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Modeling and Control of Multiple Aerial-Ground Manipulator System
(MAGMaS) with Load Flexibility

Hyunsoo Yang1, Nicolas Staub2, Antonio Franchi2 and Dongjun Lee1

Abstract— The MAGMaS (Multiple Aerial-Ground Manipu-
lator System) was proposed in [1] as a heterogeneous system
composed of multiple ground (mobile) manipulators and aerial
robots to collaboratively manipulate a long/large-sized object
and demonstrated therein for rigid load manipulation. Here, we
extend this result of [1] to the case of load manipulation with
flexibility, which is crucial for long/slender object manipulation,
yet, not considered in [1]. We first provide a rigorous modeling
of the load flexibility and its effects on the MAGMaS dynamics.
We then propose a novel collaborative control framework for
flexible load-tip pose tracking, where the ground manipulator
provides slower nominal pose tracking with overall load weight
holding, whereas the aerial robot allows for faster vibration
suppression with some load weight sharing. We also discuss
the issue of controllability stemming from that the aerial
robot provides less number of actuation than the modes of
the load flexibility; and elucidate some peculiar conditions for
this vibration suppression controllability. Simulations are also
performed to demonstrate the effectiveness of the proposed
theory.

I. INTRODUCTION

Free flying control problem of small-size multi-rotor aerial
robots is now well established with many strong theoretical
results (e.g., [2]–[5]) and commercial systems (e.g., [6], [7]).
This multi-rotor aerial robot has been particularly successful
for the aerial photography and visual inspection applications
by extending humans’ eyes to the sky. The next step, natu-
rally along this line of reasoning, would then be to extend
humans’ hands to the sky, namely, the problem of aerial
operation and manipulation (e.g., [?], [8]–[11]), which can
be useful for such applications as infrastructure maintenance
[12], remote construction [13], object transport and assembly
[14]–[16], etc.

Now, let us consider the problem of large-size structure
construction. For this, the (virtually) unlimited workspace of
the aerial robots would be useful. However, at the same time,
such construction usually requires manipulation of large-
sized objects (e.g., steel bar, wood beams, etc.) typically
too heavy to be carried by many usual aerial robots alone
due to the inherent rotor-battery limitation. On the other
hand, ground (mobile or fixed) manipulators are typically
of high payload, yet, their workspace (or working height)
limited. To address this challenge, the MAGMaS (Multiple
Aerial-Ground Manipulator System) was proposed in [1] as a
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Fig. 1: MAGMaS composed of one ground manipulator and three
aerial robots with a co-manipulated large object.

heterogeneous system composed of multiple ground (mobile)
manipulators (with high payload, yet, limited workspace)
and aerial robots (with large workspace, yet, limited pay-
load) to collaboratively manipulate a large-size heavy object
by leveraging their complementary capabilities, see Fig. 1.
The MAGMaS, of course, can be useful for other applica-
tions as well, e.g., warehouse automation, manipulation of
large/heavy repair/inspection tool, etc.

The focus of our previous work [1], however, was, on top
of proposing this new class of MAGMaS and its implemen-
tation, to propose a control framework for the large/slender
rigid object manipulation by employing the complementary
capabilities and redundancy of both ground-aerial robots. In
this paper, we extend this result of [1] to the case of load
manipulation with flexibility, which is crucial for long/slender
object manipulation and was not yet addressed. For this, we
first provide a rigorous modeling of the MAGMaS with the
(slender) load flexibility incorporated into that using Euler-
Bernoulli beam theory. We then propose a novel collaborative
control framework for the flexible load-tip pose tracking,
where the ground manipulator provides slower nominal pose
tracking with overall load weight holding, whereas the
aerial robot1 faster vibration suppression with some load
weight sharing. We also elucidate the issue of controllability
stemming from the fact that the aerial robot provides less
degree of actuation than that the number modes of the
load flexibility; and delineate some peculiar conditions for
this vibration suppression controllability with their physi-
cal meaning manifested. Simulations are also performed to
demonstrate the effectiveness of the proposed theory.

1It is also worthwhile to mention that this aerial robot, by providing
collocated load-tip actuation, can allow us to circumvent the well-known
issue of nonminimum-phase dynamics for load-tip pose tracking control if
only ground robot is employed [17], [18], [21].
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Fig. 2: Sketch of the configuration of the MAGMaS.

The rest of the paper is organized as follow, Sec. II de-
scribes in depth the system at hand. In Sec. III, the dynamical
model of the system, including the vibrations in the load
is derived and Sec. IV makes use of it to construct the
control scheme. Sec. V presents realistic simulation results
which validate our approach, finally Sec. VI highlights our
conclusion and path for future works.

