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1. Purpose of the Document 
 

Deliverable D4.1 describes the preliminary work performed on the design of the online traffic 
characterization system. It first draws the state of the art of the existing work related with 
online traffic characterization and anomaly detection, especially focusing on the full range of 
approaches going from supervised to unsupervised ones. The deliverable also defines the basics 
of the generic online characterization system and the specificities of the two main topics 
addressed in WP 4 namely traffic pattern evolution analysis and anomaly detection. It 
particularly indicates how this architecture takes advantage of the big data infrastructure as 
developed in WP2. Deliverable 4.1 also indicates the principles of the algorithms for both traffic 
pattern evolution analysis and anomaly detection. Moreover, it creates the link with use case 1 
(Network Anomaly detection) of WP5, indicating how the algorithm evaluation could be 
performed. 
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2. Scope 
 

This document provides the description of the current status of work lead in WP4 on the online 
traffic classification system. The progress in ONTIC on the online traffic classification system, 
traffic pattern evolution analysis, and anomaly detection during the second year will be held in 
Deliverable 4.2, as a continuation of the current deliverable. The third and last year will 
generate deliverable 4.3 aiming at presenting the results of the intensive evaluation of the 
algorithms designed for the online classification system and related applications, i.e. pattern 
evolution subsystem, and anomaly detection. 

 



619633 ONTIC. Deliverable 4.1 
 
 
 

 
9 / 31 

  

! !
3. Intended Audience 
 

The intended audience includes every partner within ONTIC project, especially those involved in 
WP2, WP3, WP4 and WP5. 
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4. Suggested Previous Readings 
 

There are some overview papers that might be interesting to get started in machine learning: 

§ Tom M. Mitchell, “The Discipline of Machine Learning”. This is a white paper defining the 
discipline of Machine Learning. This was a piece of the argument Mitchell used to 
convince the President of CMU to create a standalone Machine Learning department for a 
subject that will still be around in 100 years. The paper can be found at the following 
URL: http://www.cs.cmu.edu/~tom/pubs/MachineLearning.pdf 

§ Pedro Domingos, “A Few Useful Things to Know about Machine Learning”. This is a great 
paper because it pulls back from specific algorithms and motivates a number of 
important issues such as feature selection generalizability and model simplicity. This is 
all good stuff to get right and think clearly about from the beginning. The paper can be 
found at the following URL: 
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf 

 

The following book is also good for getting started to basic Machine Learning algorithms applied 
to Data Mining: 

§ Ian H. Witten, Eibe Franck, Mark A. Hall, “Data Mining: Practical Machine Learning Tools 
and Techniques, Third Edition”, The Morgan Kaufmann Series in Data Management 
System, ISBN-13: 978-0123748560 ISBN-10: 0123748569, January 2011 

 

Last, it might be interesting to follow the online lecture called “Stanford Machine Learning”. It 
is Available via Coursera and taught by Andrew Ng. The course includes homework and quizzes 
and focuses on linear algebra and using Octave. 
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5. Executive Summary 
 

ONTIC aims at proposing a framework composed of techniques that can mostly be qualified as 
unsupervised (or semi supervised in some cases) for traffic characterization with direct 
applications that are: 

a) Able to catch traffic patterns evolution 
b) Able to detect network anomalies and especially attacks. 

 
This system has to run online with a reactive level close to real-time. It then has to cope with 
the huge amount of data and their high dimensionality level. In addition, this system consists of 
several functions (detection and analysis of traffic patterns evolution, anomalies and intrusions 
detection, automatic defense devices configuration with autonomously generated filtering rules, 
continuous updating of the system knowledge database, visualization, etc.) that have to run 
continuously and in parallel: parallelizing and synchronizing the execution of these functions is 
therefore an essential feature of the system. As the subsystems have to mainly rely on 
unsupervised techniques (such as clustering), we have investigated a scalable and elastic 
architecture for online data stream clustering for which more/less processes can be seamlessly 
added or removed on the fly during computation. A specific architecture for all these 
functionalities is being designed in order to reach the near real-time reaction objective. It is 
based on sub-space clustering that allows parallelization of the computing in all subspaces, as 
they are completely independent. It is then possible with powerful enough parallel machines to 
theoretically benefit from a maximum speedup. Subspace clustering also limits the dramatic 
impact on the clustering results of the noise inherent to large and high dimensionality spaces. 
The noise is being the source of inaccuracy and inefficiency in many existing clustering 
techniques that limit their capabilities for analyzing large sets of data as traffic flowing in high-
speed networks. This point is then at the heart of researches in the domain of clustering 
algorithms for some time, with more or less valuable results that often depend on kind of data 
to me mined. The subspace clustering technique is being designed with the objective of 
overpassing other ones in terms of accuracy, efficiency and speed in all situations as it is 
natively designed to cope with the huge amount of data flowing in high-speed networks and 
their related high dimensionality level.  

On the other side, when traffic patterns evolution is detected, a supervised subsystem can be of 
interest working in conjunction with the unsupervised one. After classes of traffic, including 
possible new ones have been extracted from the traffic, the supervised system can be re-trained 
for updating the system knowledge database. It could also help the intrusion detection 
subsystem for improving its efficiency by reducing the analysis domain in each case. 

