (\lambda_i - 1) + k_{n_3})^2 + 4 k_{n_2}^2 \lambda_i^2.$$}

By then imposing $\mu_{1j}, \mu_{2j} > 0$ we obtain

$$\lambda_i^2 k_{n_2}^2 < k_{n_2}^2 \lambda_i + k_{n_3} k_{n_1},$$

which is always verified for $\lambda_i = 0$. For any other $\lambda_i > 0$, the inequality (35) can be met by adopting the more restrictive constraint $\lambda_i^2 k_{n_2}^2 < k_{n_2}^2 \lambda_i$, i.e., $k_{n_3} < k_{n_1}/\sqrt{\lambda_N}$. The proof is concluded by noticing that the last inequality holds for every $\lambda_i \in \sigma(L)$ when k_{n_3} is set according to (28). \[\square\]

Lemma 1. Consider a positive definite symmetric matrix $A \in \mathbb{R}^{N \times N}$ and denote by $0 < \phi_1 \leq \ldots \leq \phi_N$ its eigenvalues. Define the symmetric matrix

$$Q := \text{sym} \begin{pmatrix} Q_1 & Q_2 \\ Q_1^T & Q_2 \end{pmatrix} = \begin{bmatrix} k_{n_1} A + k_{n_3} I_M & k_{n_2} A \\ k_{n_2} A & k_{n_1} I_M \end{bmatrix},$$

with

$$Q_1 = \begin{bmatrix} 0 & I_M \\ -A & -M \end{bmatrix},$$

$$Q_2 = \begin{bmatrix} 0 & 0 & I_M \\ 0 & 0 & -A \end{bmatrix},$$

$$Q_3 = \begin{bmatrix} 0 & 0 & I_M \\ 0 & 0 & -A \end{bmatrix},$$

$$Q_4 = \begin{bmatrix} 0 & 0 & I_M \\ 0 & 0 & -A \end{bmatrix}.$$
where $b, k_{n_1}, k_{n_2}, k_{n_3} > 0$ and also $k_{n_2} < k_{n_3}/\sqrt{\phi N}$ (to ensure the positive definiteness of Q_1, according to Prop. 2).

If the following conditions are also met

\[b < \phi_1, \]
\[k_{n_3} < \frac{2\phi_1}{b}, \]
\[k_{n_2} < \min \left\{ \frac{b k_{n_1}}{\phi_2 (2 + b)} - \frac{2}{b - \phi_1} \right\}, \]
\[\phi_1 \left(\frac{b}{2} - k_{n_2} - 1 \right) + \frac{b}{2} k_{n_3}, \]

then the $3N$ eigenvalues of Q are all negative and in particular they are upper-bounded by the maximum between the following negative quantities

\[k_{n_2} \phi_1 (b - \phi_1), \]
\[k_{n_2} \phi N \left(1 + \frac{b}{2} \right) - \frac{b}{2} k_{n_1}, \]
\[\phi_1 \left(\frac{b}{2} - k_{n_2} - 1 \right) + \frac{b}{2} k_{n_3}. \]

Proof. After suitable computations we obtain that

\[\phi (1 + b) - \frac{b}{2} k_{n_1}, \]
\[\phi (b - \phi_1) - \frac{b}{2} k_{n_3}. \]

Our goal is then to find the additional conditions on k_{n_1}, k_{n_2} and k_{n_3} such that $\tilde{z}_{i,1}, \tilde{z}_{i,2}$ and $z_{i,3}$ are all negative for each $i \in \{1 \ldots N\}$. Posing $\tilde{z}_{i,1} < 0$ results in $b < \phi_1$ which is then equivalent to (39). Condition $\tilde{z}_{i,2} < 0$ can be guaranteed if $k_{n_2} < \frac{b}{k_{n_1} + \phi_2}$, which is equivalent to $k_{n_2} < \frac{b}{\phi N (2 + b)}$. Condition $z_{i,3} < 0$ results in $k_{n_2} < \frac{b}{2 - k_{n_1}},$ i.e., $k_{n_2} < \frac{b}{2 - k_{n_1}}$. Since it must be also $k_{n_3} > 0$, the last inequality can only be verified if $b < \frac{b}{2 - k_{n_1}} > 0$, i.e., if (40) holds. Condition (41) is the combination of the just mentioned upper-bounds on k_{n_1}, k_{n_2}, namely it has to be simultaneously guaranteed that $k_{n_2} < \frac{b}{\phi N (2 + b)}$ and $k_{n_2} < \frac{b}{2 - k_{n_1}}$. Finally the values in (43), (44), and (45) represent the values of $\tilde{z}_{i,1}, \tilde{z}_{i,2}$, and $z_{i,3}$, respectively, where ϕ_1 has always been chosen as the worst case according to the assumption that $0 < \phi_1 \leq \ldots \leq \phi N$.