II. SYSTEM DESCRIPTION

In this section, we recall and detail the composition of the
Multiple Aerial Ground Manipulators System (MAGMaS)
introduced in [1]. We then provide the dynamical modeling
developed in Sec. III. A MAGMaS consists of a n-degrees
of freedom (DoFs) ground manipulator, some load/object to
manipulate and one or several aerial robot (e.g., quadrotor)
connected to the load, see. Fig 1. This system is proposed
to outperform the other approaches on aerial manipulation
by taking advantage of its heterogeneity: 1) higher payload
and unlimited operation time of the robotic manipulator; 2)
dealing with large objects or workspace with a group of aerial
robots [1].

We assume a manipulated object as a long bar with skewed
rectangular shape cross-section so that the vibration only
along one direction is substantial, while that along the other
one is negligible. We also confine ourselves to the case of
planar manipulation in this paper. The ground manipulator
considered is then a planar n-dof manipulator. We also limit
our study to a MAGMaS composed of a single aerial robot,
which grasps (or is attached to) the bar-end. Even with this
reduction, as can be seen below, the obtained key technical
results and frameworks would be extendable to more general
cases as well. The aerial robot is connected to the bar by the
mean of small arm mounted on a passive rotational joint,
whose center of rotation coincides with aerial robot center-
of-mass (CoM), see Fig. 2. This is a requirement to limit the
torque exerted by the aerial robot on the load as the actuation
limits on the torque of such platform are typically quite low.
This also implies that the load and the aerial robot exchange
only force, not moment.

The notations used throughout the paper are depicted in
Fig. 2. On the ground, n-DoF robot arm is mounted whose
joint configuration is defined as θ ∈ <n. The position of
each joint and the center-of-mass of each links w.r.t. the
inertial frame W are defined as pWi ∈ <2 and pWc,i ∈ <2

respectively. Similarly, the end-effector position of the robot
arm is defined as pWe ∈ <2. For brevity, we will omit the

pL
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)x

y

pL
f (0) =

(
0
0

){L}
θf (x)

Fig. 3: Euler-Bernoulli beam deflection model.

superscriptW when the position is represented in the inertial
frame. Define the position and the orientation of the aerial
robot attached on the load-tip w.r.t. W as par ∈ <2 and
θ̄ar ∈ <. Throughout this paper, for any angle, e.g. θ, the
notation θ̄ represents the absolute angle, e.g., θ̄i =

∑i
j=1 θj ,

while θ represents relative angle.
The flexible load is rigidly attached to end-effector of the

robot arm. The relative angle between the end-effector and
the flexible load is given as θl. As shown in Fig. 3, the
position and orientation of the flexible load along the x-axis
w.r.t. the flexible load frame L at time t can be written as

pLf (x, t) =

[
x

w(x, t)

]
, θf (x, t) =

∂w(x, t)

∂x

where w(x, t) is the deflection along y-direction at x in the
load frame L. We omit x at the load-tip position x = lf
for brevity, i.e., pLf (lf ) = pLf and θf (lf ) = θf . Recall
that the aerial robot is connected to the flexible load via
a passive rotational joint, which allows free relative rotation
of the aerial robot as stated above, θ̄ar can be independently
controlled by the aerial robot. The length of the arm between
the load-tip and the aerial robot CoM is dconn which is
assumed zero in the rest of the paper, thus neglecting torque
generated on the load by the aerial robot thrust via the rigid
connecting arm.

III. SYSTEM MODELING

The dynamic model of the MAGMaS based on the Euler-
Bernoulli beam theory and Euler-Lagrange equation is de-
rived in this section. We first briefly introduce the Euler-
Bernoulli equation which is not a main contribution of this
paper, and then derive the dynamic equation of the whole
MAGMaS.

A. Flexibility Modeling of the Load

Here, we suppose to include only transverse vibration, i.e.,
torsional effects are neglected, with restriction of motion
of the MAGMaS to planar space. This assumption can be
enforced by a proper structural design of the load (e.g., long
slender beam) [19]. To model vibration of the flexible load,
here, we adopt Euler-Bernoulli beams theory [19], whose
governing equation is given as follows

ρA(x)
∂2w(x, t)

∂t2
+
∂2

∂t2
EI(x)

∂2w(x, t)

∂t2
= 0 (1)

where E, I, ρ, A are Young’s modulus, the second moment
of area, the density and the intersection area of the flexible
load respectively. These material properties are invariant for
the homogeneous load with uniform cross section, thus,
in this paper, we assume the constant parameters along
the flexible load to simplify the beam model and to meet
the practical objects (e.g., long rectangular wooden rod).
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Using the separation of variables, a solution of given partial
differential equation (1) can be written s.t.,

w(x, t) =

m∑
i=1

φi(x)δi(t) =: Φ(x)δ(t) (2)

where w(x, t) ∈ < is the load deflection along the y-direction
location at x w.r.t the load frame L and time t , m is the num-
ber of assumed vibration modes, φi(x) is the time invariant
mode shape function, δi(t) describes the time varying part
of the deflection associated with given mode shape φi(x),
Φ := [φ1, · · · , φm] ∈ <m is the combined row vector of
mode shapes and δ := [δ1; · · · ; δm] ∈ <m is the combined
column vector of δi. In practice, high frequency modes are
suppressed quickly due to their damping. Therefore, we only
consider a finite dimension m of the vibration modes.

