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1 Executive Summary  
 

Deliverable 4.2 describes the algorithms produced to characterize online large network traffic 
in terms of traffic pattern evolution and unsupervised network anomaly detection. 
Experimental results of these algorithms are presented and discussed. These algorithms are 
designed to be run on the Big Data analytics system and the provisioning subsystem specified 
in the WP2.  

These algorithms leverage large network traces and data mining techniques for helping the 
network administrator in its task. They offer him an insight on its network which could not 
have been possible with small network traces. This insight can help him improve the 
network’s Quality of Service (QoS) and security. We can also imagine that, thanks to the 
analysis provided by these algorithms, automatic decisions could be taken to protect and 
optimize the network. 

This deliverable follows deliverable 4.1 which has introduced, among others, an Unsupervised 
Network Anomaly Detection Algorithm (UNADA) capable of detecting network anomalies 
without relying on signatures training or labeled instances. 

The first part of the deliverable deals with the problem of leveraging traffic patterns in order 
to make reliable forecasts. Driven by the goals of WP5 UC #2, which aims to build a 
distributed system for bandwidth assignment to proactively control network congestion, a 
Network Traffic Forecasting Framework (NTFF) has been developed. We have designed a 
forecasting procedure that is shown to reliably predict the number of open sessions crossing a 
network link, which can be particularly useful for computing approximate bandwidth 
assignments effectively. An exploratory analysis of the ONTS dataset has also been carried 
out, drawing useful insights on the behavior of the traffic it represents. We have conducted 
experiments on a sizeable sample of the ONTS dataset to validate the effectiveness of the 
forecasting procedure integrated in the NTFF, showing its ability to make 4-step forecasts 
within 2% of mean error. The conducted research and the obtained results reveal key 
directions to be explored in the future.  

The second part of the deliverable deals with the problem of identifying, in near real-time and 
on large network traffic, anomalies in an unsupervised way, i.e., without previous knowledge 
on the anomalies. First, a Parallel version of UNADA, called PUNADA, is proposed.  The 
obtained results show that this solution improves UNADA execution time; however it displays 
a limit in scalability. To overcome this issue, an Online and new Real-time Unsupervised 
Network Anomaly Detection Algorithm (ORUNADA) is then proposed. It is an incremental 
version of UNADA relying on an incremental grid clustering algorithm and a sliding-time 
window. This solution speeds the execution time by a factor of 100 and allows a near real-
time detection while preserving the quality of anomaly identification. This part ends with an 
extensive study of existing unsupervised network anomaly detectors which points out some 
new directions to explore.  

Last, the deliverable concludes with a discussion on the main challenges encountered during 
algorithm development and the topics of future work. 
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2 Acronyms 
 

Acronym Defined as 

ARIMA Autoregressive Integrated Moving Average 

AUC Area Under the Curve 

CWT Continuous Wavelet Transform 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

DoS Denial of Service 

DWT Discrete Wavelet Transform 

EA Evidence Accumulation 

LOF Local Outlier Factor 

FP False Positive 

FPR False Positive Rate 

IGCA Grid density-based Clustering Algorithm 

IGCA Incremental Grid density-based Clustering Algorithm 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

OFAT One Factor At a Time (OFAT).   

ORUNADA Online and Real-time Unsupervised Network Anomaly Detection 
Algorithm 

PC Principal Component 

PCA Principal Component Analysis 

PUNADA Parallel and Unsupervised Network Anomaly Detection Algorithm 

R2L Remote To User 

ROC Receiver Operating Characteristic 

SOD Subspace Outlier Detection 

TP True positive 

TPR True Positive Rate 

U2R User to Root Attacks 
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UNADA Unsupervised Network Intrusion Detection Algorithm 

WP Working Package 
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3 Intended Audience  
 

The intended audience for this deliverable includes all the members of the ONTIC project and 
specifically those involved in: 

• WP4, as they devise the online algorithms. 

• WP2, as they design the provisioning subsystem on top of which the algorithms have to 
run. 

• WP5, as they propose use cases which take benefit of the algorithms presented in this 
deliverable. 

Furthermore, this report could be of interest to any person working in the field of traffic 
pattern evolution and network anomaly detection. 
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4 Algorithms for Traffic Pattern Evolution 
 

Network traffic analysis today is especially challenging because of the huge volumes of data 
involved. In online settings, where the available data cannot be permanently stored and must 
be processed and discarded straight away, an additional challenge arises. Network traffic data 
often fit what is known as a time series model, i.e. the data samples represent events that are 
consecutive. This means that the underlying distribution can change over time, even in a 
relatively small data set, making it especially difficult to build predictive models. Driven by the 
goals of WP5 UC #2, the ONTIC consortium have carried out a research process to determine 
whether or not it is possible to identify useful trends and patterns from the ONTS dataset, as 
well as to build a system that can reliably and adaptively predict them. This research has led 
to the development of a Network Traffic Forecasting Framework (NTFF), a system that 
integrates network traffic data preprocessing and modular forecasting model design. We 
propose a forecasting procedure to predict short and medium term traffic behavior. Up to our 
knowledge, there exists no open-source solution integrating these functionalities.  The NTFF 
is available online at a git repository. 

The NTFF is designed so that network managers and engineers can use these models without 
deep knowledge of the field. The first released version has been designed with the goal of 
forecasting the number of open TCP sessions crossing an ISP’s core network at a given time 
period, which can be particularly useful in the congestion control protocols being developed 
in WP5. In order to proactively control network congestion, we are interested in forecasting 
the number of flows crossing a router link, which can be used when computing the bandwidth 
allocation for each session. Details on this process can be found in section 8.3 of deliverable 
D5.2. The techniques described below, however, can be used to forecast many different 
variables and could therefore be useful to tackle a variety of problems that arise in network 
management and engineering. 

In order to successfully develop the NTFF, we addressed the problem of forecasting network-
related variables. We posit that the patterns underlying network traffic present regularities 
that can be exploited for making reliable forecasts in the short term. We have carried out a 
costly preprocessing procedure, followed by visualization, revealing meaningful qualities of 
the captured network data that can be useful for employing the NTFF in practice. In particular, 
we have observed a clear periodicity in the traffic patterns and an absence of drift that can be 
leveraged to build long-lasting models. Afterwards, we have trained and evaluated different 
forecasting models in combination with judiciously chosen discrete wavelet transforms, an 
approach that up to our knowledge has not been sufficiently explored in the domain of 
network traffic. Since WP4 activities revolve around algorithms for streaming data, we have 
focused our efforts on building models that can be feasibly applied in the online setting. For 
instance, we have applied the SBLLM algorithm for training the neural network models, which 
is much more efficient than backpropagation, and we have combined our models with the 
stationary wavelet transform, which can be updated efficiently as new data arrive.  

The rest of this section describes the NTFF and the proposed procedure. It also shows the 
results of the exploratory analysis, as well as a description of the experimental results 
obtained from the application of the resulting models on the ONTS data set. Our results 
suggest that the employed data set does indeed present patterns that can be exploited for 
reliable short-term forecasting. Specifically, we have found a set of techniques, which have 
been integrated into NTFF and will be used in the congestion control subsystem to be 
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developed in WP5 UC#2. We finalize this section by summarizing our main conclusions and 
the further research directions motivated by our results in Traffic Pattern Evolution.  

4.1 NTFF: Network Traffic Forecasting Framework 

The NTFF is comprised of three modules: Data Preprocessing (DP), Wavelet Decomposition 
(WD) and Forecasting Model Design (FMD). These modules are connected sequentially in the 
specified order, with the Wavelet Decomposition being optional. 
The DP module can ingest large volumes of traffic traces in the pcap format, coming from 
either permanent storage or data streams, which are filtered and aggregated into the 
adequate format. The WD module decomposes the resulting time series data into the specified 
number of frequency components. Finally, the FMD offers the possibility of training and 
testing different forecasting models (ARIMA, Ridge Regression and Artificial Feedforward 
Neural Networks).  

4.1.1 Data preprocessing (DP) 

The DP module converts compressed pcap data into an adequate time-series format. First, the 
pcap files are aggregated into 5-tuple flows using the Tstat tool1.  
The feature filtering module developed in WP2 D2.2 is used to parse the timestamp out of the 
Tstat output. The flows are aggregated into 1-second slots by means of an ad-hoc Apache 
Spark job that we wrote to speed up this part of the process. 
An overview of the whole procedure is shown in Figure 1. 

 
Figure 1: Data preprocessing overview 

Experimentally, we have observed that the whole preprocessing takes about three days in our 
available hardware for one month of traffic. For that reason, we plan to leverage the 
availability of the enterprise-grade cloud environment during the third year to process the 
entirety of the dataset. The data retrieval from the HDD bays remains a bottleneck, however, 
which constitutes a hindrance that must be overcome. 

4.1.2 Wavelet Decomposition (WD) 

Wavelet transforms are a widely used tool for time series analysis and signal processing. As 
opposed to the Fourier transform, the wavelet transforms have the ability to build a 
time-frequency representation of a signal that offers very good time and frequency 
                                             
1 http://tstat.polito.it/ 
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localization. The WD module offers an interface for decomposing an input signal using the 
stationary wavelet transform, in either packet or non-packet form. The levels of 
decomposition can be specified by the user. A detailed description of wavelets and how we 
have integrated them into the NTFF can be found in section 4.1.4.1. 

4.1.3 Forecasting Model Design (FMD) 

The FMD features an interface for training and validating different forecasting modules. We 
have included some of the models that generally perform best in other domains (energy 
consumption, gas and electricity prices, wind speed, stock exchange prices). Specifically, the 
NTFF offers ARIMA, Ridge Regression and Artificial Feedforward Neural networks, and 
methods for training all of them.  

4.1.4 Proposed Forecasting Procedure 

We apply the SWT along with the forecasting models in two phases: during the training phase, 
the time series is decomposed into n components2 with the same bandwidth each. If the 
packet decomposition is used, then the transform is equivalent to the one described in [1]. We 
then train a different model for each component separately. The forecasts are also made on 
each component individually, which are then aggregated to obtain the final prediction. The 
different resulting models are shown in figures Figure 2Figure 3Figure 4 andFigure 5. 

 
Figure 2: Training procedure with SWT 

 

 
Figure 3: Forecasting procedure with SWT 

 
 

 
Figure 4: Training procedure without SWT 

 

                                             
2 In our experiments we have tested 16 components. 
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Figure 5: Forecasting procedure without SWT 

 
For each of the available models, we have chosen the training method that best suits the 
problem at hand. Ridge Regression is trained with the LevenbergȈ-Marquardt method, which 
combines the advantages of the Newton method and gradient descent. In the case of Neural 
Networks, we use the SBLLM algorithm, which significantly outperforms backpropagation in 
terms of convergence speed. Finally, ARIMA is trained following the usual procedure.  

The NTFF is open source and is available online at https://gitlab.com/ontic-wp4/NTFF. 
Details on how to use it are provided in Annex A. 

4.1.4.1  Used Techniques  

In this section, we provide a brief overview of the employed forecasting methods, namely 
ARIMA, Artificial Feedforward Neural Networks and Ridge Regression, which we have used in 
combination with the Discrete Wavelet Transform.  

Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is a widely used tool with applications in signal 
processing and time series analysis.  The DWT decomposes a discrete signal into various 
components representing different frequencies in the time domain. 
Since the early 2000s, wavelet transforms have been combined with forecasting models as a 
preprocessing step. The continuous wavelet transform (CWT) is used to divide continuous-
time functions into frequency components. As opposed to the Fourier transform, the CWT has 
the ability to build a time-frequency representation of a signal that offers very good time and 
frequency localization. The DWT can be understood as a sampled CWT, yielding sufficient 
information about the signal with significantly decreased computation time. By applying high-
pass and low-pass filters, the DWT decomposes the input signal into different signals that 
correspond to subsets of the original frequency bandwidth. 

There exist many different methods for performing a DWT. Among them, we have chosen the 
stationary wavelet transform because it can perform a transformation at time t without 
resorting to posterior values, which is of course a desirable property in forecasting scenarios.  

Since the different frequency components behave in a “cleaner” way than the original data, the 
DWT constitutes an interesting technique for improving forecasting results. In order to use 
the DWT for making forecasts, we have conducted the following process: 

1. The time series data z is decomposed into n frequency components using the DWT, 
that is  𝐷𝐷𝐷(𝑧) =   (𝑓1,𝑓2, … , 𝑓𝑛 )  

2. A signal is retrieved from each resulting component using the inverse DWT: 
𝑧𝑘 = 𝐷𝐷𝐷−1(0,0, … , 𝑓𝑘, … ,0) 

3. Using the forecasting model of choice F,  we make a forecast for each of the n retrieved 
signals: 𝑧′𝑘 = 𝐹(𝑧𝑘) 

4. We rebuild the original signal with the forecast data point by adding up all the 
components: 𝑧′ = ∑ 𝑧′𝑖𝑛

𝑖=1  
The DWT presents certain issues for its efficient application to time series forecasting. 
Specifically, the transformation must be carried out on a time window, which is 

Forecasting Procedure without SWT 

Signal  ARIMA/RR/NN Predicction
 

https://gitlab.com/ontic-wp4/NTFF


619633 ONTIC. Deliverable 4.2 
 
 
 
computationally demanding. To circumvent this we use the SWT, which can be efficiently 
updated as each new data point arrives, a key characteristic for its application to online 
scenarios. This technique has been widely used for time series analysis and forecasting in 
different domains [2] [3].  
The second issue is the choice of mother wavelet. We studied two that are perhaps the most 
popular ones: the Haar and the Daubechies wavelets. The former presents a problem that 
hindered its applicability to our domain. In particular, the bandwidth corresponding to each 
component is not clearly delimited, and includes components from frequencies outside the 
correct region. The Daubechies wavelet helps overcome this issue, providing a better isolation 
of each frequency component in its associated bandwidth, but presents shortcomings of its 
own. When the inverse transform is applied to individual components, the results present 
artifacts at the borders of the timeline. This is not a problem for signal reconstruction, since 
these artifacts cancel each other out in the transform inversion process. For forecasting, 
though, they do constitute an obstacle, because forecasts are of course heavily dependent on 
the last values of the series.  
Figure 7 and Figure 8 illustrate the issue described above. We performed a SWT of three 
overlapping samples of our data with a Daubechies wavelet of order 20, spanning a 1000-
second window each, separated by 50 seconds from the next (the first window starts at time 
0, the second starts at time 50 and the third at time 100, as shown in Figure 6 Region of the 
original data corresponding to the wavelet components depicted in figures 7,8,9 and 10), 
We then applied the inverse SWT to the first individual component of each signal, as in step 2 
of the procedure described above, resulting in three signals comprised of an individual 
frequency component each. Figure 7 shows the last 100 values of the first component of each 
transformed sample respectively (the time interval in the black rectangle region shown in 
Figure 6). The inconsistencies between the three plots at the last values of the blue and the 
red lines are evidence of the problem in question: they correspond to the same time period 
but are different. Figure 8 is equivalent, but shows the results for the third frequency 
component instead of the first. Figures 9 and 10 show the wavelet transform components 
corresponding to the same signals and period, but using the Haar wavelet instead. The 
artifacts introduced by the Daubechies wavelet are not present. 
This problem led us to choose the Haar wavelet for our preliminary models. Tests with 
Daubechies wavelets of different orders and other forecasting schemes remain a part of our 
intended future work.  