Last, the anomaly detection subsystem aims at autonomously detecting anomalies (including the 
ones due to attacks), and to autonomously trigger countermeasures. For this purpose we are 
investigating data mining techniques for autonomously generating anomalies characteristics. In 
the following months of the ONTIC project we will investigate information theory techniques for 
giving a score to anomalies abnormality, and depending on the score, generate automatically 
filtering rules to be deployed on network security devices. The target is to have very fast 
reaction giving the feeling to administrators and users of a proactive defense system. 
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6. Related work 
 

6.1     From supervised to unsupervised traffic classification and 
anomaly detection 

The problem of network anomaly detection has been extensively studied during the last 
decade. Most of the approaches analyze statistical variations of traffic volume (e.g. 
number of packets, bytes or new flows) and/or traffic features (e.g. IP addresses and 
ports), using either single-link measurements or network-wide data. A non-exhaustive list 
of standard methods includes the use of signal processing techniques (e.g. ARIMA - 
Autoregressive Integrated Moving Average - modeling, wavelets-based filtering) on single-
link traffic measurements [1][2], PCA (Principal Component Analysis) for network-wide 
anomaly detection [4][5][6], and Sketches applied to IP-flows [3][7]. 

The simultaneous detection and characterization of traffic anomalies has also received 
quite a lot of attention in the past, but results are few and present important limitations, 
either because they rely on some kind of training data and/or anomaly signatures, or 
because they do not provide meaningful and tractable information to a human network 
operator, who has to take the final decision about the nature of the detected problem. 
Authors in [4] characterize network-wide anomalies in highly aggregated traffic (Origin-
Destination flows or OD flows for short), using PCA and the sub-space approach [6]. An 
important limitation of this approach is that the information obtained from OD flow data is 
too coarse-grained to provide meaningful information to the network operator. Papers like 
Lakhina et al. [5] and Biang et al. [7] detect and characterize anomalies using finer-
grained traffic information, basically applying the same PCA approach to the sample 
entropy of the empirical distribution of specific traffic features. One clear limitation of 
these approaches is that the information they provide is not immediately usable and easy-
to-understand by the network operator, who may not even be familiar with concepts 
distant from his tasks such as sample entropy. Besides, the PCA approach is highly sensitive 
to noise when used for anomaly detection [8][9], requiring in practice a fine-tuning and 
data-dependent calibration step to work. 

UNADA (Unsupervised Network Anomaly detection Algorithm) [10] falls within the 
unsupervised anomaly detection domain, a novel research area that has drawn quite a lot 
of interest in the research community, but that still represents a rather immature field. 
Most work on unsupervised network anomaly detection has been devoted to the IDS field, 
generally targeting the detection of network intrusions in the very well-known KDD'99 
dataset. The great majority of the detection schemes proposed in the literature are based 
on clustering techniques and outliers detection, being [11][12][13] some examples. The 
objective of clustering is to partition a set of unlabeled patterns into homogeneous groups 
of “similar'” characteristics, based on some similarity measure. Outliers detection consists 
in identifying those patterns that do not belong to any of these clusters. In [13], authors 
use a simple single-linkage hierarchical clustering method to cluster data from the KDD'99 
dataset, based on the standard Euclidean distance for inter-pattern similarity. Eskin et al. 
[11] reports improved results in the same dataset, using three different clustering 
algorithms: the Fixed-Width clustering algorithm, an optimized version of the K-NN 
algorithm, and the one-class SVM algorithm. Leung and Leckie [12] present a combined 
density-based and grid-based clustering algorithm to improve computational complexity, 
obtaining similar detection results. 

Previous work of some ONTIC partners permits to automatically characterize network 
traffic anomalies [14], but using a-priori well-defined anomaly signatures. Closer to our 
current work, authors in [15] present URCA (Unsupervised Root Cause Analysis), a two-steps 
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algorithm to characterize network anomalies in an unsupervised fashion. URCA uses as 
input the traffic in the anomalous time slots detected by any generic time-slot-based 
detection algorithm [16]. In the first step, it identifies the anomaly by iteratively removing 
from the anomalous time slots those flows that seem normal. In the second step, the 
algorithm uses a hierarchical clustering method to characterize the particular flows 
identified as anomalous. We identify some serious drawbacks and omissions in URCA: 
authors claim that the approach is unsupervised, which is not true, as it actually uses 
previously labeled anomalous events for the characterization. As in previous works, the 
algorithm uses difficult-to-interpret traffic descriptors for the clustering step (e.g. sample 
entropy of the distribution of IP addresses, aggregated at different levels), obscuring the 
comprehension of the network operator. Finally, the algorithm removes those flows that 
seem normal before the characterization step, which drags possible errors to the clustering 
step.  

The Unsupervised Anomaly Detection and Characterization algorithm [17] from some ONTIC 
partners presents several advantages with respect to current state of the art. First and 
most important, it works in a completely unsupervised fashion, which means that it can be 
directly plugged into any monitoring system and start to work from scratch. Secondly, 
anomaly detection is performed based not only on outliers detection, but also by 
identifying small-clusters. This is achieved by using different levels of traffic aggregation, 
both at the source and destination of the traffic; this additionally permits to discover low-
intensity and distributed anomalies. Thirdly, the lack of robustness of general clustering 
approaches is avoided by combining the notions of Sub-Space Clustering [18] and multiple 
Evidence Accumulation [19]. In particular, this algorithm is immune to general clustering 
problems like sensitivity to initialization, specification of number of clusters, or structure-
masking by irrelevant features. Fourthly, the algorithm performs clustering in low-
dimensional feature spaces, using simple traffic descriptors like number of source IP 
addresses or fraction of SYN packets. This simplifies the characterization of the anomaly, 
and avoids well-known clustering problems when working with high-dimensional data [20]. 
This algorithm ranks the multiple evidence of an anomaly detected in different sub-spaces, 
combining the most relevant traffic descriptors into a compact and easy-to-interpret 
signature that characterizes the problem. This permits to reduce the time spent by the 
network operator to understand the nature of the anomaly. Finally, this algorithm is 
designed to work in an on-line fashion, analyzing traffic from consecutive time slots in near 
real time. This is possible even when working with large number of traffic descriptors, 
because the sub-space clustering and the evidence accumulation algorithms are perfectly 
adapted for parallelization (see [17]). 