The following result finally gives an explicit characterization of the behavior of $e(t)$ during the interval $[t_k, t_{k+1}]$ which then naturally leads to the subsequent definition of optimal leader selection. For the sake of exposition, we assume that $k_p = k_u = 1$. All the results easily extend to the more general case $k_p > 0, k_u > 0$ with a more tedious machinery.

Proposition 3. Consider the error vector $e(t)$ with a specific leader l_k and, w.l.o.g., $k_p = k_u = 1$. If the constants $b, k_{n_1}, k_{n_2}, k_{n_3}$ are chosen so as to satisfy the next conditions

\[0 < b < \lambda_2, k_{n_1} < \frac{2\lambda_2 k_{n_2}}{b}, \quad 0 < k_{n_2} < \min \left\{ \frac{b k_{n_1}}{\lambda N, 2 + b} - \frac{b}{2} k_{n_1} \right\}, \]

then the error metric $\| e(t) \|^2_L := e^T(t) P_L e(t)$ is monotonically decreasing in the time interval $[t_k, t_{k+1}]$ wherein the topology is assumed to be fixed. In particular, the error metric behavior is dominated by the following exponential upper bound

\[\| e(t) \|^2_L \leq \| e(t_k) \|^2_L e^{-2 \nu_k (t-t_k)} \quad \forall t \in [t_k, t_{k+1}], \]

where $\nu_k > 0$ is the minimum among the following quantities

\[\nu_k = \min \left\{ \frac{k_{n_2} \lambda_{2,l} (\lambda_{2,l} - b)}{b^2 k_{n_1} - k_n \lambda_{N,j} (1 + b/2)}, \frac{\lambda_{2,l} - b}{k_{n_2} \lambda_{2,l} + k_{n_1}} \right\}, \]

Proof. The dynamics of the error $e(t)$ in $[t_k, t_{k+1}]$, with $k_p = k_u = 1$ reduces to

\[[e_p] \quad [e_v] \quad [e_u] \]

where we omit (as in the following) the time dependency for the sake of exposition. The sub-vectors e_p, e_v, e_u are zero at $t = t_k$ and their dynamics is invariant, due to the row of zeros in L_l corresponding to the agent l, i.e.,

\[e_{p,l} = e_{v,l} = e_{u,l} = 0, \quad e_{p,l} = e_{v,l} = e_{u,l} = 0, \quad \forall t \in [t_k, t_{k+1}]. \]

Hence we can restrict our analysis to the dynamics of the orthogonal subspace, i.e., of the remaining components $e_{p,i},$
Lemma 1. This, in turn, yields a lower-bound for results upper-bounded by the maximum of the quantities in l and I where P is minimum among the quantities in the proposition.

We now consider the error metric dynamics. First, note that

$$
\|e\|_L^2 = e^T P_L e = l^e P_{M_l} e = \|e\|_{M_l}^2,
$$

where $M_l = - (M_l \otimes I_d) \in \mathbb{R}^{(N-1) \times (N-1)}$. Therefore, we have

\begin{align}
\frac{d}{dt} \|e\|_L^2 &= \frac{d}{dt} \|e\|_{M_l}^2 \\
&= 2 e^T P_{M_l} \dot{e} = 2 e^T P_{M_l} D_l e \\
&= 2 e^T \text{sym}(P_{M_l} D_l) e \\
&\leq 2 \mu_{\max,l} \|e\|_{M_l}^2,
\end{align}

where $\mu_{\max,l}$ is the largest eigenvalue of the symmetric part of $P_{M_l} D_l$. Accounting for the equality (54), equation (55) implies that for all $t \in [t_k, t_{k+1})$ it holds that

$$
\|e(t)\|_L^2 \leq \|e(t_k)\|_L^2 e^{2 \mu_{\max,l}(t-t_k)},
$$

which coincides with (50) proving that $\mu_{\max,l} = -\nu_l$, where ν_l is defined as in the proposition.