 
Figure 6 Region of the original data corresponding to the wavelet components depicted in figures 7, 8, 9 and 10 
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Figure 7 Inverse DWT of the first component of a 

Daubechies SWT for three overlapping time windows 

 
Figure 8 Inverse DWT of the third component of a 

Daubechies SWT for three overlapping time windows 

 
Figure 9 Inverse DWT of the first component of a Haar 

SWT for three overlapping time windows 

 
Figure 10 Inverse DWT of the third component of a 

Haar SWT for three overlapping time windows 
 

Linear Regression 

Linear regression is one of the most basic tools for statistical learning [2]. Given a set of n-
dimensional data points, it fits the linear function that best predicts the target value. As any 
other regression model, linear regression can be employed as a component of forecasting 
systems.  

Linear regression can be trained using objective functions with regularization penalties in 
order to confer the model with robustness in the face of outliers and noise. Since we do not 
aim for a sparse model, we have chosen L2-norm regularization, often referred to as Tikhonov 
regularization or simply ridge regression. For training the model, we chose the Levenberg–
Marquardt method [4], which resembles either the Gauss-Newton algorithm or gradient 
descent, depending on the approximation error from the last iteration. 

ARIMA 

Autoregressive integrated moving average (ARIMA) models are a widely used statistical tool 
for time series analysis and forecasting. These models combine an autoregressive model that 
represents a linear dependency between the current and lagged data, according to a certain 
difference, values of the time series, and a moving average model that represents the errors of 
current and previous values from the moving mean of the series. They are suitable for 
capturing non-stationary and seasonal behaviors, features that are typically exhibited in 
telecom environments, but at larger time-scales and with heteroscedasticity. ARIMA models 
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and variants have recently been applied for making forecasts in various fields including 
network management [5] [3]. 

Artificial Neural Networks 

Artificial neural networks surfaced in the decade of the 1980s as a powerful model for 
machine learning, given their ability to learn any type of function. The computational 
complexity of the available training algorithms, the difficulty of designing an adequate 
architecture and the shortcomings of the training process meant a decrease in their 
popularity during the 1990s. However, recent advances have brought them back to the 
spotlight and are now applied with success to a variety of problems, including forecasting [ 
[6]. Neural networks: was selected to compare in order to contrast with the ARIMA as a non-
linear model as was done in [3] [2]. But here, we used SBLLM [7], as a faster method for 
Neural Networks training. 

4.1.5 Experiments 

We have performed an extensive set of experiments on the ONTS dataset in order to validate 
the different components of the NTFF. We have first carried out an exploratory analysis of the 
ONTS dataset, in order to reveal patterns, trends and regularities that could be useful for 
properly training the models, as well and to gain insights on the behavior of the traffic. Below 
we provide details on said analysis, as well as the experimental setup and results. 

4.1.5.1  Exploratory analysis 

The success of forecasting models is heavily dependent on the nature of the processed data. 
For instance, a sequence that takes values uniformly at random in a fixed interval is best 
estimated by a constant function, which is certainly of little use. Therefore, for a forecasting 
system to be valuable, the target dataset must have certain qualities. In order to determine 
whether the ONTS dataset presents said qualities or not, we processed a sizeable sample of it 
to obtain a time-series representation of the number of open TCP sessions at consecutive time 
intervals, which is a key value for the goals of use case #2. 

The required preprocessing (which is described in detail below) takes around three days on 
our available hardware for a one-month-long sample, which is why we employed a portion 
this long for our first experiments. Specifically, we processed the captures corresponding to 
months of April and May 2015.  

We analyzed the resulting data with two purposes. First, we wanted to assess the applicability 
of the envisaged models. Secondly, we carried out an exploratory analysis process to gain 
insights on the ONTS dataset. Our most significant conclusions are explained below.  

Figure 11 and Figure 12 provide a clear overview of how the processed traffic behaves. The 
plots represent the time series data (i.e. the number of open TCP sessions at one-second 
intervals) for the months of April and May. The regularity of the data across different days is 
clear, with weekends and holidays showing much more moderate activity in general.  

There are some irregularities that are worth mentioning. 

• The period from 2 April to 6 April is a holiday period in Spain. Therefore, these dates 
present weekend-like behavior. 
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• At some points in time, the data presents clearly visible activity peaks (e.g. 16 and 28 
April). The cause of these anomalies is not clear, but they are likely to represent denial 
of service attacks. 

• Some periods present sustained, high activity (e.g. 11 April). After consultation with 
the SATEC team, these probably correspond to tests conducted by Interhost-SATEC 
employees. 

• There are missing data, which correspond to periods in which the capture system was 
down. 

 Figure 13 shows the period from Saturday the 23rd to Friday the 30th of May. Figures 14 and  
15 show the data corresponding to a weekday (25 May) and a weekend day (23 May) 
respectively.  

 
Figure 11: Time series of the processed data for the month of April 
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Figure 12: Time series of the processed data for the month of May 

 
Figure 13 : Time series of the processed data from 4 to 11 April 

 
 

Figure 14: Time series of the processed data for 25 
May 

 
 
Figure 15: Time series of the processed data for 23 May 
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As previously stated, the data show clear long-term regularities. The challenges posed by WP5 
UC #2, however, require models for short-term traffic behavior. In order to analyze 
regularities at smaller scales, we carried out a detrending process and then drew key 
statistics. Interestingly, the time-series becomes almost mean-stationary after first-
differencing. Figure 16 shows the mean of the April data after first-differencing, for three 
different periods: morning (12pm-8am), day (8am-4pm) and evening (4pm-12pm). Its 
absolute value remains always below zero, while the first-differenced data normally varies in 
the order of several hundred. Figure 17 shows the standard deviation for the same data. This 
plot exhibits clear regularities as well. The first few days correspond to the holiday period 
mentioned above. The peaks in standard deviation correspond to the anomalous activity 
peaks shown above. 

 
Figure 16 : Mean of the number of flows after 

computing the first difference 

 
Figure 17 : Standard deviation of the number of flows 

after computing the first difference 
 

This analysis process allows us to draw some key conclusions: 

• The traffic presents clear regularities in the large scale, suggesting that models for 
long-term forecasting can be long-lasting. 

• The data after first-differencing shows regular behavior for at least a one-month-long 
period, suggesting that models trained for short-term forecasts can be reliably 
employed across different weeks. 

4.1.5.2  Data preprocessing 

In order to convert the employed samples of the ONTS dataset into an adequate time-series 
format, we used the Data Preprocessing module of the NTFF. The flows were thus aggregated 
into 1-second slots, resulting in a time-series representation composed by 86400 data points 
per day. 
As stated above, the procedure takes about three days in our available hardware for one 
month of traffic, which is why we could only afford to process a two-month period (i.e. 3TB of 
data) at first.  
As stated above, the resulting time series consisted of the number of open TCP sessions per 
second, which will be a useful metric for the WP5 congestion control use case. The number of 
flows crossing a network link is a key variable to correctly allocate available resources (e.g. 
per-session bandwidth in a congestion control protocol).  We chose one second intervals to 
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keep day-long datasets manageable in a first phase. However, we plan to increase the time 
granularity in order to stay consistent with the expected timescale for protocol packet RTT 
(dozens of milliseconds). We have computed forecasts 1, 2, 4 and 60 steps ahead in order to 
evaluate the performance of the models in both the short and the medium term.   

4.1.5.3 Training datasets 

We selected two days of April to act as training sets. Since the traffic patterns are very 
different during week days and weekends (see figure 5), we trained two different models on a 
Saturday (4th of April) and a Wednesday (8th of April) respectively. Each day consists exactly 
of 86400 data points (1-second slots). 

4.1.5.4 Test datasets  

We performed forecasts on the 5th and 7th of April (Sunday and Tuesday respectively) and 
the 2nd, 5th, 23rd and 24th of May (Saturday, Tuesday, Saturday and Sunday respectively). In 
order to test the generalization abilities of our models, we used a heterogeneous set of days, 
comprised of both weekdays and weekend days.  
The behavior observed in the ONTS dataset shows a clear periodicity (high load during office 
hours, low during the night). It is reasonable to assume that similar regularities are found in 
different data centers, which could leverage this fact to improve their performance and 
energy savings. For CSP’s whose infrastructure spans various time zones, for instance, this 
could be particularly beneficial. Many applications could benefit from being co-located with 
their client base, thus reducing consumption of network resources and improving response 
time. This can be made possible in a cost-effective manner via resource virtualization 
combined with reliable short-term forecasts to dynamically adapt the available resources at a 
specific location to the expected demand. 

4.1.5.5  Model Training  

Ridge Regression: To train this model, we used the Levenberg-Marquardt method previously 
described, as indicated in section 1.4 of [8]. The input for the model was a          (N-50)x50 
matrix (where N is the number of samples in the input data set). In this matrix, the first row 
represents a 50-second-long window from time t to time t-49. The rest of the rows are similar 
windows, each one corresponding to a period one second before the previous one. We set the 
initial value of lambda to 1. 
ARIMA: We employed the implementation that is available as part of the “forecast” R package. 
We chose the values of 𝑝, 𝑞 and d using the Hyndmanan-Khandakar algorithm [6]. The value 
of p was limited to a maximum of 10 and 𝑞 to 5, because of the exponential RAM and CPU 
usage that this algorithm incurs. Finally, we estimated the weights (or coefficients) with the 
AICc criterion (H. Akaike, 1998). 
Neural Networks: In order to train the neural network models, we used the SBLLM method 
[7]. The network architecture consisted of just one hidden layer, with the same number of 
neurons as the input layer. This layout yielded a good tradeoff between performance and 
training times. The input matrix was the same as the one used for Ridge regression, but in this 
case we applied a standardization procedure to the time series so as to have zero mean and 
unit variance. The training algorithm might fail to converge otherwise. With regard to the 
parameters, we set the initial step size to 1, the threshold error to 1e-5, previous Q and 
previous MSE to 1e6. The weights and the initial error were initialized to random values 
following a uniform distribution in the interval [-2/(100 * N) y +2/(100* N)]. These 
parameters were chosen after carrying out several experiments. Finally, for performing 
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predictions the logit function (the inverse of the sigmoid) is applied to the output, which is 
then multiplied by the variance and incremented by the mean of the data.  

All of these training procedures are integrated in the NTFF. 

4.1.5.6 Model Evaluation 

In this section we show experimental results of the application of the NTFF to the prediction 
of the number of TCP flows per second –up to 60 seconds ahead- on the ONTS data set. Our 
results suggest that some of these methods are suitable for the goals of WP5 Proactive 
Congestion Control use case. Specifically, they show promising results for forecasting the 
number of sessions crossing a network link, which is key for computing an accurate 
approximation of the max-min fair bandwidth assignments to sessions in advance.  
The models have been evaluated using a modified version of a widely used metric in the field 
of time-series forecasting, namely the Mean Absolute Percentage Error (MAPE). We computed 
this metric dividing the Mean Absolute Error by the absolute average of the data values and 
multiplying it by 100 in order to avoid divisions by zero. This metric is a modified version of 
the weekly absolute error, MAPEweek [9] [10], for all points of the dataset. From here on we 
will refer to the previously presented metric as MAPE. 

We performed experiments on the previously described samples of the ONTS dataset. 

Comparison of the different techniques  

We compare the different three techniques described above, both with and without wavelet 
transforms, by computing the MAPE for the two trained models (Wednesday and Saturday), 
for 4 and 60 step forecasts. The models were tested on all the six days of the test set. 
Figures 18 and 19 show the MAPE for 4-step forecasts, suggesting that neural networks and 
ARIMA are the best-performing methods for short-term forecasting, the former performing 
slightly better. It is also apparent that the use of the SWT yields a slightly higher error. This is 
a consequence of the error in high frequencies being significant, which is carried over to the 
final result in the summation process, even though the error in low frequencies might have 
been lower. In general, models trained on Saturday the 4th of April provide better results, 
which is likely due to the smaller variations that occur on weekends (see Figure 17).  
Figures 21 and 22 show the MAPE for 60-step forecasts. The superiority of the models trained 
on a Saturday over those trained on a Wednesday is again visible. ARIMA yields better long-
term results when used in combination with the SWT in the case of the Saturday model, but 
worse for the Wednesday model. This is consistent with the fact that modeling high 
frequencies is harder.  

We conclude that neural networks provide the best results in general (only in the model 
trained on Saturday the 4th of April does ARIMA+SWT perform better). The use of the SWT 
does not show significant improvement, which suggests that they should not be employed in 
contexts where computation efficiency is key, as in some stream processing scenarios. Despite 
performing slightly worse than neural networks, ARIMA provides good results. Given that it is 
much more easily trained than the latter, the use of this model should be considered for 
practical scenarios. Since the results provided by the three techniques in the short term are 
fairly similar, we will consider all of them for their application in WP5 UC#2 (Proactive 
Congestion Control). 
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Figure 18: MAPE of 4 step forecasts for 6 techniques, 2 training datasets and 6 test datasets. 
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Figure 19: MAPE of 4 step forecasts for 6 techniques, 2 training datasets and 6 test datasets. 
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Figure 21: MAPE of 60 step forecasts for 6 techniques, 2 training datasets and 6 test datasets. 
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Figure 22: MAPE of 60 step forecasts for 6 techniques, 2 training datasets and 6 test datasets. 
 

 
 

Short-term forecasts  

As previously stated, our ultimate goal is to integrate the forecasting procedure into the 
congestion control system being developed for WP5 UC#2. This system works by having 
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router links notify sources of their max-min fair bandwidth assignment using probe packets, 
which traverse the network from source to destination and back. By taking into account the 
expected number of sessions crossing the link a few milliseconds in advance, a bandwidth 
assignment can be computed that remains valid once it reaches the source.  Since the average 
round trip time for probe packets is generally in the order of milliseconds, we validate the 
ability of the NTFF to perform short-term forecasts.  
In this section, we show 1, 2 and 4 step forecasts (figures 8 and 9) using neural networks 
(which showed the best performance in the previous experiments) on one-minute long 
periods taken at 7am and 5pm from a Saturday and a Tuesday (both from the test set).  
Figures Figure 24 and Figure 25 show neural network forecasts of up to 4 steps along a time 
window, superimposed on the original data. It is apparent that the results are of an acceptable 
accuracy for the intended use case. The results from Figure 24 are consistent with the 
previous conclusions, that is, that models trained on a Saturday are generally more robust 
that those trained on a Wednesday. 

  

 
 

Figure 24: Forecasts on test data using neural networks, 1, 2 and 4 steps ahead, in one-minute periods at two 
different times per day (7am and 5pm), from a weekday (Tuesday) and a weekend day (Saturday), with the model 

trained on Saturday the 4th of April 
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Figure 25:  Forecasts on test data using neural networks, 1, 2 and 4 steps ahead, in one-minute periods at two 
different times per day (7am and 5pm), from a weekday (Tuesday) and a weekend day (Saturday), with the model 

trained on Wednesday the 8th of April. 

The results obtained here are of crucial importance, since they help determine whether or not 
the forecasting system that we are going to integrate into the WP5 congestion control system 
is able to make reliable short-term forecasts. As shown by the results, the NTFF is capable of 
making forecasts up to 4 steps ahead within a very acceptable margin. The results are 
consistent across a variety of test sets, which correspond to different weekdays and weekend 
days. This suggests that we will be able to train a robust model for the congestion control 
protocol to be developed in UC#2. 

Neural networks on different window sizes. 

Since neural networks are the model that shows the best results in our experiments, we have 
tested the impact of the training window (i.e. the number of input samples used for training 
and forecasting) on the accuracy of the forecasts. The training time for neural networks is 
highly dependent on the dimensionality of the input. Therefore, in an online environment it is 
important to keep the window as small as possible, so that the model can be retrained and 
updated fast enough. 