 

6.2     Traffic pattern evolution 
As stated in the previous section, unsupervised traffic analysis has received a lot of attention 
during the past decade. In this section, some of the main approaches and recent proposals for 
the application of these techniques to the problem of pattern evolution detection, analysis and 
prediction are discussed. 

 

 Online Clustering 6.2.1   
Clustering is one of the most popular approaches for unsupervised learning. There exist different 
types of clustering algorithms: 

§ Partitioning algorithms, which divide a set of objects into different clusters with the goal 
of minimizing an objective function. An example is the classic k-means. 
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§ Micro-clustering: they consist of two phases, a preliminary online micro-clustering of the 

data and a grouping into global clusters. Examples are BIRCH and CluStream. 
§ Density-based algorithms based on connectivity and density functions. Examples are 

DBSCAN and OPTICS. 
§ Grid-based algorithms, based on a multiple-level granularity structure, such as Fractal 

Clustering and STING, CLIQUE and MAFIA. 
§ Model-based algorithms, which aim to fit a model as well as possible, such as COBWEB 

and Kohonen’s Self-Organized Maps. 
 

Most classic clustering schemes generally rely on multiple passes over the data to reach 
convergence. Moreover, they group the data in hyperspheres, and the number of clusters 
requires to be set a priori by the user. These characteristics have very important drawbacks: (1) 
Performing multiple passes over big data sets is impractical, and often infeasible, (2) the 
constantly streaming, pseudo-infinite nature of many data sources nowadays completely rules 
out the possibility of multiple passes, (3) Gaussianity is necessary for hyperspheric clusters to be 
accurate and (4) prior knowledge about the expected number of clusters is necessary for the 
algorithm to perform well. In addition, clustering algorithms in an online setting must address 
the problems of concept drift, concept shift and ageing. There have been numerous attempts to 
overcome these issues for the applicability of clustering methods to online data streams, which 
undoubtedly constitutes an active research topic today. Some of the most relevant proposals in 
this field are presented below.  

6.2.1.1   Micro Clustering 
In [38], the concept of Micro-Clustering is described, along with the CluStream algorithm. This 
algorithm builds upon notions previously proposed by Single-Pass k-Means [42] and BIRCH [65]. 
The system is divided into two components, one online and one offline. The online phase 
constructs Clustering Features (CF), which represent a small set of data points, taking temporal 
information into account (CFT). Incoming points are absorbed by a CF if they fall within its 
maximum boundary. Otherwise, a new CFT is created. A maximum level of clusters is kept, 
removing old ones in favor of newer ones. CFTs can be stored periodically and aggregated in 
pyramidal form for offline clustering with different levels of granularity. The notion of Micro-
Clustering (i.e. summaries to describe the data more compactly) has been used and developed 
extensively in posterior streaming clustering techniques. 

6.2.1.2   Partitioning Clustering 
Several researchers have proposed variations on the classic k-Means formula to enable the 
clustering of data streams. Two of the first notable proposals in this area are Scalable k-Means 
[41] and Single-pass k-Means [42]. In [43], O’Callaghan et al. propose STREAM, that analyzes 
arriving chunks (i.e. subsets of the stream that can fit into memory) in search of distinct points, 
which are then clustered using an algorithm called LOCALSEARCH. More recent works include 
StreamKM++ [44]. In this paper, the authors present a streaming version of the k-Means++ 
algorithm and introduce the concept of coreset tree. Coresets are small sets that yield similar 
clustering results to those of much larger sets, i.e. they are compact representations that retain 
features relevant for clustering. According to the experimental results presented, the algorithm 
is slower than BIRCH [65] and Stream [45] but yields better results in terms of squared errors. In 
[46] an algorithm for tracking cluster changes over sliding windows, SWCluster, is described. 
They propose a new data structure, the Exponential Histogram of Cluster Features (EHCF), to 
keep track of in-cluster evolution. This structure allows for efficient constant updates of the 
cluster structure, diminishing the influence of outdated records. The method is shown to 
outperform CluStream when applied to sliding windows and has bounded memory requirements. 
The EHCF is a flexible tool that can be used along other solutions. 
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6.2.1.3   Grid Clustering 

In grid clustering, the d-dimensional input space is divided into cells by a set of (d-1)-
dimensional hyperplanes. There exist multiple works that apply this type of algorithms to online 
settings. In [39], the authors describe methods for finding optimal hyperplanes according to 
certain criteria: hyperplanes should lie on low-density areas to avoid splitting clusters and they 
should discriminate clusters as much as possible. Another interesting approach using this notion 
is Fractal Clustering, that clusters points based on their impact on the fractal dimension of the 
group. In [47], D-Stream is presented. This algorithm makes a different partition for each 
dimension of the input space, which yields as many density grids as the product of the number of 
partitions for each dimension. Incoming points are mapped onto one of these grids and clusters 
are created offline based on the density of each grid. D-Stream was later extended with D-
Stream II [48], which alleviates the problem of wrongly created clusters by considering the 
position of data points to decide whether to merge neighboring dense partitions or not. In [49] 
the authors describe MR-Stream, which according to the authors performs the online 
computations in constant time, allows for the discovery of clusters at multiple resolutions using 
a tree-like structure, determines the right time to generate clusters, generates highly pure 
clusters and determines the right threshold for density-based clustering. The tree built by the 
algorithm is pruned online. Other proposals include ExCC [50], DUCStream [51], DD-Stream [52], 
PKS-Stream [53] and DENGRIS-Stream [54]. 