The explicit solution form of φi(x) can be written as
follows

φi(x) = C1,i coshβix+ C2,i cosβix

+ C3,i sinhβix+ C4,i sinβix

where Ci are the coefficients, β4
i = w2

n,iρA/EI , and wn,i
is the natural frequency of i-th vibration mode. All these
parameters are determined by the boundary condition of
Euler-Bernoulli equation (1). To determine these coefficients,
we adopt two boundary conditions: 1) the clamped boundary
conditions at x = 0, (i.e., at the end-effector position); 2) the
mass boundary conditions for moment and shear force at the
load-tip lf induced by aerial robot. These are expressed as
following four conditions [20]:

w(x = 0, t) = 0, θb(x = 0, t) ≈ dw

dx
= 0 (3)

M(x = lf ) = 0 (4)
V (x = lf ) = −marẅb(lf , t) +marge2 (5)

where θb is deflection angle, M(lf ) = EI ∂w
2

∂x2 is the
moment, V (lf ) = −EI ∂w

3

∂x3 is the shear force at the load-
tip. Using these four equations derived from the boundary
conditions, five coefficients C1,i, C2,i, C3,i, C4,i, βi can only
be determined up to scale [20]. The scale of the coefficients
can be determined by normalization based on the following
relation

ρA

∫ lf

0

φi(x)2dx + marφi(lb)
2 =

EI

w2
n,i

∫ lf

0

φ′′i (x)2dx

(6)

This relation is derived from (1), (3)-(5). By assuming the left
hand side of (6) to be unity, the mode shape φi is normalized,
then we can determine scale of coefficients Ci,j .

Here, the mode shape is the eigenfunction describing the
deflection based on Euler-Bernoulli equation (1). Therefore,
orthogonality is enforced to each mode shapes for i 6= j, see
[20], s.t.:∫ lf

0

φ′′i (x)φ′′j (x)dx = 0 (7)∫ lf

0

φi(x)φj(x)dx+marφi(lf )φj(lf ) = 0 (8)

Based on these orthogonality, the inertia and the stiffness are
expressed as diagonal matrix in the Sec. III-D.

As a result, we define the system configuration as q =
[θT , δT ]T ∈ <n+m where δ ∈ <m is the time-dependant
deflection variable for the flexible load defined in (2).

B. Kinetic Energy of the MAGMaS
To derive Euler-Lagrange equation of the MAGMaS, first,

the kinetic energy of the MAGMaS is obtained s.t.,

T = Tarm + Tbar + Tar

where Tarm, Tbar, Tar are the kinetic energies of the ma-
nipulator, the flexible load and the aerial robot respectively.
Explicit expression of each kinetic energies are given as
following:

Tarm =

3∑
i=1

1

2
miṗ

T
c,iṗc,i +

1

2
Ic,iw

2
i

Tbar =
ρA

2

∫ lb

0

ṗf (x)T ṗf (x)dx

Tar =
1

2
marp

T
f pf +

1

2
Iarw

2
ar

where pf (x) ∈ <2 is the position of the flexible bar along
the x-axis of the load frame w.r.t. the inertial frame W with
its expression and the time derivative are given as following

pf (x) = pe +RWL

[
x

w(x, t)

]
ṗf (x) = ṗe +RWL

(
S(ωf )

[
x

w(x, t)

]
+

[
0

ẇ(x, t)

])
=

([
Je 0

]
+

[
RWL

[
−w(x, t)

x

]
1Tm e2Φ(x)

])
︸ ︷︷ ︸

=:Jf (x)∈<2×(n+m)

[
θ̇

δ̇

]

(9)

where Je ∈ <2×n is the robot arm Jacobian for the end-
effector, wf =

∑n
i=1 θ̇i is the angular velocity of the

flexible load frame L which is same as the angular ve-
locity of the end-effector, 1m = [1; · · · ; 1] ∈ <m is one
vector, e2 = [0; 1] ∈ <2 is the unit vector and Φ(x) =
[φ1(x), · · · , φm(x)] ∈ <m is the mode shape row vector at
x. Here, recall that we deal with the planar motion, thus
we only consider pitch motion for the aerial robot which is
expressed as θ̄ar ∈ < and its time derivative war ∈ <.

C. Potential Energy
The potential energy of the MAGMaS is expressed as the

summation of the gravitational potential energies and the
elastic potential energy of the flexible load:

U = Uarm + Ubar,el + Ubar,g + Uar

The gravitational potential energies are expressed as

Uarm =

n∑
i=1

mige
T
2 pc,i, Uar = marge

T
2 pf (lf )

Ubar,g = ρAgeT2

(
pe +

∫ lb

0

RWL p
L
f (x)dx

)
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where g ∈ < is the gravitational acceleration. Note that the
position of the aerial robot is same as the load-tip position
par = pf (lf ) due to the assumption of dconn ≈ 0. The elastic
energy of the flexible load can be written as

Ubar,el =
EI

2

∫ lb

0

(
∂2w

∂x2

)2

dx =
EI

2

m∑
i=1

m∑
j=1

dijδiδj

where dij :=
∫ lb

0
φ′′i φ

′′
j dx is satisfying the orthogonality in

(7).