Figure 27 shows the MAPE for 4 step forecasts using two neural network models (which 
performed best) trained on the two training days (Wednesday and Saturday). We trained the 
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model using different window sizes (25, 50, 100, 200 and 400), and tested them on a Tuesday 
and a Saturday from the test set. These figures show that increasing the window does not 
yield significant improvements, and a size of 25 is therefore enough for short-term forecasts. 
However, more experiments should be conducted in order to determine the optimal window 
size with respect to a tolerated error threshold. This is part of the ongoing WP4 work and will 
be integrated into the NTFF in the next release. 

Even though our main focus is on short term forecasts, which best suit the way in which 
bandwidth assignments will be predicted by the congestion control system being developed 
in UC#2, we have also tested the impact of window sizes on medium term forecasts. These can 
be useful in various network management and engineering scenarios, as shown for instance in 
[5]. Figure 28 shows the results of a set of experiments equivalent to those described above, 
but performing 60-step forecasts instead. Here we can see a much more significant impact of 
the window size. Among the tested settings, the best value (i.e. the point of diminishing 
returns) is clearly attained at 200. As expected, this result shows that increasing the number 
of steps requires a much larger window in order to keep the error from growing rapidly. 
However, the lower bound for the attainable error is significantly above the one observed for 
4-step forecasts, regardless of the window size. This motivates new tests using different 
models –other than the ones tested here- for medium-term forecasts in order to decrease this 
lower bound. An additional result shown by these figures is that a window of size 25 remains 
sufficient up to about 10-step forecasts, with increases in window size showing little 
improvement. 
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Figure 27: Forecasts using neural networks with different window sizes (25, 50, 100, 200 and 400), on a Tuesday 

and on a Saturday from the test set. 
 

  

  
Figure 28: Forecasts using neural networks with different window sizes (25, 50, 100, 200 and 400), on a Tuesday 

and on a Saturday from the test set. 

4.2 Conclusions and work in progress 

We have addressed the problem of building robust forecasting models for network traffic 
analysis. We have shown that the patterns underlying the analyzed network traffic data 
present regularities that can be exploited for producing reliable, short-term forecasts. 

We have proposed and developed a forecasting procedure specifically designed to predict 
short and medium term traffic behavior. This procedure has been integrated into a Network 
Traffic Forecasting Framework (NTFF), comprised of three modules: Data Preprocessing, 
Wavelet Decomposition and Forecasting Model Design. Up to our knowledge, there exists no 
open-source solution integrating these functionalities.  The first released version of NTFF has 
been initially designed with the goal of forecasting the number of open TCP sessions crossing 
an ISP’s core network at a given time period, which can be particularly useful in the 
congestion control protocols being developed in WP5 UC#2. The NTFF, however, can be used 
to forecast many different variables and could therefore be useful to tackle a variety of 
problems that arise in network management and engineering. The NTFF is available online at 
a git repository. 
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We have conducted a set of experiments using a sizeable sample of the ONTS dataset to 
validate the NTFF and test the considered models. Interestingly, models trained on a weekday 
or a weekend day perform equally well on weekdays and weekend days. This is consistent 
with the intuition that despite the observable changes in trend between weekdays and 
weekend days, small-scale dynamics remain similar. Regarding short-term forecasts (up to 4 
steps ahead), neural networks are the model that performs best, although all of the analyzed 
models can make forecasts of an acceptable reliability (2% of mean error). Therefore, the 
simplest model can be used in practice if computational resources are limited. All models will 
therefore be taken into account for WP5 UC#2, where network nodes are expected to be 
running the forecasting algorithms and computational efficiency is an important requirement. 

Even though our main focus is on short term forecasts, medium term forecasts can also be 
useful in various network management and engineering scenarios. In this regard, we have 
tested the ability of our procedure to make forecasts of up to 60 steps ahead, with neural 
networks and ARIMA performing best. Ridge regression, however, does not provide good 
results. The use of wavelet decompositions, forecasting each component separately, is not 
beneficial in general. We have only observed significant improvements when using wavelet 
transforms in the case of 60-step forecasts using ARIMA.  

The literature is scarce with publications showing effective forecasting techniques on datasets 
of the nature and scale of ONTS. This, along with the effectiveness of our forecasting 
procedure, makes for a compelling publication. Therefore, our results will be compiled and 
submitted to a journal in the field of network management and engineering. In addition, 
recent publications show an interest of applying these forecasting methods to specific 
network-related problems [5]. Since our experiments are promising, the results from applying 
our forecasting procedure to novel congestion control protocols as part of UC#2 are also likely 
to be part of a future publication in this area.  

The research activities that have been conducted reveal certain key challenges to be 
addressed in the field of time series forecasting, and specifically for network management and 
engineering. In the future, we plan to continue our research in order to improve our results 
and find solutions to these problems. One of these challenges is the choice of the window size 
to use for training the models and making forecasts when using neural networks. Up to our 
knowledge, this has not been sufficiently addressed in the forecasting literature, but it 
constitutes a key aspect of online model design. Another open issue in the application of 
neural networks is the design of network architecture, i.e. the number and layout of hidden 
neurons. The recent years have seen significant advances in this regard, but they have not yet 
been sufficiently explored in the field of forecasting. We plan to combine our forecasting 
procedure with these proposals in order to improve our results. We also plan to perform 
additional experiments using more sophisticated models, especially different neural networks 
that have proved effective in other domains, such as recurrent and convolutional neural 
networks. 

Another key issue is the use of wavelet transforms in combination with our forecasting 
models. Contrary to our expectations and the results reported in other domains, our 
experiments do not show clear benefits to be gained from their application. We have observed 
specific issues when using both the Haar (poor frequency bandwidth precision) and the 
Daubechies (artifacts at the edges of individual components) mother wavelets. We plan to 
study the extent to which the Daubechies artifacts can be mitigated using transforms of a 
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different order. We also plan to employ different mother wavelets to evaluate their 
applicability and usefulness in this domain. 

Finally, we plan to perform much more exhaustive experiments in order to answer certain key 
questions, such as: what is the expected lifetime of a forecasting model before retraining is 
necessary? Are these models sufficiently robust in the face of anomalous behavior? Is online 
training feasible and/or effective in practical scenarios? The availability of an enterprise-
grade cluster will make it possible to perform the necessary experiments to answer those 
questions, as it will allow us to process all of the ONTS traces that are available at the moment. 
A large scale time series analysis will also be carried out in order to reveal long-term trends 
and dynamics in network traffic. 
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5 Network Anomaly and Intrusion Detection 
Algorithms 

 

With the booming in the number of network attacks, the problem of network anomaly 
detection has received increasing attention over the last decades. However, current network 
anomaly detectors are still unable to deal with zero days attack or new network behaviors 
and consequently to protect efficiently a network. Indeed, existing solutions are mainly 
knowledge-based and this knowledge must be continuously updated to protect the network. 
However building signatures or new normal profiles to feed these detectors take time and 
money, As a result, current detectors often leave the network badly protected. 

To overcome these issues, a new generation of detectors has emerged which takes benefit of 
intelligent techniques which automatically learns from data and allows bypassing the 
strenuous human input: unsupervised network anomaly detectors. These detectors aim at 
detecting network anomalies in an unsupervised way, i.e. without any previous knowledge on 
the anomalies. They mainly rely on one main assumption [11] [12]: 

“Intrusive activities represent a minority of the whole traffic and possess 
different patterns from the majority of the network activities.” 

Thus, unsupervised network anomaly detectors exploit data mining algorithms to identify 
flows which have rare patterns and are thus anomalous. A state of the art on network 
anomaly detection has already been presented in section 6.1 of the deliverable 4.1. 

In this section, we start by describing two new algorithms which improves UNADA, an 
unsupervised network anomaly detector presented in the deliverable 4.1, in terms of 
scalability and execution time. The first one, PUNADA, is a parallel version of UNADA which 
allows distributing UNADA’s computation over a large cluster of servers and takes benefit of 
new solutions from the Big Data world to speed up its execution. The second algorithm, 
ORUNADA, is an Online and near Real-time Unsupervised Network Anomaly Detection 
Algorithm, which relies on an incremental grid clustering algorithm and a time sliding 
window.  

Finally this section provides comparative evaluation of existing unsupervised network 
anomaly detectors and underlines new challenges in the field.  

The PUNADA is open source and is available online at https://gitlab.com/ontic-
wp4/PUNADA. Details on how to use it are provided in Annex A. 

5.1 PUNADA: A Parallel Unsupervised Network Anomaly Detection 
Algorithm 

To uncover anomalies, unsupervised network anomaly detectors need to dive deeply into the 
network traffic to identify flows’ patterns. They are often time-consuming and unable to meet 
real-time requirements. To solve this issue, existing detectors may process only sampled data 
which implies that harmful traffic may not be processed and so not detected [13]. 

To overcome this limitation, we propose PUNADA, a parallelizable version of UNADA which 
distributes the computing of UNADA over a cluster of servers. For sake of completeness, we 

https://gitlab.com/ontic-wp4/PUNADA
https://gitlab.com/ontic-wp4/PUNADA
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start by describing UNADA. Then, PUNADA is exposed and finally the obtained results are 
presented and analyzed. 

5.1.1  UNADA: An Unsupervised Network Anomaly Detection Algorithm 

Flows in network traffic are usually represented by a large set of dimensions or features 
which represents statistics on the flows. However, in high dimensions, the curse of 
dimensionality phenomena occurs:  distance becomes meaningless and every point tends to 
become an outlier.  Due to this curse, unsupervised network anomaly detectors tend, in high 
dimensions, to detect every flow as an outlier, i.e. as an anomaly. UNADA is a robust and 
efficient detector which addresses this issue by applying subspace clustering and evidence 
accumulation techniques. UNADA divides the whole space in subspaces and cluster each 
subspace independently. It then aggregates the partitions obtained to get a picture of the 
whole space and identify the anomalies. This algorithm can be divided in three parts: the 
preprocessing step, the subspace clustering step and finally the evidence accumulation (EA) 
step. 

UNADA works on single-link packet-level traffic captured in consecutive time-slots of fixed 
length, ∆T. During the preprocessing step, packets are aggregated in flows using an 
aggregation flow key, which is usually the IP destination or the IP source associated with a 
mask (/32, /24, /16, /8).  Numerous features can be computed over a flow such as: nDsts (# 
of different IPdst), nSrcs (# of different IPsrc), nPkts (# of pkts), nSYN/nPkts, nICMP/nPkts, 
etc. Each flow is described by a set of A features in a vector xf. The set of vectors is denoted by 
a normalized matrix X = (x1, … , xF) representing the features space. 

 In a second step, UNADA divides the feature space 𝑋 in N subspaces 𝑋1,𝑋2, …𝑋𝑁 of two 
dimensions. It builds as many subspaces as there is combination of two dimensions, thus  
N = m(m − 1)/2 with m the total number of dimensions (features). A clustering algorithm is 
then applied on each subspace X𝑖 . It outputs a partition of the subspace where similar flows 
are grouped in clusters. Dissimilar flows are isolated and considered as outliers in the 
subspace. The dissimilarity between two flows is evaluated with a distance function like, for 
example, the Euclidian or the Mahalanobis distance function. Two flows which are close 
according to this distance function are considered as similar otherwise they are considered as 
dissimilar. UNADA is based on a density-based algorithm DBSCAN as it has the advantage to 
discover clusters of any shape in noisy data [14]. 

Finally, to combine the N obtained partitions, UNADA relies on an EA algorithm for Outliers 
identification (EA4O) which accumulates for each flow the level of abnormality it gets in each 
subspace. In a subspace, if a flow belongs to a cluster its level of abnormality is set to null, 
otherwise its level of abnormality is proportional to its distance with the centroid of the 
biggest cluster. A dissimilarity vector D = (d1, . . , df … , dF)  is built where each element df 
reflects the accumulated level of abnormality of a flow f. To select the most pertinent 
anomalies, the dissimilarity vector is sorted and an anomaly detection threshold 𝐷𝑇 is 
defined. 𝐷𝑇 is set at the value for which the slope of the sorted dissimilarity presented a 
major change. Every flow with a dissimilarity score above this threshold is considered as 
anomalous. 
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5.1.2  Evaluation of UNADA 

Initial evaluations of the detection performance of UNADA have already been performed by 
Pedro Casas during its postdoctoral work at LAAS-CNRS under the direction of Philippe 
Owezarski [15]. The evaluations were performed on a public ground truth: the MAWI dataset. 
This dataset consists of labeled 15 minutes network traces collected daily from a trans-Pacific 
link between Japan and the United-States since 2001 until now. The labels have been obtained 
by combining the results obtained by four different anomaly detectors [16]. 

Figure 29 depicts the ROC (Receiver Operating Characteristic) curves obtained with the MAWI 
data set with two different keys for flow aggregation; the IPsrc and the IPdst. The 
performances are compared with three previously used approaches for unsupervised 
network anomaly detection: DBSCAN, K-means and PCA. The first two consists in applying 
either DBSCAN or k-mean to the feature space matrix X to identify the largest cluster Cmax and 
compute the Mahalanobis distance of all flows lying outside Cmax to its centroid. The PCA 
based approach uses the subspaces method [17] applied to the X matrix. The results show 
clearly that UNADA outperforms the other methods. This difference can be explained by the 
fact that UNADA detects anomalies on subspaces while the other detectors process directly on 
the whole space and thus may suffer from the curse of dimensionality. 

 
Figure 29 : ROC curve obtained with the MAWI dataset (UNADA is called UNIDs) 

 

To evaluate UNADA in terms of execution time, ONTS traces have been used. These traces 
contain the 64 bytes of the header of each IP network packet that crosses the link of 
Interhost‘s core network, Interhost being a subsidiary of SATEC. More information about this 
collect can be found in deliverable D2.4. This link is crossed by around 300,000 packets per 
second and 1.2Gbit/s of data. As only headers are stored, UNADA, to be real time, should then 
be able to process 19.2 Mbit of data per second and thus 1.6 Terabytes per day. 
For UNADA’s evaluation, we analyze 60 slots of ONTS traffic, the aggregation key is set to 
IPsrc/16 and the time slot ∆T to 15 seconds. During a slot, 4,500,000 packets are collected. 
The evaluation does not consider the flows' features computation time; we assume that a 
dedicated hardware/process performs this task upstream, as there already exists powerful 
tool to complete this task like [18]. Figure 30 displays UNADA’s mean execution time of one 
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slot obtained on a single machine with 16 Gbit of RAM and an Intel Core i5-4310U CPU 
2.00GHz. The results show that UNADA’s execution time is mainly due to the clustering step 
(DBSCAN) and that it increases nearly exponentially with the number of features. It can be 
noticed that the other steps’ execution time (in black on the histograms) are nearly 
independent of the number of features. To be an online system, UNADA should process the 
data faster than they arrive, i.e.; in less than 15 seconds. However, to process 15 seconds of 
ONTS traces with 16 features per flows, UNADA takes nearly fifty seconds. By accumulating 
the additional time necessary to complete the detection, the interval of time between the 
reception of the 100th slot and its processing would be of approximately one hour. Therefore, 
UNADA is not fit for online detection as it is; the time between an anomaly’s occurrence and 
its detection increases linearly and is in the order of hours after only a few hundreds of 
detection’s cycles. 
 