6.2.1.4   Density-Based Clustering 
Several density-based algorithms for streaming data have been proposed in recent literature. 
Among the most notable ones is DenStream [40]. This algorithm combines DBSCAN and the 
concept of micro-clustering on a fading window over a data stream, and bounds storage using a 
pruning procedure. It succeeds at recognizing arbitrarily shaped clusters. In [55], C-DenStream is 
described. This algorithm extends DenStream relying on certain external constraints to guide the 
clustering process. In particular, they utilize the notions of Must-link and Cannot-link to enforce 
or prevent particular groupings among the data based on prior knowledge. In [56], the authors 
propose HDDStream, with which they try to solve the problem of high-dimensional stream 
clustering, which can be challenging due to the presence of irrelevant features and the locality 
of relevance. It improves older partition-based HPStream [57], which assumes that the number 
of clusters does not change. It functions by summarizing sets of objects in their relevant 
dimensions. Finally, Flockstream [58] is a multi-agent flocking model. Its greatest advantage is 
that it does not need the offline component that other density-based methods utilize for the 
final clustering. Other proposals include StreamOptics [59], rDenStream [60], SDStream [61], 
HDenStream [62], SOStream [63] and PreDeConStream [64]. 

 

 Network Traffic Prediction 6.2.2   
In order to harness the complexity of network traffic evolution over time to make 
predictions it is essential to identify its dynamics, regularities and temporal 
interdependence. In the recent literature, there exist several proposals that employ 
machine learning techniques to enhance existing time series analysis and prediction 
methods or build new ones. Some of the works that have developed these methods in the 
field of network traffic and similar areas are described below. 

6.2.2.1   Support Vector Regression 
Some authors propose to use Support Vector Regression (SVR) as a method for the 
prediction of various network traffic variables. Support Vector Machines (SVM) are a very 
successful classification method that pose the problem of finding an optimal hyperplane to 
separate two sets of data points. It can be used for regression by imposing a maximum 
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distance constraint on the objective function. Although SVMs are a supervised approach, 
SVR does not need expert intervention, since the ‘labels’ in this case are the values of the 
input function. In [26], the authors use this technique to try to predict TCP throughput 
using different network metrics such as Available Bandwidth, Queue loss and Packet loss, 
and find the last two to be the most relevant. They claim to obtain measures within 10% of 
the actual value 87% of the time, although the data set used was artificially generated on 
their local network. In [27], another SVR based proposal is described. The authors of this 
work attempt to predict the link load based on previous records. The data set used is a 
one-day long capture from a major Italian ISP. They conclude that, even though SVR does 
not seem to yield significant improvements over ARMA models in terms of accuracy for 
short-term link load prediction, it presents extremely advantageous qualities such as 
robustness to parameter variation, low computational complexity and the possibility to 
extend the forecasting horizon by using cascading SVR models. 

6.2.2.2   Dimensionality Reduction 
The application of forecasting techniques can be especially challenging when dealing with high-
dimensional input data spaces. This problem can be addressed using dimensionality reduction 
techniques such as Singular Value Decomposition (SVD) and PCA. In [28], SVD is used on YouTube 
video access data in order to extract patterns and make predictions more efficiently using an 
ARMA model. To perform predictions, they consider a data matrix comprised of 366 columns, 
each of which being a year-long time series of daily views for each video considered. 

An ARMA model is built for the first principal components of this data matrix (matrix U of 
decomposition USV). The predicted vectors are then projected back onto the original space 
by multiplying them by matrices S and V for interpretation. Their results are encouraging, 
and the approach is sufficiently generic to be directly applied to network traces using 
certain features of interest, e.g. number of flows in the network, failed flow ratio, etc. In 
order to cope with rarely accessed videos, the authors use hierarchical clustering to group 
similar series. Predictions for a video are made mapping that video to a cluster and 
rescaling its mean time series. 

6.2.2.3   Signal Processing & Neural Networks 
Neural Networks have seen a significant resurgence since the potential of deep architectures 
started to be acknowledged and fast methods for training them were developed after 2006 
[34][35]. These models have been applied to the problem of network traffic prediction combined 
with signal processing techniques. In [37], the authors build a multiresolution finite impulse 
response (FIR) neural network that uses a discrete wavelet transform (DWT) to adequately 
represent the time series data. The model is tested on the Bellcore Morristown Research and 
Engineering Center Ethernet traffic traces, and is shown to outperform an RLS predictor and a 
single resolution FIRNN. The slow convergence of the backpropagation algorithm, however, could 
hamper its applicability to online environments. In [31] the authors propose an optimized 
training procedure for a Bilinear Recurrent Neural Network (BLRNN) [36] and use it to predict 
the behavior of network traffic. The optimization consists of two parts: first, the multiplications 
for bilinear components are reduced; then, the network is pruned using a genetic algorithm. The 
method is also tested on the Bellcore data set. It shows improvements over traditional neural 
networks, but fails to predict peaks and in terms of accuracy it performs worse than the multi-
resolution model described in [37]. However, its reduced computational cost is very relevant to 
online implementation. 
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7. Online traffic characterization architecture basics 
 

7.1     Generic architecture design principle 
This section aims at defining the principles for the generic architecture of the online 
classification system. We recall that WP4 aims at defining a scalable online network traffic 
characterization system. 

Note also that WP4 architecture design principles take into account that WP5 Use Cases will 
have to integrate specific mechanisms developed in WP4. 

One of the key functions to be designed and developed is related to scalable online flow 
classification. Based on this function, the two objectives are (1) to design a traffic pattern 
evolution sub-system, and (2) to design a network anomalies and intrusion detection sub-system 
(use case #1). 

Given the online and scalable nature of the system and sub-systems, the key issues to be 
addressed are related to: 

1. The traffic capture system and the way the capture traffic stream is afterwards sent to 
the flow classification system. This capture system has to be fast and needs to process 
data to transform it in the appropriate time series whose format has to be completed in 
the following months; 

2. The computing of this large amount of data of high dimensions by the data-mining and 
Machine-Learning algorithms. These algorithms have to be able to handle large amounts 
of data in real time and in a scalable way.  
 