To this end, and first of all we note that, due to the properties of the Kronecker product, the eigenstructure of $\text{sym}(P_{M_l} D_l)$ is obtained by repeating d times the structure of matrix Q in (56) by choosing $A = M_l$. Applying Lemma 1 with $A = M_l$ and thus $\phi_1 = \lambda_2,l$ and $\phi_N = \lambda_N,l$ we obtain that, if $k_{n_1}, k_{n_2}, k_{n_3}$ are chosen as in the assumption of the proposition, then $-\nu_l$ is the maximum eigenvalue of Q which results upper-bounded by the maximum of the quantities in Lemma 1. This, in turn, yields a lower-bound for ν_l by the minimum among the quantities in the proposition.

For the reader’s convenience, we report in Fig. 1 the values of λ_2,l vs. λ_2 and of λ_N,l vs. λ_N for different leaders l. The squares correspond to values of λ_2,l and λ_N,l associated to a leader $l = 1 \ldots N$, with $N = 10$. The solid constant blue lines represent λ_2 and λ_N. Each row corresponds to a different graph with $N = 10$ vertexes. From the top to the bottom: the line, ring, star, two random (connected) graphs, and a clique graph.

paradigm. Within the online leader selection context, in order to improve the tracking performance of the reference velocity and of the desired formation during the interval $[t_k, t_{k+1})$ having duration T, the leader should be selected so that it solves the following minimization problem

$$
\min_{l \in \mathcal{L}_k} f_k(l), \quad \text{with} \quad f_k(l) = \|e(t_k, l_k)\|_L^2 e^{-2 \nu_l T},
$$

where $\mathcal{L}_k \subseteq \{1 \ldots N\}$ is the set of ‘eligible’ agents from which a leader can be selected at t_k and the error metric defined in Prop. 1 is used.

In Fact 1 the concept of ‘eligible’ agents is introduced for the first time, however this will be clarified in the next section. In the following, we highlight two crucial aspects related to the minimization problem (58).

Remark 1. Similar to the first-order case, the minimization problem (58) needs to be solved online because of the dependency of the cost function on both the group topology and the current multi-agents system state.
Remark 2. The reset action \(\Pi \) implies the zeroing of the components of the estimation error vector \(e_t \) associated to the current leader \(l_k \). Hence, the quantity \(\|e(t_k, l_k)\|_2^2 \) may decrease at every instance of the leader selection. Thus, it would be desirable to reduce the leader selection period \(T \) as much as possible. However, in practice there exists a maximum frequency at which the leader selection process can be executed guaranteeing the successfully procedure termination under real world constraints. This entails the existence of a finite minimum selection period \(T_{\text{min}} \) such that \(T \geq T_{\text{min}} > 0 \).

IV. DISTRIBUTED NEXT BEST LEADER SELECTION

The contribution of this section is a fully distributed procedure to solve the optimization problem \(\overline{L}_k \). To cope with the distributiveness requirement, the set of agents eligible as leader, namely the set \(L_k \) introduced in Fact \([1] \) is restricted to the neighborhood of the current leader, that is, \(L_k = N_{l_k} \).

As better explained in the following, this choice ensures the possibility for each agent belonging \(L_k \) to evaluate the quantity \(f_k(l) \) in \(\overline{L}_k \) (depending on the current leader) through local information exchange. Nevertheless, this also implies that the minimization \(\overline{L}_k \) is performed only locally, i.e., in \(L_k = N_{l_k} \), thus the achieved minimum might not be global. To guarantee a global optimum, indeed, \(f_k(l) \) should be minimized over all the agents in the group, i.e., setting \(L_k = \{1, \ldots, N\} \). However this would result in a fully centralized optimization whenever \(\mathcal{G} \) is not the complete graph since it entails that all the agents have a global knowledge of the network. In our method, the global optimum is instead approximated by the repetition, at every time \(T \), of the minimization \(\overline{L}_k \) in the neighborhood of the current leader. In this way the computation load is spread among the agents and over time, as customary in distributed approaches. We shall see in Sec. [V] that such choice is a good compromise between distributiveness and global optimality.

We now consider the evaluation of the cost function \(f_k(m) \) in \(\overline{L}_k \) by any leader-candidate \(m \in N_{l_k} \). This requires the knowledge of the error norm \(\|e_t(k, l_k, m)\|_2^2 \) and of the eigenvalues \(\lambda_{l_k, m} \) and \(\lambda_{N,m} \) in order to compute \(\nu_m \) through \(\overline{L}_k \).