 
Figure 30 : Mean execution time of UNADA on 15 seconds of ONTS traces aggregated at the IPsrc  

  

5.1.3  PUNADA’s description 

The idea of PUNADA is to process UNADA’s subspaces in parallel; the subspaces are 
distributed over a cluster of servers which independently perform DBSCAN and the EA40 
algorithm. 
PUNADA is implemented using Spark 1.2.0. [19] to distribute its computations. Spark is an 
open source cluster computing framework developed by the Apache Software Foundation. 
Spark technology has been selected for realizing the analytics engine of the ONTIC Big Data 
architecture (see deliverable D2.3 for more details on the architecture and the Spark 
technology). PUNADA’s implementation relies on two main Spark’s operations (see Figure 
31): 

• A map operation which sends across the cores of the cluster the processing of the 𝑁 
subspaces. The clustering and the EA of each subspace are thus parallelized. The map 
function returns a dissimilarity vector for each subspace. 

• A reduce operator which aggregates the dissimilarity vectors obtained in each 
subspace. It simply sums the dissimilarity vector of each subspace to obtain the global 
dissimilarity vector. 
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Figure 31 : UNADA’s deployment over a cluster of servers with Spark 

 

5.1.4  Evaluation of PUNADA 

The validation has been performed on the Grid5000 platform [20], a large-scale and versatile 
testbed which provides access to a large amount of resources: 1000 nodes, 8000 cores, 
grouped in homogeneous clusters. We have used nodes with 8 GB of RAM, two CPUs at a 
frequency of 2.26GHz, each with 4 cores. PUNADA has been validated in terms of scalability 
and execution time. 
Figure 32 displays PUNADA’s execution time as a function of the number of features and cores 
considered. As it can be seen, PUNADA's execution time for each set of features decreases as 
the number of cores increases until reaching a threshold.  Note that, this threshold is inferior 
to the number of subspaces generated for each set of features. Furthermore, the difference in 
execution time of PUNADA with different number of features tends to decrease while adding 
new cores. Indeed, with 40 cores, we can observe that the execution time of PUNADA is nearly 
the same, around 4ms, no matter you use 8, 12 or 16 features. It implies that a high number of 
features does not prevent any longer from using the detector. 

 
Figure 32 : Execution of PUNADA according to the number of cores and number of features 

 
Figure 14 depicts the gain in execution time of PUNADA as a function of the number of cores 
and features. This gain increases with the number of cores till reaching a threshold. 
Furthermore, it can be noticed that the gain in execution time, with 8 and 12 features, from a 
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certain number of cores, decreases. These phenomena can be attributed to an over-
dimensioned cluster for this amount of features. As a result, PUNADA’s execution time is 
affected by the communication overhead of the distributed computing environment. 
 

 
Figure 33 : Gain in time of PUNADA according to the number of cores and features 

 
In both the figures above, a limit in the number of cores beyond which the execution time of 
PUNADA does not improve can be observed. One would expect this limit to be equal to the 
number of subspaces (which is in the order of the square of the number of features), however 
this limit is largely inferior. After an inspection of the Spark log, this limit can be attributed to 
the serializing time which becomes larger than the processing time. 

5.1.5  Conclusion and Future Works 

PUNADA is a parallel version of UNADA which distributes the subspaces to process to a 
cluster of servers. It benefits of the performance of an emerging and powerful tool from the 
big data world: Spark. Evaluation results show that the computation distribution (1) improves 
significantly processing time till reaching a limit and (2) allows execution time to be nearly 
independent of the number of features. Thus, the number of features can be largely increased, 
thereby improving the quality of the detection. PUNADA is a step forward to real-time 
detection. However, the evaluation also underlines a limit in the number of cores that can be 
added to enhance PUNADA execution time. Thus, to enhance the detection time more in depth 
changes of UNADA are required.  
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5.2 ORUNADA: An Online and Real-time Unsupervised Network 

Anomaly Detection Algorithm 

As already stated, unsupervised network anomaly detectors have emerged to overcome the 
limitation of knowledge-based anomaly detection systems. These systems can detect 
anomalies in network traces without relying on signatures, training or labelled traffic of any 
kind. These new systems have to deal with two main issues for which few solutions have been 
proposed and which prevent them from being real-time and online: 

• A high complexity. Indeed, an online detector must be able to process the network 
traffic as soon as it arrives which is rarely the case with existing unsupervised 
network anomaly detectors as they are often very slow due to their high complexity. 

• The use of consecutive large time-bins of network traces. Indeed, to identify 
intrusions, detectors must be applied on large network traffic traces which must last 
dozens of seconds. Therefore, a long time may elapse between the occurrence and the 
detection of an anomaly, during which the network may be under attack.   

Among existing detectors, UNADA, a system developed in the LAAS-CNRS’s laboratory has 
shown to achieve good performance. However, UNADA suffers from high complexity and the 
use of consecutive large time-bins which prevent it from being an online and real-time 
detector. In the previous section, we have proposed PUNADA a parallel version of UNADA 
which allows distributing UNADA computation over a cluster of servers. It decreases UNADA’s 
execution time by a factor of 10. However, above a certain number of cores the gain in time 
tends to stabilize and even decrease.  
In this section, we propose ORUNADA, an Online and near Real-time version of UNADA which 
can detect in continuous network anomalies. This is made possible thanks to a sliding window 
and an incremental grid clustering algorithm. While usual clustering algorithms re-compute 
the whole space when few data change, an incremental clustering only updates the old 
partition. Thus, it can re-compute rapidly and efficiently the clusters when few data change. 
The time-sliding window of ORUNADA enables to update the feature space more frequently 
and thus handle, in a continuous fashion, the incoming traffic which can then be efficiently and 
rapidly processed with an incremental grid clustering to identify the anomalies. The results 
show that ORUNADA can indeed process in continuous the incoming traffic and can thus be 
applied online and reach near real-time performance.  
ORUNADA is open source and is available online at https://gitlab.com/ontic-wp4/ORUNADA. 
Furthermore, UNADA is also open source and is available online at https://gitlab.com/ontic-
wp4/UNADA. Details on how to use these packages are provided in Annex A.  

https://gitlab.com/ontic-wp4/ORUNADA
https://gitlab.com/ontic-wp4/PUNADA
https://gitlab.com/ontic-wp4/PUNADA
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5.2.1 The feature space update 

Usually, network anomaly detectors perform detection on consecutive large time-bins of 
network traffic, which implies that a long time may elapse between the anomaly occurrence 
and its detection. To overcome this issue, we propose to use a time sliding window in 
association with an unsupervised network anomaly detector. The proposed method is generic 
and could be used with any sufficiently fast and efficient detector.  

 
Figure 34 : Feature space computation at the end of each time-bin of ∆𝐭 seconds 

 
To detect anomalies, consecutive time-bins of incoming network traffic are preprocessed. The 
traffic is collected during a slot or a time-bin of ∆t seconds which must be large enough to 
catch flows patterns. Some evaluations in [21] have shown that a slot of 15 seconds maximize 
the detection’s performance. The traffic is then aggregated in flows with an aggregation key 
which can be for example the IPsrc or the IPdst with a mask /32, /24, /16, /8. Each flow is 
then represented by a set of A features in a vector xf. The set of vectors of every flow is 
denoted by a normalized matrix X = (x1, … , xF) representing the features space with  F being 
the total number of flows. The detector is then applied on the matrix X to identify the 
anomalies.  The process of consecutive time-bins is illustrated in Figure 34. 
 

 
Figure 35 : Feature space’s update at each micro-slot using the time sliding window 

 
In order to detect the anomalies sooner and to avoid that attacks damage too deeply the 
network, we propose to update the feature space and launch the detector in a near continuous 
way, i.e. every micro-slot of δt ms. However, with a feature space computed on only the 
network traffic contained in a micro-slot, a detector may be unable to discriminate normal 
from anomalous patterns; the feature space may not contain enough information to identify 
flows’ pattern. 
To overcome this issue, a time sliding window of  ∆t s is set, which slides every δt ms. Each 
time the window slides, a new feature space X is computed with the network traffic contained 
in the current window (see Figure 35). To fasten the feature space computation, a micro 
feature space Mi is associated to each micro-slot of a window. This micro feature space is 
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computed with the packets contained in the micro-slot. The current window stores in a FIFO 
queue Q = (M1, … Mm) the micro feature spaces associated to each of its 𝑚 micro-slot,  Mm is 
the micro-feature space associated with the window’s oldest micro-slot and M1 with the 
newest.  𝑚 is the number of micro-slots per window and is equal to ∆t/δt. When the window 
slides, a new feature space Xnew can be efficiently computed as follows: 
 

𝑋𝑛𝑛𝑛 = 𝑋𝑜𝑜𝑜 + 𝑀𝑛𝑛𝑛 −𝑀𝑚 
 
where Xold is the previous features space, Mnew is the micro feature space of the new micro-
slot and Mm is the oldest micro feature space stored in Q. After the update of the matrix X, the 
queue M is updated (Mm is removed and  Mnew is inserted in the queue) and the detector is 
launched with the new feature space Xnew. 
This method can be applied only if the algorithm is sufficiently fast to process the feature 
space X in less than δt ms.   To reach this goal, we devised a new incremental version of 
UNADA on top of the time sliding window, ORUNADA. The idea is to replace DBSCAN by an 
incremental grid clustering algorithm IGCA (Incremental Grid density-based Clustering 
Algorithm) described in [22] which exhibits a low complexity while it efficiently updates 
existing partitions.  

5.2.2  An Incremental unsupervised network Anomaly Detection 

UNADA suffers from high complexity mainly induced by the clustering step during which each 
subspace is partitioned with DBSCAN. Indeed, DBSCAN’s complexity is in  O(n2) where n  the 
number of points to partition. This latter can be improved in O(n. log(n)) by using a multi-
dimensional index like a R-tree or a R*-tree [23]. These tree data structures are optimized for 
indexing spatial data: they can efficiently store and query spatial objects like points and 
rectangles. 
To further improve the complexity of the clustering step, we focus our attention on grid 
clustering algorithms which complexity is often linear with the number of points. A grid 
clustering algorithm divides the space in cells which form a grid (hence its name). Instead of 
clustering directly the points as usual clustering algorithms do, a grid clustering algorithm 
partitions the cells where points are placed. As the number of cells is usually very inferior to 
the number of points to partition, these solutions significantly improve the clustering’s 
execution time compared to standard approaches. 
Among available grid clustering algorithms, GCA (Grid density-based Clustering Algorithm) 
[22] offers many advantages; it is a density based grid clustering, able to discover any shape of 
clusters and to identify noise. It takes as input two parameters, l the length of each cell and 
minDensePts, the minimum number of points a cell has to contain to be considered as dense 
enough to be partitioned. We had another parameter minPts which represents the minimum 
number of points that a group of dense cells must possess to be considered as a cluster. We 
advise to set minDensePts at 1, so that GCA has a behavior as close as possible to DBSCAN.   
Let 𝑐 be the number of cells,  𝑐𝑛𝑛  the number of non-empty cells and 𝑐𝑜 the number of cells 
which are dense enough to be partitioned, GCA’s time complexity is O(n + 𝑐𝑜 . log(𝑐𝑛𝑛)). As 
usually 𝑐𝑜 < 𝑐𝑛𝑛 ≪ 𝑐 ≪ 𝑛 holds, GCDA is much faster than DBSCAN. Thus, GCDA should 
replace efficiently DBSCAN in UNADA to improve its execution time. 
In the following, we make the assumption that, at each update of the feature space, i.e. at 
every micro-slot, the feature space changes slightly. This assumption is clearly realistic as few 
packets arrive and leave a sliding window of a dozen of seconds in a few milliseconds. As the 
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matrix 𝑋 changes slightly from one micro-slot to another; it would make sense to update the 
partition of the feature space X instead of re-computing it entirely at each micro-slot. 
Incremental clustering algorithms allow updating previous clusters when few data change. 
These solutions take benefit from the fact that deleting a point or adding a point affects the 
current partition of the data space only in the neighborhood of the point; it can then be 
efficiently updated by re-computing a few points. There exists an Incremental version of GCA 
(IGCA) which, thanks to its grid and incremental nature, can update efficiently an existing 
partition with a low complexity. It takes as input the same parameters of GCA. By using IGCA, 
the updated feature spaces could be efficiently processed and the anomalies rapidly identified.  
 

 
Figure 36: ORUNADA’s operation 

 
The online and incremental version of UNADA (ORUNADA) takes advantage of both the time 
sliding window and the incremental grid clustering algorithm IGCA. ORUNADA can be divided 
in three steps. The preprocessing step during which the feature space X is updated every 
micro-slot. The clustering step divides the feature space X in N subspaces of dimension 2 
(X1, X2. . Xn) and updates the partition of each subspace to identify outliers. To update the 
partition of a subspace, IGCA needs to know the points to add and the points to remove from 
the previous partition. Thus, for each subspace i, two matrices are provided in order to update 
its partition: X irem and  X iadd which describe respectively the points (or flows) to remove and 
to add.  The updated feature space matrix Xinew of a subspace i can be computed as follows: 
 

Xinew = Xiold − Xirem + Xiadd 
 
For each subspace i, IGCA outputs a new partition Pi. These partitions are then combined 
using an EA algorithm for Outliers identification (EA4O), which has been previously described 
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in section 5.1.1. and which outputs a dissimilarity vector D. This dissimilarity vector 
associates to each flow a score of abnormality. Flows which score is beyond a certain 
threshold are considered as anomalies, this threshold is fixed at the change in the slope of the 
sorted dissimilarity vector. Figure 36 gives an overview of ORUNADA’s operation.  

5.2.3 Evaluation of ORUNADA 

We evaluate ORUNADA with the same network traces used by Pedro Cazas et al. [15]  to study 
UNADA’s performance in terms of detection: the MAWI network trace from the 30th of June 
2006 (see Figure 29 for the results obtained by Pedro et al. [15]). This trace lasts fifteen 
minutes and is made up of 7.3M packet headers. As previously, the aggregation is done at the 
IP source /16 and the time-bin is set at 15 seconds. The evaluations have been performed on a 
single machine with 16 Gbit of RAM and an Intel Core i5-4310U CPU 2.00GHz. These 
evaluations aim at answering the three following questions? 

1. By which factor UNADA can be speedup with a grid clustering like GCA? 
2. Does grid clustering impact the detection performance of UNADA? 
3. Can ORUNADA detect in near real-time the anomalies?  