D. Euler-Lagrange Dynamics

Using the kinetic T and the potential energy U , the
Lagrangian is defined as L = T − U . Then, we can derive
following Euler-Lagrange dynamics of the MAGMaS:[

Mθ Mθδ

Mδθ Mδ

]
q̈ +

[
Cθ Cθδ
Cδθ 0

]
q̇ + g(q) +

[
0 0
0 K

]
q

= B(q)

[
τm
τar

]
(10)

where Mθ ∈ <n×n, Mδ ∈ <m×m, Mθδ = MT
δθ ∈ <m×n are

the inertia matrix, Cθ ∈ <n×n, Cδθ ∈ <m×n, Cθδ ∈ <n×m
are the Corilois matrix, g(q) ∈ <n+m is the gravity force
vector, B(q) ∈ <(n+m)×(n+2) is the input mapping matrix,
τm ∈ <n is the joint torque and τar = λarRare2 ∈ <2

is the aerial robot thrust input with the rotation matrix
Rar ∈ SO(2), and the thrust magnitude λar ∈ < . The
inertia matrix for flexibility Mδ and the stiffness matrix K
are constant diagonal matrix where the off-diagonal terms
are eliminated by the orthogonality properties (7) and (8).
Note that the aerial robot rotation is independent to above
dynamics thanks to the passive rotational joint design of
the connector, thus the aerial robot rotational dynamics is
excluded in (10). We can consider the aerial robot as a
rotating thrust generator similar with [8]. The input mapping
matrix B(q) have the following structure

B(q) =

[
In JTf
0 Bδ,ar

]
where In ∈ <n×n is the identity matrix, Jf is the Jacobian of
the load-tip defined in (9), Bδ,ar ∈ <m×2 is the input matrix
for the flexibility dynamics with the following expression

Bδ,ar =

−φ1(lf ) sin θ̄l φ1(lf ) cos θ̄l
...

...
−φm(lf ) sin θ̄l φm(lf ) cos θ̄l

 (11)

where θ̄l =
∑
θi+θl is the absolute orientation of the flexible

load at the end-effector. From the input mapping matrix
B(q), the manipulator control input τm cannot directly apply
its torque to the flexible load dynamics while the aerial robot
input τar directly control the flexible load along Bδ,ar. Note
that the matrix Bδ,ar is a rank one matrix along ΦT although
it is m by 2 matrix. Therefore, the m-DoFs flexible load
dynamics is under-actuated with rank one input unless the
number of the mode shape m is one.

IV. CONTROL DESIGN

For the MAGMaS, our control objective is the posi-
tion/orientation trajectory tracking of the flexible load-tip
(c.f., rigid object control in previous work [1]). For this
control objective, if we only have the robot arm control
input τm, i.e., the dynamics (10) without aerial robot input
τar, the zero dynamics is unstable [21]. On the other hand,
the MAGMaS can overcome this fundamental issue by
incorporating the aerial robot as a force generator to the
flexible load dynamics as shown in (10) with τar.

However, as shown in the structure of Bδ,ar in (11), we
only have rank one control input to stabilize m-dim flexible
load vibration dynamics. To resolve this under-actuation
problem, we divide this control objective into the following
two sub-problems: 1) slow fully-actuated robot arm control;
2) under-actuated flexible load vibration suppression via
the fast aerial robot control. First, for the fully actuated
manipulator dynamics, by considering the flexible load at
the equilibrium similar to a rigid body, we can design a
desired trajectory for the robot arm end-effector (pde , θ̄

d
e)

based on the inverse kinematics. Then, the robot arm is
enforced to follow the computed desired trajectory. Next, for
the under-actuated flexible load dynamics, since we cannot
generate arbitrary control input due to less number of the
actuation than the modes of the load flexibility, we perform
the controllability analysis for the linearized dynamics by
assuming perfect trajectory tracking of the robot arm which
is established in first step. Then, we design the vibration
suppression controller (i.e., for δ̇i → 0) for the aerial robot.
When we compute the equilibrium of the flexible load in
the first step, we also design the aerial robot thrust to
compensate the deflection at the flexible load-tip w(lf )→ 0
whose physical meaning is the gravity induced deflection
compensation. In the second step, the controllability analysis
validates that the proposed controller can stabilize vibration
near the equilibrium deflection. Here, as the vibration dy-
namics is relatively faster than the end-effector trajectory,
this linearization approach is feasible.