 Traffic capture 7.1.1   
Figure 1 illustrates what has to be done to transform raw packet traces into aggregated traffic 
traces to be presented at the different data-mining and machine-learning algorithms that will be 
designed / used for flow classification, traffic pattern evolution, and anomaly detection. This 
architecture is aimed at being generic enough for coping with all possible algorithms that could 
run on top of it. It is especially possible this traffic aggregation task to be run on the capturing 
machines as they could perform it much faster than the machines running the machine learning 
and data mining algorithms. It that later case, it could lead to performance and scalability 
issues. The performance evaluation to be run in the second year of the project should provide 
the required figures for making the decision. Nevertheless, it will not change the principle of the 
proposed functional architecture. 

 
 

 
Figure 1: Traffic pre-processing for scalable online characterization 
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 Data processing step using data-mining and machine learning algorithms 7.1.2   
Given the real-time and scalability objectives for the classification, traffic pattern study, and 
anomaly detection functions, the related algorithms need to be fast and efficient, in addition of 
being robust and accurate. The two next sections will detail the specific functional architecture 
for (1) traffic pattern evolution, and (2) anomaly detection. 

 

7.2     Specific architecture details for traffic pattern evolution 
In this section, an overview of the architectural foundations for a Traffic Pattern Evolution 
Subsystem is described. Some of the specific requirements and desirable properties of 
online algorithms for data streams are described in section 8.1    . All families of machine 
learning algorithms (classification, clustering, regression/prediction) can be applied to the 
problem of temporal traffic pattern evolution detection and analysis. However, some 
common ground for the different techniques that can be employed for this purpose can be 
established, and an abstract layout of the elements to participate in the traffic pattern 
evolution subsystem can be extracted. 

 

 Traffic Pattern Evolution Subsystem Architecture Description 7.2.1   
As every other element of the ONTIC architecture, the Traffic Pattern Evolution Subsystem 
will process network data. These data must undergo a feature engineering process via a 
Feature Engineering Subsystem (FES) so that the algorithms involved can receive the data 
in an adequate representation.  

Online streaming algorithms can consume data in various forms. Samples can be processed 
and immediately discarded one at a time. Alternatively, a sliding window can be 
maintained. In this case, the algorithm will need to keep the most recent sample (xt) and 
the n previous ones (xt-n, …, xt-1) in memory in order to be able to utilize a n+1 long window 
of data.  

The Scalable Stream Processing System (Scalable-SPS) consists of the Streaming 
Algorithm (SA) or set of streaming algorithms to be used (please refer to section 6.2    for 
details), which will be deployed on top of an Online Distributed Computing Framework 
such as STORM or SAMZA. The adaptation of existing state-of-the-art techniques to these 
platform is one of the core goals of this project. Therefore, the Scalable-SPS will be one of 
the major contributions by ONTIC. 

As described in section 6.2    , it is common for streaming machine learning algorithms to 
be comprised of an online and an offline component. The offline component can provide 
support for less time-critical tasks that can improve the online performance. For instance, 
a Support Vector Regression-based prediction system could immensely benefit from 
separate equipment for periodical retraining. The samples can be temporarily stored in a 
separate Temporary Storage device. When a temporal or storage threshold is surpassed, a 
Batch Learner can retrain the algorithm, dismiss the stored samples and transmit the new 
parameters to the predictor.  
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Figure 2: Traffic Pattern Evolution Subsystem Architecture 

 
The Traffic Pattern Evolution Subsystem permanently generates output according to the 
problem at hand. A classifier determines the traffic class (e.g. application class) a packet, 
a set of packets, a flow or a set of flows belongs to. A clustering algorithm yields the 
description of the resulting clusters, which can contain the centroid location, the cluster 
density, the average cluster age and more. A forecasting system outputs a series of 
discrete forecasts, whose length depends on the established horizon. These problems pose 
challenges that fall within the scope of the ONTIC project. These challenges are discussed 
in section 8.1    . 

 

7.3     Specific architecture details for anomaly detection 
Most of the solution quoted in the state of the art (section 6.1    ) on anomaly detection (except 
unsupervised ones) share a common downside: they require the knowledge provided by an 
external agent to achieve their goal, either in terms of anomaly or attack signatures or as 
normal-operation profiles. As such, current network security and management look more like a 
reactive countermeasure than a proactive prevention mechanism. Over the past years we have, 
however, witnessed an increased interest within the network community in shifting away from 
reactive management and defense towards more proactive systems [21]. Our thesis behind this 
work is that reactive, knowledge-based approaches are not sufficient to tackle the network 
management and security problem, and that a holistic solution should also include proactive, 
knowledge-independent analysis techniques. 

Armed with these ideas in mind, we present an Unsupervised Network Intrusion Detection 
System (UNADS) capable of detecting network anomalies without relying on signatures, training, 
or labeled traffic instances of any kind. Based on the observation that network anomalies, and 
particularly the ones that are the most difficult to detect, are contained in a small fraction of 
traffic instances with respect to normal-operation traffic [22] (we show that this hypothesis can 
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always be verified by using traffic aggregation), their unsupervised detection consists in 
identifying outliers, i.e. instances that are remarkably different from the majority. UNADS relies 
on robust clustering techniques to blindly extract the traffic instances that compose an anomaly. 
This unsupervised system runs in three consecutive steps, analyzing packets captured in 
contiguous time slots of fixed length. Figure 3: High-level description of the Unsupervised 
network Anomaly Detection System depicts a modular, high-level description of this system. 

The first step consists in preparing the flow/features matrix that will represent the research 
space for the clustering algorithms. For doing so, captured packets are first aggregated into 
multiresolution traffic flows. The idea deals with considering the larger possible space including 
all features for the most possible accurate result. The scalability issue in terms of computing 
time will be addressed in next steps. Different time-series are then built on top of these flows. 