 
Figure 37: Execution time of UNADA  

 
Figure 37 depicts the mean execution time (over 60 experiments) of UNADA according to the 
number of flows’ features and the clustering algorithm used. The y-axis has a log-scale so that 
the execution time of UNADA with GCA can be observed. The graph shows that GCA improves 
clearly the execution time of the detector. This observation is confirmed by Figure 38 which 
displays the speed up factor of UNADA with GCA compared to DBSCAN and DBSCAN with R*-
tree. Indeed, it speeds up the execution time by a factor of at least 100 for DBSCAN and 18 for 
DBSCAN with an R*tree. Furthermore, it can be noticed that the detector execution time could 
be further improved by distributing the computation of every subspace on a cluster of servers 
as proposed in PUNADA. 
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Figure 38 : Speedup factor of UNADA with GCA compared to DBSCAN and DBSCAN with R*tree 

 
This gain in execution time could be at the cost of a degradation of UNADA detection. To 
determine whether GCA degrades UNADA’s detection performance, we compare the similarity 
of the anomalies found by UNADA-CGA and UNADA-DBSCAN with 17 features and an 
aggregation at the IPsrc/32. To compare the set of anomalies found by these two detectors, 
we use the Jaccard index. It is a statistic which reflects the similarity between two sample sets. 
Let A  be a first set and B a second set, the similarity between A and B according to the Jaccard 
index is computed as follows: 

J(A, B) =
|A ∩ B|
|A ∪ B|

 

If the index is close to one then the two sets are very similar and if it is close to 0 then they are 
considered as very dissimilar. However, this index does not tell anything about the anomalies ‘ 
rank similarity, to overcome this issue we use a second similarity measure the Spearman's 
rank correlation coefficient. Let a set of n elements, each element is associated to two ranks xi 
and yi which are stored in two different vectors X and Y.  The Spearman rank correlation 
between these two vectors is computed as follows:  
 

ρ = 1
6.∑ di2

n(n2 − 1)
 

 
where di = xi − yi is the difference between the two ranks given to an element 𝑖 and 𝑥𝑖 ∈ 𝑋 
and 𝑦𝑖 ∈ 𝑌. However, as the set of anomalies for UNADA-GCA and UNADA-DBSCAN may be 
slightly different, we have modified the formula such as when a flow is an anomaly for only 
one detector di is set as di = xi − (maxRank(y) + 1) where maxRank(y) is the maximum rank 
of the vector Y. To point out  the difference between the two clustering algorithms (DBSCAN 
and IGCA), we also compute the Jaccard index and the Spearman rank correlation coefficient 
for every flow which has been detected as an outlier in at least one subspace.  A Spearman 
rank correlation of 1 reflects a perfect ranking similarity and a Spearman rank correlation 
coefficient of -1, a complete dissimilar ranking. 

To obtain the rank of a flow or of an anomaly the dissimilarity vector is sorted in descending 
order. As the dissimilarity vector D associates to each flow a score of dissimilarity, the rank of 
a flow equals its position in the sorted dissimilarity vector.  
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Figure 39: Similarity between UNADA-GCA and UNADA-DBSCAN 

 
Figure 39 shows the mean similarity between the results obtained by UNADA-GCA and 
UNADA-DBSCAN. In terms of anomalies, it can be noticed that the Spearman rank correlation 
coefficient and the Jaccard index is quite close to 1 (0.98) which implies that using GCA 
instead of DBSCAN has nearly no impact on the detection performance of UNADA.  We can 
also observe that these two detectors don’t’ find the same outliers in every subspace as the 
Jaccard index  and the Spearman rank correlation coefficient is respectively of 0.8 and 0.68 for 
flows which have been found outliers in at least one subspace (in yellow on the figure). Thus, 
GCA and DBSCAN do not output the same partitions. However, they both detect extreme 
outliers, i.e, outliers which are very dissimilar in every subspace and are thus anomalous. As a 
consequence, the anomalies found by UNADA-GCA and UNADA –DBSCAN are (nearly) the 
same even though GCA and DBSCAN outputs different partitions. DBSCAN can be replaced by 
GCA in UNADA with nearly no impact on the detection performance, while improving its 
speed-up by a factor of 100. 
  
To answer the third question, we evaluate ORUNADA execution time with different micro-
slots sizes. The experiments have been performed using 15 features, see Figure 40. It can be 
noticed that a reduction of the micro-slot size improves ORUNADA mean runtime till reaching 
a threshold of around 0.2s. ORUNADA is able to process the incoming traffic faster than it 
arrives as long as the micro-slot size is superior or equal to 0.3 second. The results confirm 
our assumption that the feature space changes slightly from one micro-slot to another 
(otherwise they would have been no gain in UNADA runtime with the decrease of the micro-
slot size). And most important, the results prove that ORUNADA can detect online and in near 
real -time anomalies (less than half a second elapse between an anomaly occurrence and its 
detection) with a detection performance equivalent to UNADA. 
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Figure 40: ORUNADA’s execution time with different size of micro-slot 

 

5.2.4  Conclusion and Future works 

ORUNADA is an Online and Real-time Unsupervised Network Anomaly Detector which relies 
on a time sliding window to process the incoming traffic and on an incremental grid clustering 
to update efficiently the evolving feature space partition and. Our approach to compute flows’ 
features based on a time sliding window is generic enough so that any detector which is fast 
enough can be implemented on top of it and thus detect anomalies in a continuous way. The 
feature space is processed by an incremental grid clustering algorithm which allows speeding 
up anomalies detection by a factor of at least 100 compared to usual clustering algorithm. 
ORUNADA evaluation show that our detector could detect an anomaly in less than half a 
second after its occurrence and that it could thus be used online and perform near real-time 
detection. To further improve its speed, we have planned to distribute its computation over a 
cluster of servers using tools from the Big Data world such as Spark Streaming. Furthermore, 
we would like to evaluate it on more recent data. In particular, on the ONTS traces collected in 
the context of the ONTIC project. 
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5.3 Study and Evaluation of existing unsupervised network anomaly 

detectors 

This study has been motivated by the lack of existing independent evaluation of current 
unsupervised network anomaly detectors. It aims at pointing out current issues and 
challenges in the field of unsupervised network anomaly detection and at comparing the 
performance of a set of the most famous detectors. This study reveals some surprising results: 

• Existing systems are sensitive to the tuning of their parameters, especially those which 
output scores, as there is no clear distinction between scores of anomalous and benign 
flows.  

• There exists for most of the algorithms no rule to tune them. An important effort 
should be made to propose solutions for their optimal tuning. This study offers a 
beginning of tuning guidelines. 

• The curse of dimensionality has a very low impact on detection performance as long as 
the algorithms do not rely on distance measures unless they specifically deal with high 
dimensions. 

• The detection performance of a naïve algorithm is as good as, or even better than some 
of very complex solutions. This observation may be due to the fact that network 
anomalies are often flows which deviate strongly in at least one dimension and can 
therefore be easily identified. 

In the following a big picture of network anomaly detectors principle is presented. Then, a set 
of unsupervised network anomaly detectors is described and the tuning of their parameters is 
discussed. The evaluations of these detectors are presented and the results are analyzed. The 
detectors are compared in terms of detection performance, detection similarity, execution 
time, parameters’ sensitivity and curse of dimensionality. 

5.3.1  Unsupervised network anomaly detection’s principles 

Existing unsupervised network anomaly detectors consist of two main steps, the 
preprocessing and the outlier detection step and an optional third one, the postprocessing 
step). The first step aims at preprocessing the incoming traffic which can be captured one or 
many links in consecutive time-bins. The packets are then aggregated in flows according to a 
specific flow key which can be, for example, the IP source, the IP destination, the port 
numbers, etc. Finally, a set of statistics are usually built to describe each flow like the number 
of IP destinations, of packets, of ICMP packets, of number of ports, etc. The choices of the time-
bin’s length, of the aggregation key and of the features may have a huge impact on detection 
performance; tuning of such preprocessing‘s parameters is out of the scope of this study. A 
normalized feature space matrix X of dimension 𝐹 ∗ 𝐷 is built, with D being the number of 
flows’ features (or number of dimensions) and 𝐹 the total number of flows.  
The outlier detection step aims at detecting anomalous flows or outliers in the data set 
generated previously; the feature space 𝑋. Their goal is to identify flows which have different 
patterns from the rest of the traffic. This phase has received most of the researchers’ attention 
as the detectors’ intelligence relies in it. The outlier detection algorithm must be finely tuned 
to discover anomalies. 
The postprocessing step aims at extracting and displaying information about the anomalies to 
assist network administrators in their task. This stage has received little attention for the 
moment even though it is crucial. Without any postprocessing step, a network anomaly 
detector may be useless for the network administrator who may be unable to understand, sort 
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and classify the spotted anomalies in order to take the appropriate counter-measures. This 
stage and its output can take different forms, for example in [15] the authors built signatures 
from the anomalies, in [17] they classify the anomalies using clustering techniques and in [24] 
they remove persistent anomalies to ease the network administrator’s task. 

5.3.2 Outlier detection algorithms 

To identify flows which have different patterns from the rest of the traffic, unsupervised 
network anomaly detectors rely on outlier detection algorithms which can be classified in 
three categories [25]: algorithms based on statistical models, algorithms based on spatial 
proximity and finally algorithms which deal with high dimensions. In the following, 𝑑 refers to 
the number of dimensions or features used to describe the flows and 𝑝 to the number of 
points or flows in the data or feature space. These algorithms can either have a global view 
which implies that they consider the whole data to evaluate a point’s abnormality or a local 
view, in which case only the neighborhood of a point is used for its evaluation.  Furthermore, 
outlier detection algorithms can either output a label for each point (normal point vs 
abnormal point) or a score which reflects its outlierness. In the case of scores, the outlier 
detection algorithm must be followed by an additional step to extract anomalous points 
whose scores are above a certain threshold. 
Outlier detection algorithms based on statistical models rely on the assumption that the 
feature space has been generated according to a statistical distribution. Outliers (anomalies) 
are then flows that deviate strongly from this distribution. Many statistical approaches have 
been applied to unsupervised network anomalies detection such as histograms [26], EM-
clustering [27] and the subspace Principal Component Analysis (PCA) method [17]. The 
subspace PCA method assumes that the data follows a jointly Gaussian distribution. Statistical 
tests like the Q-statistic [28] or the chi-squared test [29] offers a solid theoretical framework 
to this approach. It could be objected that the network traffic and thus the feature space may 
not follow closely a jointly Gaussian distribution; however Jensen and Solomon point out that 
the Q-statistic test changes little even when the underlying distribution of the original data 
differs substantially from Gaussian [28]. 
 

Table 1: Comparison of outlier detection algorithms 

Alg. Output View Type Deal with the 
Curse of dim. 

Time 
Complexity 

Parameters 

PCA [17] Scores Global Statistical  No 𝑂(𝑑3 + 𝑝𝑑2
+ 𝑑. 𝑝2) 

k: nb of PCs 

DBSCAN 
[14] 

Labels Global Spatial 
proximity  

No 𝑂(𝑝. 𝑙𝑙𝑙(𝑝)) r: radius 
minPts: min. nb of 
points 

LOF [30] Labels Local Spatial 
proximity  

No 𝑂(𝑝. 𝑙𝑙𝑙(𝑝)) nn: nb of neigh. 

UNADA  
[15] 

Scores Global 
by 
subspace 

Spatial 
proximity 

Yes 𝑂(𝑑2. 𝑝) l: length 
minPts: min. nb of 
points 

SOD [31] Scores Global by 
subspace 

Spatial 
proximity 

Yes O(d.𝑝2) nn: nb of neigh. 
l: nb of ref. points 
α: thresh. signif. 
of a dim  (0.8) 

Naive 
Alg. 

Labels Global by 
subspace 

Statistical Yes O(p) β: nb of std from 
the mean 
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The subspace PCA approach divides the whole space of dimension 𝑑 (number of features) on 
two subspaces, the normal subspace made up of the k dominant principal components (PCs) 
and the abnormal or residual subspace made up of the d − k PCs left. There exist two variants 
of the subspace PCA method, however in this study we only evaluate the most popular one 
described in [17]. In this approach, one score of outlierness is computed for each point. A 
point’s score is proportional to its distance, once projected on the abnormal subspace to the 
abnormal subspace. Points which are assigned a high score are more likely to follow a pattern 
which does not conform to the “normal or natural one'” and they are considered as outliers. 
This approach takes as input one parameter 𝑘 which defines the number of PCs of the normal 
subspace. Ringberg et al. [32] study different existing techniques for setting 𝑘 and show that 
they are not reliable. Therefore, there exists, to our knowledge, no accurate rule to fix this 
parameter. However, their study points out that it must be picked such that the 𝑘 dominant 
PCs capture most of the total deviation of the data. This method can be divided in three steps: 
(1) the computation of the feature space’s principal components (2) the computation of the 
projection matrix onto the abnormal subspace and finally (3) the projection of the data on the 
abnormal subspace. The time complexity of these three stages is respectively 𝑂(𝑑3 + 𝑝𝑑2), 
𝑂(𝑘. 𝑝2) and  𝑂(𝑑.𝑝2). As  𝑘 <  𝑑,  the overall complexity of PCA is 𝑂(𝑑3 + 𝑝𝑑2 + 𝑑.𝑝2). 
 
Many outlier detection algorithms rely on models based on spatial proximity like DBSCAN 
[14], K-mean [33], LOF [30] etc. Algorithms based on spatial proximity should be used with an 
index like the r-tree or the k-d tree to improve their time complexity. These detectors are 
based on the idea that points isolated from the other are outliers. 
 DBSCAN [14] is a density-based clustering algorithm which groups points that are closely 
packed together in clusters. Points that lie in low-density regions are considered as outliers. It 
can discover clusters of various shapes and sizes from a large amount of data which contains 
noise. It takes two parameters, a radius 𝑟 which defines the neighborhood of a point and 
𝑚𝑖𝑛𝑚𝑚𝑚 which defines the minimum number of neighbors for a point to be a cluster's core 
point.  There is no consensus about the method to use in order to fix these parameters, 
especially since the tuning of these parameters may differ with the data and the problem 
considered. In order to avoid that DBSCAN groups flows which belong to similar anomalies in 
the same cluster (they won't then be detected as anomalies) 𝑚𝑖𝑛𝑚𝑚𝑚 must be superior to the 
maximum number of flows which could be induced by a same type of anomaly. Furthermore, 
as anomalies are flows which deviate strongly from the others, 𝑟 must be chosen large enough 
so that points which are slightly different from the majority belong to a cluster. To reach this 
goal, we propose to set 𝑟 as a percentage of the maximum distance between each pair of 
points and 𝑚𝑖𝑛𝑚𝑚𝑚 as a percentage of the total number of flows.  Its time complexity is 
𝑂(𝑝. 𝑙𝑙𝑙(𝑝)) [14]. 
 
LOF (Local Outlier Factor) [30] is a local spatial-based approach which assigns to each point 
an outlier factor, which represents its degree of outlierness regarding its local neighborhood. 
A point whose density is much lower than its 𝑛𝑛 nearest neighbors is considered as an outlier. 
Thus, LOF is able is to deal with regions of different densities. It takes as input one parameter 
𝑛𝑛, which represents the number of nearest neighbors considered to evaluate a point’s 
abnormality. The value of 𝑛𝑛 must be carefully chosen. Indeed, if  𝑛𝑛  is too low, LOF may then 
compare an anomalous flow only with other anomalous flows of the same type and not detect 
them as outliers. To overcome this issue, 𝑛𝑛 must be set larger than the maximal number of 
flows induced by a same type of attack. For example, if there is at maximum 9 flows induced 
by SYN attacks, then 𝑛𝑛 should be fixed larger than 9. We propose to fix it as a percentage of 
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the total number of flows. For medium to high-dimensional data, the algorithm provides an 
average complexity of 𝑂(𝑝. 𝑙𝑙𝑙(𝑝)). 
 
UNADA has been devised to deal with the curse of dimensionality by using subspaces and 
ensemble clustering techniques. It has been proposed by the LAAS-CNRS in [15] and 
presented previously in this deliverable. However for the sake of this section’s completeness, 
it is described briefly. UNADA divides the whole feature space made up of d dimensions in 
�d

2� subspaces of 2 dimensions. It then applies DBSCAN on each subspace. As proposed in 
section 5.1.2, we replace DBSCAN by GCA to improve UNADA’s speed. It finally combines 
multiple partitions in one final partition, by summing the distance between each outlier with 
the center of the biggest cluster in every subspace. This sum represents the score of a point. It 
is all the more important that the point is an anomaly. It takes two parameters:  

• minPts which represents the minimum number of points to form a cluster and can be 
set as a percentage of the total number 𝑝 of points (or flows). 