A. Manipulator Control

For the end-effector trajectory tracking of the manipulator,
we first transform the joint space dynamics (10) into the
manipulator workspace dynamics using Jacobian mapping:

ξ̇ = Jξ θ̇, ξ̈ = J̇ξ θ̇ + Jξ θ̈

where ξ := [pe, θ̄e] ∈ <3 is the end-effector posi-
tion/orientation w.r.t. the inertial frame W , Jξ ∈ <3×n is
the manipulator Jacobian for the joint angle θ to ξ. Here, we
assume the non-redundant manipulator (i.e., n = 3) to focus
on the cooperative control with the aerial robot rather than
deal with the manipulator’s redundancy. Then, the MAGMaS
dynamics in workspace coordinates can be written as follows[

Mξ Mξδ

Mδξ Mδ

](
ξ̈

δ̈

)
+

[
Cξ Cξδ
Cδξ 0

](
ξ̇

δ̇

)
+ ST g(q)

+

[
0 0
0 K

](
ξ
δ

)
= STB(q)

[
τm
τq

]
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where S = diag(J−1
ξ , Im) ∈ <(n+m)×(n+m) is transfor-

mation matrix. Using this workspace dynamics, we can the
design following control input

τm = M̄ξ ξ̈d + C̄ξ ξ̇ +Deė+Kee− Cξδ δ̇ −MξδK̄δ + ḡe

− (J−Tξ JTf (q)−MξδB̄δ,ar)τar (12)

where e = ξ−ξd is the end-effector position/orientation error,
M̄ξ = Mξ −MξδM

−1
δ Mδξ, C̄ξ = Cξ −MξδM

−1
δ Cδξ, ḡξ =

J−1
e gθ − MξδM

−1
δ gδ , K̄ = M−1

δ K and De,Ke ∈ <3×3

are positive definite control gain matrices. Here, the desired
end-effector trajectory can be computed from the desired
load-tip trajectory by assuming the deflection is zero (i.e.,
w(lf ) = 0) which is enforced by the aerial robot control.
Note that this inverse kinematics is similar to the one of
alone ground manipulator. Then, the closed-loop dynamics
for the manipulator workspace is given as follows

M̄ξ ë+Deė+Kee = 0

Given that the closed loop dynamics converges to e → 0
with positive definite M̄ξ, De,Ke. Note that the manipulator
dynamics corresponds to the one of a standard fully-actuated
standard manipulator dynamics, thus the controller can be
easily extended to redundant manipulator [22] for n > 3 or
other controllers (e.g., robust control, adaptive control, etc.).

B. Flexible Load Dynamics Analysis
From previous section IV-A, the proposed robot arm con-

trol guarantees ξ → ξd. Therefore, the vibration dynamics
can then be rewritten as follows with ξ = ξd[
δ̈

δ̇

]
=

[
0m −M−1

δ K
Im 0m

] [
δ̇
δ

]
+

[
M−1
δ Bδ,ar

0

]
τar −

[
M−1
δ E
0m

]
=:

[
0m −K̄
Im 0m

] [
δ̇
δ

]
+

[
B̄δ,ar

0

]
τar −

[
Ē
0

]
(13)

where E is defined as

E := Mδξ ξ̈
d + Cδξ ξ̇

d + gδ(θ̄
d
e)

We can further simplify the control input expression using
the definition of Bδ,ar in (11) and τar as following

B̄δ,arτar = M−1
δ Bδ,arR(θ̄ar)e2λar (14)

= M−1
δ ΦT cos(θ̄ar − θ̄l)︸ ︷︷ ︸

=:bδ,ar∈<m

λar = b̄δ,arλar

where R(θ̄ar) ∈ SO(2) denotes a rotation matrix and
θLar = θ̄ar− θ̄l is the relative orientation of aerial robot w.r.t.
the flexible load frame L. Recall that θ̄ar is independently
controlled, thus if we regulate θ̇Lar = 0, then the input
mapping vector b̄δ,ar can be considered as a constant.

1) Linearization: Due to the under-actuation with the
rank one aerial robot input b̄δ,arλar for the m-DoFs flexible
load dynamics (13), we cannot completely cancel out the
coupling between the manipulator and the flexible load Ē.
Therefore, we design a flexible load vibration/deflection sup-
pression controller with controllability analysis. To analyze
controllability, we need to linearize the dynamics (13) at
the equilibrium deflection δe ∈ <m along the end-effector
trajectory ξd. Here, we can assume relatively slower ground

manipulator end-effector motion than vibration (i.e., ξ̇ � δ̇)
because the robot arm can generate desired velocity for the
load-tip with slow manipulator end-effector motion as length
of the load increases.

We aim to behave the flexible load similar to the rigid
body, thus the control objective of the aerial robot includes
both the vibration suppression δ̇ = 0 and the deflection
compensation w(lf ) = 0. Note that zero deflection at the
tip w(lf ) = 0 does not imply zero deflection for all location
along the load (i.e., not δi(x) = 0 for all x). Therefore,
w(lf ) = 0 is the equilibrium point of the linearized flexible
load dynamics which is also the assumption of the inverse
kinematics of (pde , θ̄

d
e) in Sec. IV-A.