The second step takes as input the full flow matrix. At this step, outlying flows are identified 
using a robust multi-clustering algorithm, based on a combination of Sub-Space Clustering (SSC) 
[18], Density-based Clustering [23], and Evidence Accumulation Clustering (EAC) [19] techniques. 
Based on the knowledge provided by this clustering algorithm, and an analytic formulae applied 
on network and traffic features (still to be improved), the system ranks the degree of 
abnormality of all the identified outlying flows, building an outlying flows ranking (see section 
8.2     for more information). 

In the third step, the top-ranked outlying flows are flagged as anomalies, using a simple 
threshold detection approach. Based on our first analysis in real case with previously labeled 
traffic as ground truth, threshold appears to be constant for discriminating between legitimate, 
erroneous and illegitimate traffic. Further studies will nevertheless been run in the coming 
months to confirm this first result. 

 

The main contribution of UNADS relies on its ability to detect unknown attacks in a completely 
unsupervised fashion, avoiding the need of signatures, training, or labeled traffic flows. In 
addition, previous work [24] shows that evaluations on the computational time of UNADS permits 
to envisage an on-line operation of the system, using a parallel computing architecture for the 
core algorithms. This paper represents a continuation of our previous work on unsupervised 
anomaly detection [24]. 
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Figure 3: High-level description of the Unsupervised network Anomaly Detection System 

 
 
 
 
 



619633 ONTIC. Deliverable 4.1 
 
 
 

 
22 / 31 

 

! !

8. Algorithm design basics and objectives 
 

8.1     Traffic pattern evolution 
Conventional machine learning algorithms require the complete data set to be available for 
training. This is known as batch processing. On the contrary, online streaming machine 
learning algorithms operate assuming that data streams are infinite, and can thus only 
function using a relatively small fraction of the data. Some of the ideal requirements for 
online algorithms are described below. 

§ Requirement 1: Process one sample at a time, at most once: Data streams are often 
continuous, which requires a stream mining algorithm to outpace their frequency. 
Due to the infinite nature of the stream, data samples must be processed and 
eventually discarded. 

§ Requirement 2: Use a limited amount of memory: a streaming algorithm must 
function in a manner such that the amount of memory needed is independently 
bounded. 

§ Requirement 3: Work in a limited amount of time: ideally, the running time 
complexity of a streaming algorithm will depend linearly on the number of treated 
samples. As mentioned before, stream mining algorithms must outpace the arrival 
rate of the data. 

§ Requirement 4: Readiness: These algorithms should ideally be ready to make 
predictions or decisions at any moment. 

 
Of course, these requirements describe the ideal stream mining algorithm, but depending 
on the setting, some or all of them can be relaxed while maintaining a sufficiently 
satisfactory performance. The first requirement, for instance, can be overlooked if the 
algorithm can function using only a subset of the arriving samples. If some of the data are 
correctly discarded, the computational demands of the system can be significantly 
decreased. Requirement 2 can be relaxed as well. An exception can be made if external 
storage is used, although this can inflict unacceptable penalties on speed requirements. In 
general, these requisites can be observed with different levels of rigor if the environment 
allows it. The main restriction to be kept in mind by the algorithm designer is that the 
system must deal with a theoretically infinite amount of information. 

Sometimes, the greatest benefits can be obtained from hybrid models, i.e. algorithms that 
combine batch processing with stream mining. Most machine learning-based prediction 
systems available in the literature are a good example of this. In the case of neural 
network-based predictors, for instance, the algorithms are capable of making predictions 
based on a window of time series values, but they must be trained offline. In general, 
these systems can be periodically retrained with the most recently collected data, and the 
newly found parameters can be transmitted to the predictor. 

In addition to the requirements described above, online algorithms must deal with the fact 
that incoming data is often non-stationary. This is reflected in the notions of concept-drift 
(data evolve over time) and concept-shift (data change abruptly). These algorithms must 
also be robust to long-term deployment. A fading coefficient must dampen the influence of 
outdated samples on the performance of the system if necessary. 

Classification and forecasting algorithms present specific challenges. Existing techniques can 
make decisions very fast. The decision function often runs in constant time, and techniques such 
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as Support Vector Machines, which are regarded as some of the slowest solutions, depend 
linearly on the number of support vectors (usually a very small subset of the training data). 

Therefore, the challenge lies in the training process. In an online scenario, data are continuously 
generated (they are theoretically unlimited) and their nature can change over time (concept 
drift and concept shift). A trained model might become rapidly outdated, rendering the output 
of the algorithm unreliable. In order to address this, incoming data could be relayed to a 
training module to periodically update the model. However, training is usually very slow, and in 
big data scenarios this module would be almost immediately outpaced by the arriving data. 
Hence, a set of specific questions arises regarding this issue: 

§ Can we find fast enough alternatives or approximations for training algorithms to keep 
some state-of-the-art classification technique up to date in an online big data scenario? 

§ How can we determine how often we need to retrain the system? 
§ Can we summarize the data so that we can retrain the system without sacrificing 

samples? 
§ How much data do we need to use for training in order to have a sufficiently general 

model?  
 
All these questions fall well within the scope of ONTIC. In the case of classification, however, 
the problem of labeling the data makes online solutions unfeasible. This reality makes it 
especially pertinent to lean toward unsupervised solutions. 

 

8.2     Anomaly detection 
In this deliverable we present a completely unsupervised method to detect and characterize 
network anomalies and attacks, without relying on signatures, training, or labeled traffic of any 
kind. Our approach relies on robust clustering algorithms to detect both well-known as well as 
completely unknown attacks, and to automatically produce easy-to-interpret signatures to 
characterize them, both in an on-line basis. 