• 𝑙 which represents the length used to divide each dimension in cells (or intervals), it 
can be set as a percentage of the average distance between points in each subspace.  

 
The Subspace Outlier Degree (SOD) [31] is a local outlier detection which deals with high 
dimensions by selecting in an intelligent way subspaces to compute each point's score. It 
computes a score for each point which reflects how well it fits to the subspace that is spanned 
by a set of 𝑙 reference points. The  𝑙 reference points of a point are chosen such that they share 
a high number of nearest neighbors with the point. The subspace is then made up of the set of 
dimensions whose variance is low with respect to the set of  𝑙 reference points. SOD takes 
three parameters: α that specifies a threshold to decide about the significance of a dimension, 
l the number of reference points and nn the number of nearest neighbors require computing 
the shared nearest neighbors. The authors advise to set α at 0.8. Furthermore, to avoid 
comparing an anomalous point with only similar anomalous points, 𝑙 should be chosen much 
higher than the maximum number of flows related to a type of attack.  Its time complexity is 
(𝑑. 𝑝2) . 
 
For the sake of comparison, we propose a naive outlier detection algorithm which aims at 
detecting points with extreme values. For each dimension, this algorithm detects as outliers 
the points which are β standard deviations from the mean. As it deals with one dimension at a 
time, our naïve algorithm should be able to deal with high dimensions 
 
For algorithms (LOF, subspace PCA, SOD, UNADA) which output scores, a final step is required 
to extract outliers. We identify, in the literature, three main methods to perform this task: 

• The top k method which selects as outliers the k points with the biggest scores. 
However, for this technique to get good results, the number of anomalies should be 
known in advance which is rare.  

• The knee method. This approach sorts the scores and plots them. It then searches the 
knee point on the plot. This knee point represents the threshold beyond which points 
are considered as outliers. However, there is no rule to choose this knee point and 
depending whether it is fixed at the beginning, at the middle or at the end of the knee, 
the obtained results can be very different and may lead to a very high number of 
incorrect classifications (see Figure 41). Furthermore, most articles don’t provide any 
algorithm to perform this task. In some cases, the selection of the knee point is made 
by hand which prevents this method from being used at a large scale. A similar 
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approach consists of looking for a change in slope of this curve to fix this threshold or 
knee plot. 

• The standard deviation method. This method aims at selecting points which score are 
far away from the others, i.e. which are δ standard deviation from the mean score or 
median score [31]. 

For most outlier detection algorithms, there exists no consensus on how to tune their 
parameters. Good sense and a well understanding of the current problem are essential to pick 
some relevant values for these parameters.  
 

 
Figure 41 : Plot of the sorted score obtained with the subspace PCA method on an ONTS trace. It displays the 

value of three thresholds and the number of anomalies associated to each. These thresholds are obtained 
respectively at the beginning, middle and end of the knee. 

5.3.2.1  Evaluation on the KDD99 data set 

In the field of network anomaly detection, there is a lack of available public ground truth as 
pointed out in [34]. In the literature, two main public available ground truths are often cited: 
the KDD99 ground truth (summary of the DARPA98 traces) and the MAWI ground truth. The 
KDD99 contains multiple weeks of network activity from a simulated Air Force network, 
generated in 1998. Although the KDD99 dataset is quite old, it is still considered as a 
landmark in the field. On the contrary, the MAWILab data base is recent and is still being 
updated. It consists of labeled 15 minutes network traces collected daily from a trans-Pacific 
link between Japan and the United States. However, the MAWILab ground truth is 
questionable as it has been obtained by combining the results of four unsupervised network 
anomaly detectors [16]. Furthermore, the name of the labels given to the anomalies is not 
very relevant, for example many anomalies are labeled as ‘HTTP traffic’. A manual inspection 
of these anomalies often does not provide a clear understanding of the reasons of their 
classification as outliers. 
 
Our evaluation has been performed on the KDD99 dataset as it is the only public available 
ground truth that is fully accepted by the community and outputs consistent labels. The 
evaluation has been performed on the 10% KDD99 dataset as it contains 23 different types of 
attack. These attacks can be classified into 4 categories (DoS, probe, R2L, and U2R) see [35] 
for more information on these attacks. The packets have been aggregated in flows according 
to the famous four tuples (IP src, IP dest, port src and port dst) and are described by 41 
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attributes, 34 of which are numeric and 7 categorical. Every categorical variable has been 
turned into dummy variables, lifting the total number of features to 118 variables. The data 
set cannot be used as it is, due to a too large number of anomalous flows; in some cases there 
are even more anomalous flows than normal one. No detector based on outlier detection 
techniques can possibly detect the attacks as they are not rare. This problem could have been 
solved by aggregating the flows into another level (by IP source for example), but this is not 
possible with the KDD99 dataset as the IP addresses are not displayed. To overcome this 
issue, we have, selected randomly some flows, as in [15] and in [36], so that the percentage of 
attacks stays under a certain threshold. We build two data sets: the first one is made up of 
1000 flows and includes 160 attacks and the second one is made up of 10000 flows and 
includes 979 attacks.   
 

Table 2: Parameters’ value used for the algorithms’ evaluation 

Alg. Parameter Value Range of values 
UNADA length l 10% of max dist. between points From 1 to 20% 
 minPts 1% of the tot. nb of flows From 1 to 20% 
DBSCAN radius r 10% of max dist. between points from 1 to 30% 
 minPts not fixed from 1 to 20% 
LOF nn 20% of the tot. nb of flows from 10 to 40% 
SOD l 30% of the tot. nb of flows from 10 to 50% 
 nn 20% from 10 to 40% 
 α 0.8 fixed 
PCA k 90% from 80% to 99% 
Naive Alg. β not fixed from 1 to 5 
 
 

 
Figure 42 : Comparison of outlier detection algorithms using the AUC 

 
Figure 42 displays the area under the ROC curve (AUC) obtained by each detector with 1000 
(dataset 1) and 10000 flows (dataset 2). A ROC curve is obtained by plotting the true positives 
rate (TPR) against the false positive rate (FPR) at various threshold setting. The AUC takes its 
value in [0,1]; an AUC  of 1 represents a perfect detector and an AUC of 0.5 a detector with 
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complete random guess. . The parameters used for this evaluation are displayed in Table 2. 
The points of the ROC curve have been computed by varying: 

• The abnormal score threshold for the algorithms which output scores (SOD, LOF, 
UNADA, and PCA). 

• The radius r for DBSCAN. 
• The parameter β for the naive outlier algorithm.  

It can be noticed that the naive algorithm’s detection performs better than most detectors 
except DBSCAN (in both data sets) and LOF (in the first dataset only).  This result can be 
explained by the nature of network anomalies which, in most cases, possess extreme values in 
at least one feature. DBSCAN and the naïve algorithm gets very good results in both data sets. 
We can observe that the detectors’ performance varies from one dataset to another in 
particularly LOF’s performance, which implies that the detection performance of a system 
may not be very stable. The AUC, like the ROC curve gives information about the proportion of 
TPR and FPR of each detector, but does not give any information about: 

1. The numbers of false negatives (FNs). Indeed, many unsupervised network anomaly 
detectors suffer from a high number of false positives (FPs) which overwhelms the 
network administrator. This issue has been pointed out in [34].  

2. The parameters’ sensitivity. Indeed the AUC shows that in some configurations, a 
detector can have good results. However, it does not specify whether these 
configurations can be “easily” obtained and therefore whether a network 
administrator can be able to tune the algorithms’ parameters in an optimized way. If a 
detector can’t be tuned properly then it becomes useless even though it has a high AUC. 

3. The similarity between the results obtained by the different detectors. It could be 
interesting to know whether the detectors find the same TPs and FPs. If they don’t, it 
could be interesting to consider a combination of algorithms to improve the detection 
performance. 
 

 
Figure 43 : First dataset ROC curve  

Figure 44 : Second dataset ROC curve 

 
We decide to evaluate the number of TPs and FPs of each detector at its best setting. We 
consider that the best setting of a detector is the setting where the informedness of the 



619633 ONTIC. Deliverable 4.2 
 
 
 
detector is maximal. . The informedness takes its values between 1 (good detector) and -1 
(very bad detector) and is computed as follows: 
 

𝑖𝑛𝑓𝑙𝑟𝑚𝑖𝑑𝑛𝑖𝑚𝑚 = 𝐷𝑁𝑇 + 𝐷𝑚𝑇 − 1 
 
Figure 43 and Figure 44 depict the ROC curve of every detector for the first and the second 
dataset, respectively. The maximum informedness of a detector is represented by a point on 
its curve. 
 

 
Figure 45 : Number of TPs and FPs obtained with the first 

dataset 
 

Figure 46 : Number of TPs and FPs  obtained with the 
second dataset 

 
Figure 47: Execution time of the algorithms with dataset1 and 2 

 
For each detector, we then evaluate the number of TPs and FPs it generates for each dataset 
(see Figure 45 and Figure 46). It can be noticed that even if a detector gets a high AUC, it can 
get a high number of false positives and may then be useless. This is the case of LOF in the 
second dataset, the AUC of LOF is 0.95 which implies that according to the AUC, LOF is a good 
detector. However, as it has more FPs than TPs (1583 FPs vs 979 TPs) it generates a lot of 
extra work for the network administrator and it can lead him to misclassify many flows. 
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Therefore, even though LOF has a good AUC, it may not (in the context of this dataset) be very 
useful for any network administrator due to its high number of FPs. 
 
Figure 47 depicts the execution time of each algorithm for both datasets. These results have 
been obtained on a single machine with 16 Gbit of RAM and an Intel Core i5-4310U CPU 
2.00GHz. The vertical axis has a logarithmic scale. It can be noticed that the naïve algorithm 
outperforms its competitors and that UNADA and SOD are very slow and they do not scale 
well with the number of flows. SOD is the only algorithm to exceed one hour to detect the 
anomalies in dataset 2; it takes 3 hours to complete. 
 
To evaluate the similarity between the anomalies found by the different algorithms we use the 
Jacquard index. The Jaccard index measures the similarity between finite sample sets, and is 
defined as the size of the intersection divided by the size of the union of the sample sets. Thus, 
if A is the set of anomalies identified by a detector and B the set of anomalies identified by a 
second detector, their similarity is computed as follows: 
 

𝐽(𝐴,𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

 

 
If the similarity is close to one then the detectors are very similar and if it is close to 0 then 
they are considered as very dissimilar. Figure 48 and Figure 49 display the similarity between 
the TPs of the different detectors for dataset 1 and dataset 2, respectively. It can be noticed 
that Jaccard index is high for every algorithms (all the square are close to red) in both 
datasets, which implies that the detectors mainly find the same anomalies. Figure 50 and 
Figure 51 display the similarity between the FPs found by the detectors for dataset 1 and 
dataset 2, respectively. One can observe that the Jaccard index is often very low (many 
squares are close to yellow), which implies that their FPs are different. Thus, it would be 
useful to consider combining the outputs of these different algorithms to keep only the 
anomalies found by most detectors. As the similarity between their FPs is very low, most FPs 
would then be discarded and as the similarity between their TPs is high, most TPs would be 
kept. Thus, combining the detectors would allow reducing the number of FPs while 
maintaining a high TPR. 

https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Union_(set_theory)
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Figure 48 : Jacquard coefficient between the detectors 

TPs with dataset 1 

 
Figure 49 : Jacquard coefficient between the detectors 

FPs with dataset 2 

 
 

 
Figure 50 : Jacquard coefficient between the detectors’ 

FPs with dataset 1 
 

Figure 51 : Jacquard coefficient between the detectors’ 
FPs with dataset 2 

 In order to evaluate the sensitivity of each detector’s parameters, we use the most common 
approach of changing one factor at a time (OFAT).  Thus, we assess the informedness of each 
detector while moving one parameter at a time. The other parameters are set such as the 
obtained informedness is maximal. Each parameter’s entire range of possible values is 
described in Table 2. Each range is chosen such that the detectors attain good detection 
performance. For detectors which output scores, two techniques are used to extract the 
anomalies from the scores: the standard deviation and the knee method. For the standard 
deviation method, possible values for the standard deviation denoted 𝑚𝑚𝑑, are in [0.5, 3].  The 
knee is computed with the Kneedle algorithm described in [37]. 
Figure 52 depicts, using boxplots, the informedness obtained for each parameter of each 
detector. It can be noticed that LOF is very sensitive to its 𝑛𝑛. parameter. Indeed, when 𝑛𝑛 is 
small an anomalous flow may be compared only with other anomalous flows induced by the 
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same type of attack (for example they may be all generated by Smurf attacks). Therefore, the 
anomalous flow may not be detected as anomalous. Furthermore, SOD gets very bad 
performance when 𝑚𝑚𝑑 varies; this is due to the fact that SOD gets its best performance when 
𝑚𝑚𝑑 is much lower than the proposed range. Indeed, SOD gets is best performance when 𝑚𝑚𝑑 
=0.2, i.e. when all the points whose score is above 0.2 standard deviation from the median 
score are considered as anomalous. Thus, SOD does not differentiate clearly anomalous and 
benign flows as their scores are very close. 
Furthermore, one can observe that most detectors which output scores are very sensitive to 
the std parameter used to extract anomalies. Indeed, there is not a clear boundary between 
the score of anomalous and benign flows. This parameter is very difficult to set; therefore the 
standard deviation method may not be an appropriate method to extract anomalies from 
scores. 

 
Figure 52 : Results of the sensitivity analysis performed with the standard deviation approach to extract outliers 

from the scores 
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Figure 53: Results of the sensitivity analysis performed with the Kneedle algorithm to extract outliers from the 

scores. 
 
 
Figure 53 shows the results of the sensitivity analysis performed with the Kneedle algorithm. 
As it can be seen, the performance of the detectors which output scores (PCA, LOF, SOD and 
UNADA) is very bad, except UNADA. This is due to the problem described previously related 
to the difficulty to set the knee value. Figure 54 and Figure 55  illustrate this issue by plotting 
the sorted scores obtained by LOF and the computed knee point value when the informedness 
is of 0.86 and 0,025, respectively. As for the standard deviation method, the knee approach 
fails in dividing the anomalous scores from the benign ones.  Therefore, it is of central 
importance to propose new methods to extract anomalies from scores or to propose new 
detection systems which divide more clearly anomalous scores from benign ones.  It can also 
be noticed that UNADA’s performance changes slightly when the kneedle or the standard 
deviation method is applied (in contrary to other algorithms), which implies that UNADA may 
better differentiate anomalous and normal flows scores.  This may be due to the fact that 
UNADA accumulates, for each flow, its degree of outlierness in every subspace. 
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Figure 54 : Sorted LOF’s scores (the informedness= 0.86) 

 
Figure 55 : Sorted LOF’s score (the informedness= 0.025) 

 
In order to evaluate whether the considered detectors deal efficiently with high dimensions, 
we have added some noisy dimensions to the data. As in [38], these noisy dimensions have 
been generated with a random uniform distribution which takes values in [0, 1]. Figure 57 
and Figure 56 show respectively the FPR and TPR of each detector as a function of the number 
of added dimensions. UNADA, SOD and the naïve algorithm deal well with high and noisy 
dimensions, indeed UNADA and SOD have been specially devised to solve this issue while the 
naïve algorithm processes one dimension at a time. As it is not based on distance but on 
neighboring, LOF reacts well to the curse of dimensionality: a point’s neighbors stay the same 
when new and noisy dimensions are added. DBSCAN is the only detector which suffers from 
the curse. Due to the curse, distance becomes meaningless and every point is considered as an 
outlier in DBSCAN. Before adding these noisy dimensions, the curse had no effect on DBSCAN, 
even though KDD99 has many dimensions. This phenomenon can be explained by the fact that 
each dimension in KDD99 brings information and no noise. Similar behaviors have been 
observed in [38]. 
 