Although all of them are global quantities, in the following we will prove that they can be locally retrieved by restoring the maximum frequency available at a neighboring node. To prove this fact, omitting all the dependencies for sake of brevity, we rewrite the scalar quantity \(\|e_t(k, m)\|_2^2 \) as

\[
e^\top P_L e = k_{n_3} e_p^\top e_p + k_n e_v^\top e_v + e_a^\top e_a + 2k_{n_2} e_p^\top G e_v + 2k_{n_2} e_p^\top G e_v, \quad (59)
\]

and we note that \(\|(S_m \otimes I_d)x\|^2 = \sum_{i=1}^{N} \|x_i\|^2 - \|x_m\|^2 \).

As a consequence, by recalling \((25)-(27) \) and denoting with \(\| \cdot \| \) the all quantities computed at \(t_k \) and with \(\hat{p} \) the difference \(p - d \), the first three terms in \((59) \) can be rewritten accounting for the following identities

\[
e_p^\top e_p = \sum_{i=1}^{N} \|\hat{p}_i - \hat{p}_m\|^2 + 0 = \sum_{i=1}^{N} \|\hat{p}_i - \hat{p}_m\|^2 + 0,\quad (60)
\]

\[
e_v^\top e_v = \sum_{i=1}^{N} \|v_i - v_m\|^2 + 0 = \sum_{i=1}^{N} \|v_i - v_m\|^2 + 0,\quad (61)
\]

\[
e_a^\top e_a = \sum_{i=1}^{N} \|\hat{u}_i - u_i\|^2 - \|\hat{u}_m - u_m\|^2 = \sum_{i=1}^{N} \|\hat{u}_i - u_i\|^2 - \|\hat{u}_m - u_m\|^2. \quad (62)
\]

Therefore, the quantity \(\|e_t(k, m)\|_2^2 \) can be evaluated by any agent \(m \in N_{l_k} \) as a function of:

1) the vectors \(p_m(t_k) \), \(v_m(t_k) \) and \(u_m(t_k) \),
2) the vector \(u_i(t_k) \),
3) the three vectors \(\sum_{i=1}^{N} \hat{u}_i(t_k) \), \(\sum_{i=1}^{N} v_i(t_k) \), and \(\sum_{i=1}^{N} \hat{p}_i(t_k) - d_i \),
4) the three scalar quantities \(\sum_{i=1}^{N} \hat{u}_i - u_i \), \(\sum_{i=1}^{N} v_i - v_m \), and \(\sum_{i=1}^{N} \hat{p}_i - \hat{p}_m \),
5) the total number of agents \(N \).

The vectors listed in 1) are locally available to agent \(m \) and, similarly, \(u_i(t_k) \) is locally available to agent \(m \) via 1-hop communication from the current leader \(l_k \). On the other hand, the quantities listed in 3)-4) can be locally estimated employing the PI-ace strategy mentioned before. Finally, the total number of agents \(N \) can be assumed to be an a-priori information locally available to each agent, otherwise one can resort to an additional distributed scheme (see, e.g., \((28) \)) to obtain its value over time. This analysis thus proves that any agent \(m \in N_{l_k} \) can compute \(\|e_t(k, m)\|_2^2 \) exploiting only local and 1-hop communication information.

We have thus shown that all the quantities involved in the evaluation of \(f_k(m) \) in \(\overline{L}_k \) can be locally achieved by any leader-candidate \(m \in N_{l_k} \). Hence, at every \(t_k \) the optimal leader selection can be performed by the agents group in a distributed way according to the procedure summarized in Alg. 1. This is hereafter referred as Distributed and Optimized Online Leader Selection (DO2 Leader Selection). Note that its convergence is ensured by the convergence results on the decentralized power iteration method and the PI-ace scheme provided in \((26) \) and \((27) \), respectively.