 

 Traffic flow aggregation 8.2.1   
The analysis is performed on packet-level traffic, captured in consecutive time slots of fixed 
length ΔT and aggregated in IP flows (standard 5-tuples). IP flows are additionally aggregated at 
9 different flow levels li. These include (from finer to coarser-grained resolution): source IPs (l1: 
IPsrc}), destination IPs (l2: IPdst), source Network Prefixes (l3,4,5: IPsrc/24, /16, /8), destination 
Network Prefixes (l6,7,8: IPdst/24, /16, /8}), and traffic per Time Slot (l9: tpTS}). 

 

 Unsupervised detection of anomalies 8.2.2   
The unsupervised detection stage takes as input all the IP flows in the considered time slot, 
aggregated according to one of the different aggregation levels used in the first stage. Let Y = 
{y1,.., yn} be the set of n flows in the considered time slot. Each flow yi ∈ Y is described by a set 
of m traffic attributes or features on which the analysis is performed. The selection of these 
features is a key issue to any anomaly detection algorithm, and it becomes critical in the case of 
unsupervised detection, because there is no additional information to select the most relevant 
set. In this deliverable we shall limit our study to detect and characterize well-known anomalies 
and attacks, using a set of standard traffic features widely used in the literature. However, the 
reader should note that the approach can be easily extended to detect other types of anomalies 
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or attacks, considering different sets of traffic features. In fact, more features can be added to 
any standard list to improve detection and characterization results. 

 

The set that we shall use here includes the following m = 9 traffic features: number of 
source/destination IP addresses and ports, ratio of number of sources to number of destinations, 
packet rate, ratio of packets to number of destinations, and fraction of ICMP and SYN packets. 
According to previous work on signature-based anomaly characterization [14], such simple traffic 
descriptors permit to describe standard network attacks such as DoS, DDoS, scans, and spreading 
worms/virus. Let xi = (xi(1),.., xi(m)) ∈ Rm be the corresponding vector of traffic features 
describing flow yi, and X = {x1,.., xn} the complete matrix of features, referred to as the feature 
space. 

The algorithm is based on clustering techniques applied to X. The objective of clustering is to 
partition a set of unlabeled elements into homogeneous groups of similar characteristics, based 
on some measure of similarity. Our goal is to identify in Y the different aggregated flows that 
may compose the attack. For doing so, the reader should note that an attack may consist of 
either outliers (i.e., single isolated flows) or compact small-size clusters, depending on the 
aggregation level of flows in Y. For example, a DDoS attack is represented as an outlier flow if 
the aggregation is done for IPdst, consisting of all the attacking IP flows sent towards the same 
victim. On the contrary, the attack is represented as a cluster if we use IPsrc flow-resolution. To 
avoid the lack of robustness of general clustering techniques, we have developed a parallel-
multi-clustering approach, combining the notions of Density-based Clustering [23], Sub-Space 
Clustering [18], and Evidence Accumulation [19]. In what follows, we shall present the general 
idea behind the approach. 

Instead of directly partitioning the complete feature space X using a traditional inter-flow 
similarity measure (i.e., the Euclidean distance), we do parallel clustering in N different sub-
spaces Xi ⊂ X of smaller dimensions, obtaining N different partitions Pi of the flows in Y. Each 
sub-space Xi is constructed using only r < m traffic features; this permits to analyze the 
structure of X from N(m,r) different perspectives, using a finer-grained resolution. In particular, 
we do clustering in very-low dimensional sub-spaces, using r=2. To deeply explore the complete 
feature space, we analyze all the r-combinations-obtained-from-m sub-spaces; hence, N(m) = 
m(m-1)/2. The information provided by the multiple partitions Pi is then combined to produce a 
new similarity measure between the flows in Y, which has the paramount advantage of clearly 
highlighting both those outliers and small-size clusters that were simultaneously identified in 
different sub-spaces. This new similarity measure is finally used to easily extract the anomalous 
flows from the rest of the traffic. 

 

 Automatic characterization of anomalies 8.2.3   
The following task after the detection of a group of anomalous flows is to automatically produce 
a set of K filtering rules fk(Y), k=1,..,K to characterize them. In the one hand, such filtering 
rules provide useful insights on the nature of the anomaly, easing the analysis task of the 
network operator. On the other hand, different rules can be combined to construct a signature 
of the anomaly, which can be used to easily detect its occurrence in the future. To produce 
filtering rules fk(Y), the algorithm selects those sub-spaces Xi where the separation between the 
anomalous flows and the rest of the traffic is the biggest. We define two different classes of 
filtering rule: absolute rules fA(Y) and relative rules fR(Y). Absolute rules are only used in the 
characterization of small-size clusters, and correspond to the presence of dominant features in 
the flows of the anomalous cluster. An absolute rule for feature j has the form fA(Y) = {yi ∈ Y: 
xi(j) == λ}. For example, in the case of an ICMP flooding attack, the vast majority of the 
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associated flows use only ICMP packets, hence the absolute filtering rule {nICMP/nPkts == 1} 
makes sense, (nICMP/nPkts corresponds to the fraction of ICMP packets).  

 
On the other hand, relative filtering rules depend on the relative separation between anomalous 
and normal-operation flows. Basically, if the anomalous flows are well separated from the rest 
of the traffic in a certain partition Pi, then the features of the corresponding sub-space Xi are 
good candidates to define a relative filtering rule. A relative rule defined for feature j has the 
form fR(Y) = {yi ∈ Y: xi(j) < λ or xi(j) > λ}. We shall also define a covering relation between 
filtering rules: we say that rule f1 covers rule f2 ⇔ f2(Y) ⊂ f1(Y). If two or more rules overlap 
(i.e., they are associated to the same feature), the algorithm keeps the one that covers the rest. 