 
Figure 56: Detectors’ FPR according to the number of noisy 

dimensions 

 
Figure 57: Detectors’ TPR according to the number of 

noisy dimensions. DBSCAN’s curve is hidden by the NAÏVE 
curve 
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5.3.3 Conclusions 

This study has shown that most attacks have at least one extreme value in one dimension and 
that a very naïve outlier algorithm is able to get as good or even better performance than most 
existing detectors. Furthermore, the naïve algorithm has a very low complexity and deals well 
with the curse of dimensionality.  
However, if an attack is more subtle the naïve algorithm may be unable to detect it. It should 
be then interesting to process twice the data, once to get rid of the anomalies which have 
extreme values and a second time to detect more subtle attacks in the data if there are any, 
with ”smarter” algorithm. 
Furthermore, we have pointed out that algorithms based on subspaces have a longer 
execution time like SOD and UNADA. However, UNADA’s execution time can be improved by 
processing in parallel the subspaces like proposed in PUNADA. 
 The sensitivity analysis points out the lack of appropriate techniques to extract anomalies 
from scores. It shows that there is not a clear separation between scores of anomalous flows 
and benign ones. At the light of our results, UNADA seems to outperform other score-based 
detectors as it differentiates more clearly abnormal flows by accumulating for each flow, its 
degree of outlierness in every subspace. However, efforts should still be made to propose 
algorithms which extract anomalies from scores or which better separate anomalous from 
normal flows.  
The similarity study offers a new perspective. It demonstrates that combining the output from 
different algorithms could help decreasing the rate of FPs. 
Last, the network anomaly detection should be done online and in real-time on large network 
traffic in order to rapidly take appropriate counter-measures when an attack occurs and to 
gain advantage of this large amount of unexploited data. This could be achieved with an 
incremental approach relying on a continuous update of the feature space via a time sliding 
window as proposed in section 5.2.1. 
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6 Challenges and future works 
 

6.1 Lack of Ground truths for network anomaly detection 

Evaluation is a crucial step while building network anomaly detectors for proving their 
efficiency. However, it is a challenging task due to the lack of public available network data 
and ground truth. To our knowledge, there are two main available ground truths, the KDD99 
ground truth (summary of the DARPA98 traces) and the MAWI ground truth. The KD99 
dataset is quite old and has received many criticisms mainly due to its synthetic nature [39] 
but, it is still considered as a landmark in the field. On the contrary, the MAWILab data base is 
recent. However, its labels are questionable as they are obtained by combining the results of 
four unsupervised network anomaly detectors [16] and are often unintelligible, like the label 
``HTTP traffic'' which contains many anomalies which seem after manual inspection harmless.  
In order, to overcome the lack of available dataset, researchers often build their own ground 
truth. We have identified three main techniques used in the literature, the manual inspection 
of network traces [17] [24] [40], the generation of synthetic traces via simulation or network 
emulation [41] [42] and the injection of anomalies in existing network traces [17]. None of 
these methods are perfect. They possess their own drawbacks and they cannot guarantee 
accurate evaluation study; the values of true positives and negatives and false positives and 
negatives cannot be exactly estimated. In manual inspection neither automated algorithms 
nor human domain experts can identify all the anomalies of a trace with complete confidence 
[41]. Furthermore, due to the fuzzy definition of a network anomaly, it is hard, even for an 
expert, to decide when a flow becomes an anomaly, i.e. when a flow becomes rare enough to 
be considered as an anomaly. On the other hand, to build synthetic traces, normal traffic 
needs to be modeled, however, existing models often fail to catch the complexity of this traffic 
and the generated traffic is often not realistic. The injection of anomalies consists in injecting 
anomalies in existing traffic. Furthermore, the injection must be well tuned so as to obtain 
network traces as realistic as possible.  
6.2 Sensitivity of unsupervised network anomaly detection algorithms 

Our comparison of current network anomaly detectors has pointed out that many detectors 
suffer from a high parameter’s sensitivity, especially those which output scores.  Some 
important effort should be made to overcome this issue. This could be done, for example, by 
devising algorithms which set automatically the detectors’ settings or by adding a semi 
supervised network anomaly detector which could consider the network administrator‘s 
feedback to adjust its setting. An alternative approach would be to combine the outputs of 
different settings in order to improve detection performance.  
6.3 Future works on anomaly detection 

To evaluate our algorithms, we need a recent and reliable ground truth. However as pointed 
in section 6.2, there is an important lack of ground truths in this field, which can be explained 
by the sensitive nature of the data. Indeed, the inspection of network traffic can reveal highly 
sensitive information about an organization. In order to overcome this issue, we would like to 
build a ground truth with the ONTS traces using manual inspection and injection of synthetic 
traces of attacks. The challenge is to inject the good proportion of attacks so that the data 
stays realistic and not to miss out or misclassify anomalies during the manual inspection. 
Furthermore, as our study of current network anomaly detectors has shown that most 
anomalies deviate in at least on dimension, we would like in the future to process the network 
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traffic in two times; once with a naive algorithm to identify and get rid of anomalies which 
possesses extreme values and may hide more subtle anomalies and then, with a more 
“intelligent” algorithm to detect more elaborate attacks in the data, if there is any. 
Finally, we would like to process online and in real-time the incoming traffic. To reach this 
goal we would like to lean on the approaches proposed in ORUNADA, i.e. on an incremental 
algorithm and a continuous update of the feature space thanks to a time sliding window. The 
final solution should also take advantage of emerging Big Data tools for real-time analytics 
like Spark Streaming. 
6.4 Future work on online feature selection and low-rank 

approximation 

The work on feature selection carried out in WP2 and WP3 reveals an interesting fact: the 
flow-aggregated traffic in the ONTS data set contains small subsets of features that can 
provide a low-rank approximation of the full matrix close to the best existing equal-rank one. 
The algorithms that have been developed by the ONTIC consortium for finding such a subset 
can handle large data sets efficiently. 

However, these algorithms have been designed for the offline setting. It would be desirable to 
explore the applicability of the same principles to online scenarios, where long-term storage 
is not possible. To this end, we plan to undertake the following research directions: 

• Online leverage scores: The notion of statistical leverage score is a cornerstone of the 
researched methods for unsupervised feature selection. However, their computation is 
based on the right singular vectors of the data, although the QR decomposition can be 
used as well. In any case, the decompositions involved in the computation of the 
leverage scores require several passes over the data and are not suitable for online 
applications. It would be interesting to evaluate the applicability of existing one-pass 
factorization approximations and update schemes. Alternatively, other sampling scores 
could be devised. 

• Long lasting models for self-representation: The column subset selection problem, 
which is the driving force behind most of the work that has been done by the ONTIC 
consortium in feature selection, is implicitly a self-representation regression model. It 
would be interesting to assess if a model of this kind trained offline could endure the 
passing of time. Otherwise, a periodical retraining approach could perhaps suffice to 
keep it up to date. This could be very useful for practical applications, since it would 
allow for the retrieval of rich data sets comprised of tens of features by just computing 
a handful of them, significantly alleviating the computations needed for real-time flow 
aggregation. The availability of the enterprise-grade cloud environment that the ONTIC 
consortium will have access to during the third year will make it possible to perform 
experiments for this purpose. 

6.5 Enhancing network management 

The algorithms developed in this work package take advantage of deep analytics on large and 
unexploited network traces for improving the network management in terms of QoS and 
security. By analyzing online large amount of traffic, these algorithms can help network 
administrators take appropriate decisions for enhancing network performance. Algorithms 
for traffic pattern evolution can help re-size a network for optimizing the network resource 
utilization. Algorithms for network anomaly detection can help detect attacks, on the fly in an 
unsupervised way, i.e. with no previous knowledge on the attacks. They can generate 
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automatically signatures to inject in routers for protecting the network. By using the same big 
data platform implemented with Spark, these algorithms could deal with large amount of data 
and take benefit of Spark’s resilient, scalable and fault-tolerant features while mutualizing the 
resources. 
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Annex A : Documentation of the NTFF package  
Link to the code repository: https://gitlab.com/ontic-wp4/NTFF 

Description 

Network Traffic Forecasting Framework (NTFF) combines data extraction and different time-
series forecasting techniques with wavelet transform preprocessing, for Network Traffic 
predictions. 

NTFF is divided in 3 modules as Preprocessing, Wavelets and Forecasting: 
• Preprocessing Module: This module contains different tools for data extraction from 

.pcap captured files and preprocessing. That resultant data can be used with the 

Wavelets and Forecasting modules. Preprocessing tools: 

1. Tstat: a script to extract only tcp features from .pcap files. 

2. FlowsAgregator: an Apache Spark script in python to aggregate the number of 

flows by seconds from the output files of Tstat. There is also another script 

("flowsAgregatorFromPcap.sh") that combines Tstat script and Agregation script 

in one. 

• Wavelets Module: This module contains different Wavelet decomposition functions in 

Python. Wavelets techniques: 

1. Stationary Wavelet Transform (with Haar wavelet): similar to the Discrete 

Wavelet Transform but without sub-samplings. 

2. Stationary Wavelet Packet Transform (with Haar wavelet): similar to the 

Discrete Wavelet Packet Transform but without sub-samplings. 

• Forecasting Module: This module contains different forecasting classes in Python. 

Forecasting techniques: 

1. Artificial Neural Networks (ANN) : with the training method "Sensitivity-Based 

Linear Learning Method" adapted for real numbers forecasting. 

2. Autoregressive Integrated Moving Average (ARIMA): from the "forecast" 

package of R. 

Also, in this API, you are able to apply different forecasting methods for different wavelet 
components. 

How To 

Prerequisites 

Executed with Operative System: CentOS 7.2.1511 (Core) and Kernel: _3.10.0-
123.4.4.el7.x86_64 _ Using 4GB of RAM and 2 cores. 

1. Python 2.7.5 Installed by default in the Operative System mentioned above. 

https://gitlab.com/ontic-wp4/NTFF
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2. Numpy 1:1.7.1-11.el7 Install: yum install numpy 

3. gcc 4.8.5-4.el7 Install: yum install gcc 

4. python-devel 2.7.5-34.el7 Install: yum install python-devel 

5. Cython 0.23.4 Install: easy_install cython 

6. PyWavelets 0.4.0 Install: easy_install PyWavelets 

7. pip 7.1.2 Install: easy_install pip 

8. ipython 4.0.2 Install: pip install ipython 

9. epel 7-5 Install: yum install epel-release 

10. R 3.2.3-1.el7 Install: yum install R 

11. R packages : forecast and parallel Inside R, 
install: install.packages("forecast") install.packages("parallel") 

12. readline-devel 6.2-9.el7 Install: yum install readline-devel 

13. rpy2 2.7.7 Install: pip install rpy2 

14. nbformat 4.0.1 Install: pip install nbformat 

15. Apache Spark 1.4.1 Download: http://www.apache.org/dyn/closer.lua/spark/spark-

1.4.1/spark-1.4.1-bin-hadoop2.6.tgz For more information : http://spark.apache.org/ 

16. Tstat 3.0 Download: http://tstat.polito.it/software.php For more information 

: http://tstat.polito.it/ 

Imports 

To import functions from StationaryWaveletTransform.py: 

from SWT.StationaryWaveletTransform import hspwt, hswt 

To import functions and classes from WPF.py: 

from WPF import WaveletPrediction, getWaveletByName, WPFAlgorithm 

To import the SBLLMF class from SBLLMF.py: 

from SBLLMF.SBLLMF import SBLLMF 

To import the ARIMA class from ARIMA.ipynb: 

from IPython import get_ipython 

get_ipython().magic(u'run ./ARIMA/ARIMA.ipynb') 

Forecasting Example 

http://www.apache.org/dyn/closer.lua/spark/spark-1.4.1/spark-1.4.1-bin-hadoop2.6.tgz
http://www.apache.org/dyn/closer.lua/spark/spark-1.4.1/spark-1.4.1-bin-hadoop2.6.tgz
http://spark.apache.org/
http://tstat.polito.it/software.php
http://tstat.polito.it/
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There is Example.py an example program that executes 2 forecasting algorithms with SWT 
and SWPT and without them for the ExampleDataset.csv. 

The input dataset "ExampleDataset.csv" is a vector of active sessions in each second during 
the day of 4 of April of 2015 of the ONTS dataset. 
To run the program (in the same directory as the Example.py): ipython Example.py 

The output will be written in to the standart output. 
• All output lines that starts with [+] or [-] are informative logs. 

• The lines that starts with Result, indicates the output of the forecast. 

• The lines that starts with Expected, indicates the values of a perfect forecast (expected 

values). 

• The lines that starts with Absolute Error, is the absolute value of the error of each 

predicted step 

• The lines that starts with Percentage Absolute Error, and the percentage of the 

absolute error respectively with the expected output. 

Example of the output for SBLLMF without any wavelet transform: 

SBLLMF  without wavelet transform: 

------------------------------------------------------------------------------------- 

 [-] Loading datasets... 

 [+] Loaded datasets... 

[-] Construction Wavelet Prediction Framework object and training it... 

[+] Constructed and trained. 

[-] Predictiong the next 4 steps... 

Result:  [ 4049.83128171  4070.82738591  4094.24900881  4120.37005851] 

Expected:  [ 4055.  4095.  4083.  4024.] 

Absolute Error:  [  5.16871829  24.17261409  11.24900881  96.37005851] 

Percentage Absolute Error (%):  [ 0.12746531  0.59029583  0.27550842  2.39488217] 

[+] Done. 

------------------------------------------------------------------------------------- 

Preprocessing Example 
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For this phase we used: 
Apache Spark : 1.4.1 Tstat : 3.0 (Spirit of St. Louis flavor) -- Mon Jun 22 18:22:37 CEST 2015 
Example of use: Taking in account some of the system variables: $TSTAT is the directory of the 
Tstat executable. $SPARK_HOME is the directory of the installed Apache Spark. $PCAPD is the 
directory where are some .pcap files. 

The complete procedure of transform some .pcap files into a dataset that aggregates the 
number of flows per second: 

bash ./Preprocessing/flowsAgregatorFromPcap.sh $TSTAT/tstat $SPARK_HOME/bin/pyspark ./O

UT1 ./OUT2 $PCAPD/*.pcap 

$TSTAT/tstat : Tstat executable $SPARK_HOME/bin/pyspark : Pyspark executable ./OUT1 : 
Temporal Tstat output directory ./OUT2/part-00000 : Flows/second dataset output 
file$PCAPD/*.pcap : Capture .pcap input files 
Now you can use the output file ./OUT2/part-00000 for the Forecasting example file with 
different forecasting steps: 

ipython Example.py ./OUT2/part-00000 10 

./OUT2/part-00000 : Flows/second dataset output file of the previous script. 10: Number of 
steps for the prediction. 
 

Preprocessing Scripts 

Tools of the preprocessing phase: 

tstat_con.sh <tstat executable> <output dir> {<input file .pcap or .pcap.gz>}+ 

Description: apply Tstat with some preset options as the concatenation (specially useful if 
there are more than one .pcap file) and tcp data only. Parameters: 

1. tstat executable: The executable file of Tstat. 

2. output dir: Output directory for Tstat. 

3. input file .pcap or .pcap.gz: One or more .pcap or .pcap.gz input files. 