First of all, we design a feedforward control input to
compensate the gravity force at the equilibrium deflection
δe to satisfy w(lf ) = 0. The equilibrium deflection satisfies
following equality

Kδe + gδ(θ) = bδ,arλar

We then get the following expression for the deflection w(lf )
by premultiplying ΦK−1

Φδe = ΦK−1(bδ,qrλar − gδ(θ))

Then, the feedforward control input for the gravity induced
deflection compensation can be proposed as

λar = (ΦK−1bδ,ar)
−1ΦK−1gδ (15)

Note that stiffness matrix K is a diagonal invertible matrix,
thus ΦK−1bδ,ar =

∑
φ2
i (lf )/Kii cos(θLar) is also invertible

unless cos(θLar) = 0. Then, the equilibrium deflection vector
δe can be written as following

δe = (−I +K−1bδ,ar(ΦK
−1bδ,ar)

−1Φ)K−1gδ(θ)

Note that the equilibrium deflection δe enforced by λar
satisfies zero deflection at the load-tip, i.e.,w(lf ) = Φδe = 0.

Finally, we can linearize the dynamics (13) at the equilib-
rium deflection δe[

¨̃
δ
˙̃
δ

]
=

[
0m −K̄
Im 0m

]
︸ ︷︷ ︸

=:F

[
˙̃
δ

δ̃

]
+

[
b̄δ,ar

0

]
︸ ︷︷ ︸

=:G

λ̄ar (16)

where δ̃ = δ−δe and λ̄ar = λar− (ΦK−1bδ,ar)
−1ΦK−1gδ .

2) Controllability: The linearized flexible load dynamics
(16) is represented by 2m configurations (

˙̃
δ, δ̃) with the rank

one aerial robot input Gλar. Therefore, we need to verify
whether the input Gλar can suppress the vibration/deflection
to the equilibrium (

˙̃
δ, δ̃) → (0, 0) in the linearized system

before designing a controller. For this, we utilize the con-
trollability matrix C of the linearized deflection dynamics
(16) defined as following

C := [G FG · · · FGm−1] ∈ <2m×2m.

Combining with (16), the controllability matrix C can be
rewritten as

C =

[
b̄δ,ar 0 · · · (−K̄)m−1b̄δ,ar 0

0 b̄δ,ar · · · 0 (−K̄m−1)b̄δ,ar

]
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The given linearized flexible load dynamics (16) is control-
lable, if the controllability matrix satisfies rank(C) = 2m.

To figure out the condition for the controllability, we
need to check the condition for det(C) 6= 0. Here, we can
simplify the evaluation of det(C) by utilizing the column
permutation of the matrix C which only have impact on the
sign of the determinant. Using the column permutation, we
can collect all the odd columns and even columns, then the
controllability matrix C can be expressed as block diagonal
matrix of following submatrix Cs:

Cs =
[
b̄δ,ar K̄b̄δ,ar · · · K̄m−1b̄δ,ar

]
From the property of block diagonal matrix, |det(C)| =
|det(Cs)|2, thus we only need to analyse det(Cs). The de-
terminant of Cs is described in the following Lemma.

Lemma 1 Consider the submatrix of the controllability ma-
trix Cs of the linearized system (16). Then the determinant
of the matrix Cs satisfies following equation

det(Cs) =

m∏
i=1

b̄i ·
m∏
j=1

(
EIdjj
Mδ,jj

−
EId(j+1)(j+1)

Mδ(j+1)(j+1)

)
(17)

where b̄i is i-th component of b̄δ,ar, Mδ,ii is (i, i) component
of the inertia matrix Mδ and dii =

∫
φ′′i (x)2dx. If j = m,

then j + 1 is considered as 1.

Proof: If m = 2, we can compute det(Cs) as following

det(Cs) =

∣∣∣∣∣b̄1 EId11
Mδ,11

b̄1

b̄2
EId22
Mδ,22

b̄2

∣∣∣∣∣ = b̄1b̄2(
EId22

Mδ,22
− EId11

Mδ,11
)

Next, we assume (17) is satisfied for m = n − 1. If this
relations is also available for m = n, then the equation
(17) is satisfied for any positive integer m. For m = n the
determinant is given as following

det(Cs) =
∣∣b̄δ,ar K̄b̄δ,ar · · · K̄n−1b̄δ,ar

∣∣
= det

(
diag(b̄1, · · · , b̄n) ·

[
1n K̄1n · · · K̄n−11n

])
=

n∏
i=1

b̄i · det
([

1n K̄1n · · · K̄n−11n
])︸ ︷︷ ︸

=:Kn

where 1n = [1, · · · , 1]T ∈ <n is n-dim one vector. First term
of right hand side is same with (17), thus we need to verify
second term. According to Laplace’s formula, determinant
of matrix is expressed as summation of determinant of
submatrices

det (Kn) =

n∑
j=1

(−1)(j+1)det(Kn,(1,j))