V. SIMULATION RESULTS

This section is devoted to the validation of the proposed DO2 Leader Selection approach through the comparison with other trivial although intuitive leader selection procedures. These consist of a random leader selection among all the
Algorithm 1: DO2 Leader Selection

1. Denote by l_0 the first selected leader
2. $k \leftarrow 0$
3. while true do
4. agent l_k informs the reference source about its leadership
5. agent l_k waits time T
6. $k \leftarrow k + 1$
7. if $kT/T_e \in \mathbb{N}$ then
8. agent l_{k-1} receives a new value of $u_i(t_k)$ from the reference source
9. if a new $u_i(t_k)$ is received then
10. agent l_{k-1} sends $u_i(t_k)$ to every neighbor in N_{k-1}
11. every agent $m \in N_{k-1}$ sends $f_k(l)$ to agent l_{k-1}
12. agent l_{k-1} computes the set $L^* = \arg\min_{m \in L_{k-1}} f_k(m)$
13. if $l_{k-1} \in L^*$ then
14. $l_k = l_{k-1}$
15. else
16. agent l_{k-1} nominates l_k in L^*, e.g., randomly

<table>
<thead>
<tr>
<th>Leadership changes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>random leader selection</td>
<td>288</td>
</tr>
<tr>
<td>no leader selection</td>
<td>0</td>
</tr>
<tr>
<td>globally optimized leader selection</td>
<td>130</td>
</tr>
<tr>
<td>locally optimized leader selection</td>
<td>85</td>
</tr>
</tbody>
</table>

Table I: Leadership changes using various leader selections.

agents in the group and a no leader selection envisaging a constant (a priori chosen) leader during all the task execution. To highlight the effectiveness of the DO2 Leader Selection strategy, we also consider its centralized version such that, at each iteration, the leader is selected setting $L_k = \{1 \ldots N\}$: this allows to evaluate the gap between the global optimal solution and the local one computed through Alg. 1.

Numerical simulations are performed accounting for a group of $N = 10$ agents modeled as point masses in \mathbb{R}^d with $d = 3$. All the runs start from the same initial conditions on the agents position and assume time-varying agents interaction. In detail, the interaction graph \mathcal{G} changes according to Fig. 2 which reports on the top the topology variations with index defined in Fig. 1: we simulate the decrease of the connectivity level to show the robustness of the DO2 Leader Selection algorithm w.r.t. the communication amount. The reference velocity $u_r(t) \in \mathbb{R}^3$ is behavioral as a piece-wise constant function of period $T_r = 5$ s w.r.t. its three components as depicted on the bottom of Fig. 2. For the random and optimized strategies the leader selection period is set to $T = 0.05s$. Finally, the gains $k_p = 2, k_u = 1, b = 0.01$ are used in the network dynamics model and all the PI-ace estimators are designed to converge to the consensus value in a finite number of iterations limiting the final estimation error.

The results of the simulations are shown in Fig. 3(a-d): the plots on the top depict the result of leader selection procedure (i.e., the time-varying leader identity $l(t)$) and the plots on the bottom report the corresponding error norm $\|e_i(t)\|_L$ for each $i \in \{1 \ldots N\}$ defined by matrix P_L in (29) highlighting the value related to the current leader (orange line).

First, we can observe that the constant leader strategy

(Fig. 3b) presents the worst performance in minimizing $\|e_i(t)\|_L$ w.r.t. the other cases, even though the convergence of the errors toward zero is achieved, in accordance with Prop. 3. Note that, w.l.o.g., we have assumed that the leader constantly coincides with the agent 1. However, when a fixed topology is considered, the performance of the constant leader solution might improve by choosing the leader that optimizes the error convergence rate computing the value v_l for each $l \in \{1 \ldots N\}$ according to (51) (see Fig. 1 for the values of $\lambda_{2,l}$ and $\lambda_{N,l}$). The random leader selection (Fig. 3a) performs better than the constant leader strategy, but its convergence time is much worse w.r.t. the optimized (both globally and locally) leader selection cases in Fig. 3c-d. Indeed, randomly picking the next leader among the neighbors of the current leader makes the error converge to zero in a time between 1 s and 2 s, while adopting the local DO2 Leader Selection strategy the convergence time is always below 0.5 s. In addition, the results of local DO2 Leader Selection strategy in Fig. 3d concerning the error behavior are comparable to the ones of its global version in Fig. 3c. This implies that the suboptimal solution derived from the use of a distributed paradigm approaches the global optimum provided by the centralized approach. Furthermore, the local DO2 Leader Selection strategy visually results in fewer leader identity changes (plots on the top). To clarify this point, Tab. I reports the number of leadership changes over the considered period for each leader selection strategy.