In order to construct a compact signature of the anomaly, we have to devise a procedure to 
select the most discriminant filtering rules. Absolute rules are important, because they define 
inherent characteristics of the anomaly. Regarding relatives rules, their relevance is directly 
tied to the degree of separation between flows. In the case of outliers, we select the K features 
for which the normalized distance to the normal-operation traffic (statistically represented by 
the biggest cluster in each sub-space) is among the top-K biggest distances. In the case of small-
size clusters, we rank the degree of separation to the rest of the clusters using the well-known 
Fisher Score (FS) [25], and select the top-K ranked rules. The FS basically measures the 
separation between clusters, relative to the total variance within each cluster. To finally 
construct the signature, the absolute rules and the top-K relative rules are combined into a 
single inclusive predicate, using the covering relation in case of overlapping rules.  

 

 Experimental evaluation 8.2.4   
This section is aimed at showing how the unsupervised approach can detect and characterize 
different network attacks without using signatures, labels, or learning. 
We shall begin by detecting and characterizing a distributed SYN network scan directed to many 
victim hosts under the same /16 destination network. Packets in Y are aggregated using IPdst/24 
flow resolution, thus the attack is detected as a small-size cluster. The length of each time slot 
is ΔT = 20 seconds. As we explained in section 8.2.2   , the SSC-EA-based clustering algorithm 
constructs a new similarity measure between flows in Y, using the multiple clustering results 
obtained from the different sub-spaces. Let us express this new similarity measure as a n × n 
matrix S, in which element S(i,j) represents the degree of similarity between flows i and j. 
Figure 4 depicts a histogram on the distribution of inter-flows similarity, according to S. The 
structure of flows in Y provided by S evidences the presence of a small isolated cluster in 
multiple sub-spaces. Selecting this cluster results in 53 anomalous IPdst/24 flows; a further 
analysis of the packets in these flows reveals multiple IP flows of SYN packets with the same 
IPsrc address and sequential IPdst addresses, scanning primary the same TCP port. Such a 
behavior is characteristic of a worm in the spreading phase. 

Regarding filtering rules, Figure 5 depicts some of the partitions Pi where both absolute and top-
K relative rules were produced. These involve the number of sources and destinations, and the 
fraction of SYN packets. Combining them produces a signature that can be expressed as (nSrcs == 
1) ∧ (nDsts > λ1}) ∧ (nSYN/nPkts > λ2), where both λ1 and λ2 are obtained by separating clusters 
at half distance. Surprisingly enough, the extracted signature matches quite closely the standard 
signature used to detect such an attack in current signature-based systems [14]. The beauty and 
main advantage of the unsupervised approach relies on the fact that this new signature has been 
produced without any previous information about the attack or baseline traffic, and now it can 
be directly exported towards any security device to rapidly detect the same attack in the future. 

Figure 6 depicts different rules obtained in the detection of a SYN DDoS attack. IP flows are now 
aggregated according to IPsrc resolution. The distribution analysis of inter-flows similarity with 
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respect to S selects a compact cluster with the most similar flows, corresponding to the set of 
attacking hosts. The obtained signature can be expressed as (nDsts == 1) ∧ (nSYN/nPkts > λ3) ∧ 
(nPkts/sec > λ4),} which combined with the large number of identified sources (nSrcs > λ5) 
confirms the nature of a SYN DDoS attack. This signature is able to correctly isolate the most 
aggressive hosts of the DDoS attack, i.e., those with highest packet rate. 

Figure 7 depicts the detection of an ICMP flooding DoS attack. Traffic is aggregated in IPdst 
flows. Thus the attack is now detected as an outlier rather than as a small-size cluster. Absolute 
rules are not applicable in the case of outliers detection. Relative rules correspond to the 
separation of the outlier from the biggest cluster in each sub-space, which statistically 
represents normal-operation traffic. Besides showing typical characteristics of this attack, such 
as a high packet rate of exclusively ICMP packets from the same source host, both partitions 
show that the detected attack does not involve the largest elephant flows in the time slot. This 
emphasizes the ability of the algorithm to detect attacks that are not necessarily different from 
normal-operation traffic in terms of volume, but that they differ in other, less evident 
characteristics. The obtained signature can be expressed as (nICMP/nPkts > λ6) ∧ (nPkts/sec > 
λ7). 

 

 
Figure 4: Detecting a distributed SYN network scan using S 

 
 
 

 

  
Figure 5: SYN network scan 

 
 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

Inter−flows similarity

N
º 

flo
w

s 
(l
o

g
1
0
)

 

 

Normal Flows
Anomalous Flows

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nDsts

n
S

Y
N

/n
P

kt
s

 

 

Cluster 1
Cluster 2
Cluster 3
Anomalous flows
Outliers

relative filtering rule

                     absolute filtering rule

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nSrcs

n
S

Y
N

/n
P

kt
s

 

 

Cluster 1

Cluster 2

Anomalous flows

Outliers

absolute filtering rule

relative filtering rule



619633 ONTIC. Deliverable X.X 
 
 
 

 

! !

  
Figure 6: SYN DDoS 

 
 

  
 

Figure 7: ICMP flooding DoS 
 

 Conclusion 8.2.5   
The completely unsupervised algorithm for detection of network attacks that we have presented 
has many interesting advantages with respect to previous proposals. It uses exclusively unlabeled 
data to detect and characterize network attacks, without assuming any kind of signature, 
particular model, or canonical data distribution. This allows detection of new previously unseen 
network attacks, even without using statistical-learning. By combining the notions of Sub-Space 
Clustering and multiple Evidence Accumulation, the algorithm avoids the lack of robustness of 
general clustering approaches, improving the power of discrimination between normal-operation 
and anomalous traffic. We have shown how to use the algorithm to automatically construct 
signatures of network attacks without relying on any kind of previous information. 

In the following month, we will continue improving the algorithm, perform intensive evaluation 
for estimating its accuracy and scalability, and start developing a prototype to be further 
included in the general ONTIC system. 
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