=

n∑
j=1

(−1)(j+1)
∣∣∣K̄(j,j)1n−1 · · · K̄n−1

(j,j)1n−1

∣∣∣
=

n∑
j=1

(−1)(j+1)det(K̄(j,j))det(Kn,(n,j))

=

n∑
j=1

(−1)(j+1)
n∏
i=1
i6=j

wn,i ·
n∏
i=1
i 6=j

(wn,i − wn,i+1)

(18)

where Kn,(i,j), K̄(i,j) ∈ <(n−1)×(n−1) are matrices whose
i-th column and j-th row are eliminated from the original
matrices Kn, K̄ and wn,i := EIdii/Mδ,ii is the natural
frequency of i-th mode. For the last equation, every wn,i
have (n−1)-order. If we consider this equation as a function
of wn,i (i.e., f(wn,i) = 0), then (n − 1) order polynomial
function have (n − 1) solutions. It is straightforward to
show wn,i = wn,j ∀j ∈ {1, · · · , i − 1, i + 1, · · · , n} are
the solutions of this polynomial equation using (18) by
substituting it to solution. As a result, equation (17) is
satisfied for m = n and, thus, satisfied for any positive
integer m.

From Lemma 1, the three conditions to ensure controllabil-
ity of the linearized system can be extracted in the following
theorem:

Theorem 1 Consider the linearized flexible load dynamics
(16) and controllability matrix C. Then, if the following three
conditions are met, the linearized flexible load dynamics is
controllable:

1) Design condition φi(lf ) 6= 0,∀i = 1, · · · ,m;
2) Control condition cos(θLar) 6= 0, i.e., θLar 6= π

2 +kπ, k ∈
Z; and

3) Physical condition EIdii
Mδ,ii

6= EIdjj
Mδ,jj

(or wn,i 6= wn,j).

Proof: According to Lemma 1, det(Cs) is represented
as product of b̄i and EIdii

Mδ,ii
− EIdjj

Mδ,jj
. The conditions

for det(Cs) = 0 are induced by b̄i = 0 or
wn,i = EIdii

Mδ,ii
=

EIdjj
Mδ,jj

= wn,j . From the expression
of b̄i in (14) and given that Mδ > 0, we can conclude
the condition translates to φi(lf ) = 0 and/or cos(θLar) = 0
which are the design and the control condition. The later
one directly correspond to the physical condition.

To satisfy what we called the design condition, the mode
shape at the aerial robot attachment position should not
be zero, i.e., φi(lf ) 6= 0. This controllability condition
enforces a design criterion; the aerial robot should not be
attached some mode node position along the beam, i.e.,
φi(x) = 0,∀i = 1, · · · ,m. This design condition is valid
for our one aerial robot case of the MAGMaS whose aerial
robot is connected at the flexible load tip (i.e., x = lf ). This
conditions can also be applied to the MAGMaS with multiple
aerial robots.

If the aerial robot cannot meet the control condition, i.e.,
cos(θLar) = 0 or θLar = π

2 + kπ, k ∈ Z , then the thrust
of the aerial robot is aligned to x-axis of the load frame
L and subsequently cannot exert force along the deflection
direction. This controllability condition impose to control the
aerial robot orientation to cos(θLar) 6= 0. In this paper, to
preserve the control condition and to maximize the thrust
input along the deflection of the flexible load, we control
the aerial robot attitude so that θ̄ar = θ̄l, i.e., cos θ̄Lar = 1.

The physical condition represents identical natural fre-
quency between two different modes. Physically, two vibra-
tion modes with identical natural frequency represented as
one combined vibration mode. Mathematically, we compute
unique vibration mode for each distinct natural frequencies.
Therefore, this condition is always satisfied.
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Fig. 4: Ongoing experimental setup for the MAGMaS with a
quadrotor, a flexible load and a manipulator.

Fig. 5: Snapshot of the eight-shaped trajectory tracking with
proposed controller. Color in the flexible load represents its relative
deflection w.r.t. a rigid load.

C. Aerial Robot Control
Vibration suppression can be achieved by the aerial robot

control input b̄ar,δλar based on the controllability analysis.
We follow two independent control objectives: 1) the aerial
robot orientation control for the thrust aligning; 2) the vibra-
tion suppression control for the flexible load using the aerial
robot thrust. Recall that these two independent controller are
available due to the independent rotational dynamics of the
aerial robot thanks to the passive rotational joint connector.
This rotational joint cannot exert torque between the flexible
load and the aerial robot.

First, we design aerial robot orientation controller to align
thrust direction with direction perpendicular to the flexible
load(i.e., y-direction of the flexible load frame L). The
control objective is expressed as θ̄ar → θ̄l. This control
objective maximize magnitude of the input vector bδ,ar for
the load vibration. For the planar case, the orientation control
of the angular rate controlled aerial robot is given as follows

θ̇ar = ˙̄θde + k(θ̄dl − θ̄ar)

where θ̄dl = θ̄de + θl is the desired load orientation with
constant θl, ˙̄θl = ˙̄θe and k is control gain. Note that
angular velocity controlled aerial robot can capture many
commercially available UAV [3]. For the torque controlled
aerial robot, we can exploit a control design proposed in [5].