It has to be noted the following: while the random strategy changes leader almost at each iteration T, the DO2 Leader Selection strategy (especially the local version) tends to stabilize the leader choice as the error norm $\|e_i(t)\|_L$ converges to zero, that is when the tracking transient becomes negligible and the group of agents has reached a steady-state in its tracking performance. This fact constitutes an important advantage of the DO2 Leader Selection strategy w.r.t. the random one since in real-world applications the constant change of leadership would correspond to the need of continuously re-establishing new connections from the reference source side. Furthermore, from this point of view to perform a local optimization is more advantageous than a global one.

VI. FIRST-ORDER VS. SECOND-ORDER CASE

In this section, we aim at figuring out the main differences between the first-order leader election addressed in [24] and
the second-order case faced in this work. The purpose is to highlight both the challenging aspects and the benefits deriving from the employment of a more complex dynamic model for the multi-agent group. These are listed in the following.

- In [24] the described agents group is behaved as a first-order system since the single-integrator model represents the simplest way to characterize a mobile agent dynamics. Here we deal with second-order systems to describe the dynamics of a multi-agent team. In spite of the increased complexity, this choice is motivated by the fact that these systems better approximate the behavior of physical agentic agents and that controlling acceleration (rather than velocity) generally allows a agent to realize smooth movements.

- Contrary to [24], in general it occurs that $e_v \neq v - 1 \otimes u_r$. The leader velocity asymptotically converges to the reference u_r via (4), however, since the control acts at acceleration level, one has that $v_l \neq u_r$ during any transient phase.

- The initial condition $\hat{u}(t_k)$ depends on the chosen leader l_k and is in general discontinuous at t_k. The position vector $p(t)$ (and contrary to [24]) the velocity vector $v(t)$ are instead continuous at t_k.

- Prop. 3 proves that the scalar metric $||e(t)||_L$ is monotonically decreasing along the system trajectories, while this is not guaranteed to hold for other metrics such as the ℓ_2-norm $||e(t)||_2$, as well as the one introduced in [24] for the first-order case. Hence, the definition of the matrix P_L and the results stated in Prop. 3 represent novel and original contributions of this work, when comparing with [24].

- P_L is significantly more complex matrix than its first-order counterpart (P_{k_n} in [24]) and it is not at all a straightforward extension of it. P_{k_n} is basically a ‘scaled’ identity matrix, while P_L contains several repetitions of the Laplacian matrix and is not anymore a diagonal matrix. An important contribution of our work has been to find a matrix, such P_L, that 1) can be made positive definite, so that it can represent a well defined norm; 2) makes the matrix Q positive definite as well, in order to define a monotonically decreasing error dynamics; and 3) has a distributed structure, so that the error can be computed in a distributed way using distributed estimation. Finding such matrix, with a structure completely different from the first-order case, is one of the main cornerstones of this work.

- We have shown that in the first-order leader election, it is required only the knowledge of the smallest eigenvalue $\lambda_{2,m}$ of the matrix $M_{m,n}$. Considering a second-order dynamics, it is required also the value of the maximum eigenvalue $\lambda_{N,m}$ since the parameter ν_m depends on both quantities.

- The structure of the Alg. 1 here proposed is similar to the one in [24]. The similarity is however limited since the computation of $f_k(m)$ (row 11) in the second-order cases is different from the first-order one. Furthermore, in the second-order case this computation requires the estimation of three (instead of the four as in the first-order case) scalar quantities because of the continuity of the velocity vector v. This results in a simpler implementation compared to first-order case since one less PI-ace filter is needed.

VII. CONCLUSIONS AND FUTURE WORKS

In this article we deal with the problem of online leader selection for a group of agents whose dynamics is modeled as a second-order system. The key idea is treating the leader identity as a time-varying quantity to be chosen in order to optimize the performance in tracking an external velocity reference signal and in achieving a desired formation shape. For this goal, a suitable tracking error metric has been defined to capture leadership changing effect in the group performance.

A distributed leader selection procedure has then been proposed: during the agent motion, the DO2 Leader Selection algorithm aims at persistently selecting the best leader w.r.t. the defined tracking error metric. The validity of the proposed approach has been stated comparing the DO2 strategy with other more trivial solutions such as keeping a constant leader over time (as typically done), or relying on a random choice.

As future developments we want to extend our analysis allowing the presence of multiple reference sources/leaders and accounting for other optimization criteria such as, e.g., controllability.

REFERENCES