Next, using the linearized flexible load dynamics and the
controllability analysis in Sec. IV, we can design various lin-
ear controller to suppress the vibration. Here, we utilize LQR
(linear quadratic regulator) to optimally suppress vibration in
the MAGMaS,

λar = KLQR

[
˙̃
δ

δ̃

]
+ (ΦK−1bδ,ar)

−1ΦK−1gδ (19)
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Fig. 6: Simulation results with three different controllers: 1)
proposed control; 2) PD control; 3) manipulator control w/o vi-
bration suppression. Trajectory tracking (top) and tracking with
perturbation (bottom). An external force is applied to at 8, 16s
for the bottom.

where KLQR ∈ <1×2m is the control gain based on LQR.

V. SIMULATION

To verify the performance of the proposed control
scheme, we conduct a set of two simulations. In these
simulations, the system parameters are based on real
platform data and are as follow: 1) inertia parameters
(m1,m2,m3,ml,mar) = (4, 4, 4, 0.591, 1)kg and mo-
ment of inertia are evaluated as rectangular bar; 2) length
(l1, l2, l3, lf ) = (0.4, 0.4, 0.4, 2.5)m; 3) bar properties
EI = 51.3Nm2, ρA = 0.205kg/m. From this load
property, its natural frequencies are given as (wn,1, wn,2) =
(1.44, 8.98)Hz which are experimentally retrieved via vi-
bration excitation and FFT analysis. We only consider the
first 2-modes as the other higher frequency modes are
found negligible by our identification experiments. Here, we
utilize two vibration modes m = 2 from our preliminary
experiments of the wooden load vibration. From the third to
higher modes, the magnitude of vibration is negligible and
suppressed fast by its own damping.

For the simulation, we assume that the deflection of each
modes δi is available. In practice, we can indirectly measure
the mode deflection by measuring w(x, t) using MoCap or
strain gage for several different points as following[

w(x1, t)
w(x2, t)

]
=

[
φ1(x1) φ2(x1)
φ1(x2) φ2(x2)

]
︸ ︷︷ ︸

=:Φ12

[
δ1(t)
δ2(t)

]

where xi are the points which makes non-zero determinant
of matrix Φ12.

The first simulation consists in a trajectory tracking task.
As mentioned in Sec. IV, we can design the trajectory
of the end-effector by considering the flexible load as
rigid body. Here, the trajectory is given as (xde , y

d
e , θ̄e) =

(0.1 sin(t), 0.1 cos(0.5t), 0.2 sin(0.5t)). To validate our ap-
proach, we compare three different controllers for this tra-
jectory tracking task: 1) proposed controller in (12) and (19);
2) manipulator controller without vibration suppression: τm
is same with (12) and λar is same with (15); 3) PD control
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in [18]: λar is same with (15) and τm satisfies

τm = M̄ξ ξ̈d +Deė+Kee+ ḡe − (J−Tξ JTf (q)−Bδ,ar)τar

For controller 2 and 3, the aerial robot input is just gravity
compensation of the flexible load and the aerial robot. The
simulation result are gathered in Fig. 6. Under the tracking
controller 2, vibration is not suppressed while control 3
and the proposed controller is suppressing the vibration.
Controller 3 can suppress the vibration, however it only
relies on energy dissipation, the convergence time is slower
than our proposed controller which can directly suppress the
vibration using the aerial robot control input τar.

The second simulation in Fig. 6 includes perturbations by
an external force on the load-tip. The perturbations are given
as (fx, fy) = (5, 15)N at t = 8s and t = 16s during 0.05s.
In this plot, we exclude the result of controller 2 whose
vibration amplitude is too large to compare. Similar to the
first simulation, after the perturbation, both controller 3 and
our proposed controller can suppress the vibration although
the convergence is much slower for controller 3.

Those two simulations validate our proposed approach to
leverage MAGMaS’s heterogeneous design, by exploiting the
aerial robot control input, trajectory tracking performances
are increased for flexible load.

VI. CONCLUSION

In this paper, we extend results on the MAGMaS, a
novel cooperative heterogeneous manipulation system [1],
to the case of flexible load manipulation. In particular, we
derive the dynamical model of a planar MAGMaS, including
vibrations in the long slender load. We then propose a
control strategy for both trajectory tracking and effective
vibration cancellation by exploiting the dynamical properties
of such an under-actuated system for vibration, in particular
vibration cancellation is achieved through a linearization
scheme. Along the way, the conditions for controllability of
the vibrations modes are exhibited. The validity of this ap-
proach is demonstrated in two simulations by comparing its
performance to the one of previously proposed approaches.
The possible next step for this work are the experimental
validation for the planar case, the system for which is already
in construction, and the extension of the theoretical work to
the general 3-dim case with multiple aerial robots.
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