Output: Tstat statistics per tcp flow (a flow per line) in the output dir. 

flowsAgregatorFromPcap.sh <tstat executable> <pyspark executable> <temporary dir> <outp

ut dir> {<input file .pcap or .pcap.gz>}+ 

Description: apply Tstat with some preset options as the concatenation (specially useful if 
there are motre than one .pcap file) and tcp data only. Parameters: 

1. tstat executable : The executable file of Tstat. 



619633 ONTIC. Deliverable 4.2 
 
 
 

2. spark executable : The executable file of Apache Spark. 

3. temporary dir: Output directory for Tstat. 

4. output dir: Output directory for FlowsAgregator.py. 

5. input file .pcap or .pcap.gz: One or more .pcap or .pcap.gz input files. 

Output: Flows/second dataset output file inside of the output dir. 

$SPARK_HOME/bin/pyspark --master local ./FlowsAgregator.py <tstat executable> <output_d

ir> {<input file .pcap or .pcap.gz>}+ 

Description: Aggregates the number of flows per second from the output files of "tstat_con.sh". 
Parameters: 

1. input dir : The directory that contains statistics files generated by Tstat, inside the Tstat 

output directory. 

2. output_dir: Output directory. 

Output: Flows/second dataset file (similar to ExampleDataset.csv). 
 

Functions and classes 

This API present: 

Stationary Wavelet Transform (./SWT/StationaryWaveletTransform.py): 

def hswt(data, components): 

Description: Apply Stationary Wavelet Transform (SWT) with Haar wavelet to an input signal. 
Parameters: 

1. data : (Numpy Array with one dimension) the input signal for preprocessiong. 

2. components: (Integer) the number of components for the SWT. 

Output: List with ("componenets"+1) 2-dimensional Numpy Arrrays as SWT outputs (1 column 
a row for each value). 

def hspwt(data, components): 

Description: Apply Stationary Wavelet Packet Transform (SWPT) with Haar wavelet to a input 
signal. Parameters: 

1. data : (Numpy Array with one dimension) the input signal for preprocessiong. 

2. components: (Integer) the number of components for the SWT. 
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Output: List with (2"componenets") 2-dimensional Numpy Arrrays as SWPT outputs (1 column a row 
for each value). 
 

Sensitivity-Based Linear Learning Method adapted for Forecasting 
(./SBLLMF/SBLLMF.py): 

class SBLLMF: 

Description: Sensitivity-Based Linear Learning Method adapted for Forecasting (SBLLMF) is a 
forecasting model. 

def __init__(self, data, lags,  hidden_units=None,  

                  nlf=sig, inlf=invsig, dnlf=dsig, 

                      parameters_amplitude=None, p = 1, ni=None, Q = None, MSE=None): 

Description: constructor of the SBLLMF class, sets the main models parameters and the 
training dataset. Parameters: 

1. data : (Numpy Array with two dimensions) the input signal for the training dataset, with 

one column and N rows. 

2. lags: (Integer) the number of previous steps used during each one step prediction. 

3. hidden_units : (Integer) is the number of neurons in the hidden layer (by default: is 

the number input values + 1). 

4. nlf : (Function(Float):Float) is a nonlinear function with a float input and a float output 

(by deafult: is the sigmoidal function). 

5. inlf : (Function(Float):Float) is an inverse of the nonlinear function nlf with a float input 

and a float output (by default: is the inverse of the sigmoidal function). 

6. dnlf : (Function(Float):Float) is a derivate of the nonlinear function nlf with a float input 

and a float output (by default: is the derivate of the sigmoidal function). 

7. parameters_amplitude : (Float) is the amplitude of the initial weights of the Neural 
Network (by default: is 2.0/(100*(lags+1))). 

8. p : (Float) is the effect of the hidden layer output update (by defult: is 1). 

9. ni : (Float) is the amplitude of the initial error for the hidden layer of the Neural Network 
(by default: is 2.0/(100*(lags+1))). 

10. Q : (Float) is the initial Sensitive Error for the future reduction and convergence (by 
defult: is 100000). 

11. MSE : (Float) is the initial Mean Square Error for the future reduction and convergence 

(by default: is 10000). 
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def train(self, epochs = 75, er0 = 0.00001, er1 = 0.00001, verbose=False): 

Description: This is the training method of the SBLLMF class, which starts the training for the 
trainig dataset declared in the constructor. Parameters: 

1. epochs: (Integer) the number of maximum steps for the model training (by defult: is 

75). 

2. er0: (Float) the minimal error for the Sensitive Error between two consecutive steps (by 
defult: is 0.00001). 

3. er1: (Float) the minimal error for the Mean Square Error between two consecutive steps 

(by defult: is 0.00001). 

4. verbose: (Boolean) True if we want to see log information about each iteration of the 

training (by default: is False). 

Output: Nothing (Only update the model information). 

def forecast(self, data, steps): 

Description: This is the forecast method of the SBLLMF class, which predicts a number of 
future steps of the input signal. Parameters: 

1. data : (Numpy Array with two dimensions) the input signal for the testing dataset, with 

one column and N rows. 

2. steps: (Integer) the number of future points to predict. 

Output: (Numpy Array with one dimension) the predicted signal for the testing dataset, with 
"steps" values. 

ARIMA (./ARIMA/ARIMA.ipynb): 

class ARIMA: 

Description: Autoregressive Integrated Moving Average (ARIMA), is a forecasting model with 
calls to R functions of the "forecast" package. 

def __init__(self,input_data, max_p=10, max_q=5, max_d=2): 

Description: constructor for the ARIMA class, which sets the training dataset and some of the 
ARIMAS training limitations. Parameters: 

1. input_data: (Numpy Array with two dimensions) the input signal for the training dataset, 

with one column and N rows. 
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2. max_p: (Integer) the max value of the parameter p during the training (by default: is 

10). 

3. max_q: (Integer) the max value of the parameter q during the training (by default: is 

5). 

4. max_d: (Integer) the max value of the parameter d during the training (by default: is 

3). 

 def train(self, verbose=False): 

Description: This is the training method of the ARIMA class, which starts the model selection 
(p,q and d) and then estimating the model parameters for the training dataset declared in the 
constructor. Parameters: 

1. verbose: (Boolean) True if we want to see log information about the trained model (by 
default: is False). Output: Nothing (Only update the model information). 

def forecast(self, input_data, steps, window=None): 

Description: This is the forecast method of the ARIMA class, which predicts a number of future 
steps of the input signal. Parameters: 

1. input_data: (Numpy Array with two dimensions) the input signal for the testing dataset, 

with one column and N rows. 

2. steps: (Integer) the number of future points to predict. Output: (Numpy Array with two 

dimensions) the predicted signal for the testing dataset, with one column and "steps" 

rows. 

3. window: (Integer) the number of point used during the intial phase of the prediction, 

when the previous error are estimated (by defult: is None, equivalent to "all data"). 

Output: (Numpy Array with one dimension) the predicted signal for the testing dataset, with 
"steps" values. 

WPF (./WPF.py): 

def getWaveletByName(name): 

Description: Returns a function with a SWT or SWPT based on the name. Parameters: 

1. name: (String) Can be "hswt" for SWT or "hspwt" for SWPT. 

Output: Returns a function with a SWT or SWPT based on the name (or None and prints an 
error message). 
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class WaveletPrediction: 

Description: Combine a forecasting method with a preprocesing method with a similar to the 
other forecasting methods interface. 

def __init__(self,Data,waveletFunction, components, algorithms): 

Description: Constructor of the WaveletPrediction class, which sets the training data, a wavelet 
function for the preprocessing and the forecasting algorithm to combine. Parameters: 

1. Data: (Numpy Array with one dimension) the input signal for the testing dataset, with N 

values. 

2. waveletFunction: (a wavelet function returned by "getWaveletByName") wavelet 

function that to apply to the testing and training dataset. 

3. components: (Integer) the parameter that will use the wavelet function. 

4. algorithms: (Class) a class that implements WPFAlgorithm interface (explained below). 

is a forecasting class, usually with some predefined parameters. 

def train(self): 

Description: This is the training method of the WaveletPrediction class, which generate and 
train a model based on the "algorithms" parameter set in the contructor for each signal 
generated by the wavelet transform. Parameters : No parameters. Output: Nothing (Only 
update the model information). 

 def forecast(self, input_data, steps): 

Description: This is the forecast method of the WaveletPrediction class, which predicts a 
number of future steps of the input signal. Parameters: 

1. input_data: (Numpy Array with one dimension) the input signal for the testing dataset, 

with N values. 

2. steps: (Integer) the number of future points to predict. 

Output: (Numpy Array with one dimension) the predicted signal for the testing dataset, with 
"steps" values. 

class WPFAlgorithm: 

Description: A class that we must to implement with some predefined forecasting algorithm to 
use the WaveletPrediction class. 
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 def train(self,data): 

Description: This is the train method of the WPFAlgorithm class, which we must redefine. 
Parameters: 

1. data: (Numpy Array with one dimension) the input signal for the training dataset, with N 

values. 

 def forecast(self, input_data, steps): 

Description: This is the forecast method of the WPFAlgorithm class, which we must redefine. 
Parameters: 

1. input_data : (Numpy Array with one dimension) the input signal for the testing dataset, 

with N values. 

2. steps: (Integer) the number of future points to predict. 

Output: (Numpy Array with one dimension) the predicted signal for the testing dataset, with 
"steps" values. 
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Annex B : Documentation of UNADA package 
Link to the code repository: https://gitlab.com/ontic-wp4/UNADA 
UNADA is a tool which detects anomalies in PCAP files. It relies on subspace clustering and 
evidence accumulation techniques to identify anomalies and generate signatures to describe 
them. 
The algorithm is described in the deliverable 4.2 of the ONTIC project which can be found on 
the ONTIC site. 
The clustering step can be performed either with the DBSCAN algorithm (Density-Based 
Spatial Clustering of Applications with Noise) or the DBSCAN algorithm with an Rtree index or 
the GCA (Grid Clustering Algorithm) algorithm. These clustering algorithms exhibit the same 
performance in terms of detection but different time complexity. From medium to larger files, 
GCA is faster than DBSCAN with an Rtree index, which is also faster than DBSCAN. 
 
Input dataset 

UNADA accepts as input dataset a pcap file. We advise using a pcap file of 15 seconds for 
better results. Furthermore, UNADA may take time if the input file is very large and may then 
need a lot of RAM. UNADA looks for anomalous flows in this pcap file. 

 
Content of the package 

This package contains: 
• a file README.md: it describes the package and how to use it. 

• a directory src: it contains the sources of the program. 

• a file pom.xml: it provides the necessary information to MAVEN to build the project. 

• a file ExampleInputFile.pcap: an example of input file. 

• a jar UNADA.jar: a jar file to launch UNADA. 

Requirements 

If you want to recompile the code source, you must install MAVEN. We recommend using 
Apache Maven 3.3.3. To execute UNADA, with the pcap file 'ExampleInputFile.pcap' we 
recommend a machine with at least 12GB of RAM to apply UNADA with DBSCAN and 8GB of 
RAM to apply UNADA with GCA. 
You need to install the jNetPcap1.4 library 
 

Arguments 

UNADA takes 4 mandatory arguments plus 2 optional ones. The four mandatory arguments 
are: 

• the path to the pcap file to analyze. 

https://gitlab.com/ontic-wp4/UNADA
https://gitlab.com/ontic-wp4/UNADA
http://ict-ontic.eu/
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
http://dl.acm.org/citation.cfm?doid=602259.602266
http://www.jos.org.cn/1000-9825/13/1.pdf
http://jnetpcap.com/?q=jnetpcap-1.4


619633 ONTIC. Deliverable 4.2 
 
 
 

• the direction of the aggregation. You have to specify whether the aggregation is made 

at the IP source 'src' or at the IP destination 'dst'. 

• the mask of the aggregation. You need to specify if it is '8', '16', '24', '32'. 

• the clustering technique you want to apply. It can be dbsan then you specify 'dbscan', 

dbscan with an Rtree index then you specify 'rtreeDbscan', GCA then you specify 'gca'. 

The two optional arguments are: 

• if you have chosen the clustering algorithm DBSCAN with or without Rtree, you need to 

specify a percentage to fix the radius of DBSCAN. The radius is then computed for 

each subspace as (percentage/100)distance max between two points in this subspace. 

If you have chosen GCA, you need to specify a percentage to fix the intervals' length of 

GCA in each subspace. The interval length is computed for each subspace as 

(percentage/100)d with d the distance max between two points in this subspace. 

• if you have chosen the clustering algorithm DBSCAN with or without Rtree or GCA, you 

need to specify a percentage to fix the minimum number of points to form a cluster . 

The minimum number of points is then computed as (percentage/100)*tot with tot the 

total number of flows. If you don't provide the two optional arguments, some defaults 

ones are used. 

 

How to run 

To launch UNADA with GCA and the aggregation level at the IP source with the mask 32 and 
with no optional arguments, the command line is: 

java -Djava.library.path=/pathToTheJnetPcapLibrary/jnetpcap -Xms7G -jar UNADA.jar /path

ToThePCAPFile/file.pcap src 32 gca 

To launch UNADA with DBSCAN and the aggregation level at the IP source with the mask 16 
and with the two optional arguments, the command line is: 

java -Djava.library.path=/pathToTheJnetPcapLibrary/jnetpcap -Xms11G -jar UNADA.jar /pat

hToThePCAPFile/file.pcap src 16 dbscan 10 5 

 

How to compile 

To compile the code source, the command line is: 

mvn compile 
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To create a package from the code source, the command line is: 

mvn package 

 

Output 

It outputs on the standard output some information about UNADA's execution. It also creates 
an XML which lists the anomalous flows found in the PCAP file. For each anomalous flow it 
specifies its features, its score of dissimilarity and its signature. 
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Annex C : Documentation of PUNADA package 
Link to the code repository: https://gitlab.com/ontic-wp4/PUNADA 
PUNADA is a tool which detects network anomalies. It relies on subspace clustering and 
evidence accumulation techniques to identify anomalies. It distributes its computation over a 
cluster of server using Spark. 
The algorithm is described in the deliverable 4.2 of the ONTIC project which can be found on 
the ONTIC site. 
The clustering is performed with the DBSCAN algorithm (Density-Based Spatial Clustering of 
Applications with Noise). 
 

Input dataset 

UNADA accepts as input the path where are put text files like ExampleInputFile.txt (see 
package). Each file describes the flows extracted from network traffic. Each file defines the 
features name of each flow. The first element of the line is the aggregation key of the flow. 
Each line represents a flow; the first element is its flow key. The number of features must be 
inferior to 100. Each element of a flow is separated by a blank. The flows features must have 
been previously extracted from network traffic. We recommend extracting these features from 
15 seconds network traffic to improve detection performance. 

 

Content of the package 

This package contains: 
• a file README.md: it describes the package and how to use it. 

• a directory src: it contains the sources of the programm 

• a file pom.xml: it provides the necessary information to MAVEN to build the project. 

• the ExampleInputFile.pcap: an example of input file. 

• a jar PUNADA-1.jar: a jar file to launch UNADA. 

•  

Requirements 

If you want to recompile the code source, you must install MAVEN. We recommend using 
Apache Maven 3.3.3. You need to install Spark 1.5.1 to run the .jar. 

 

Arguments 

PUNADA takes 1 mandatory argument plus 2 optional ones. The mandatory argument is: 

• the path of the directory where are stored the files to process. The two optional 

arguments are: 

https://gitlab.com/ontic-wp4/PUNADA
https://gitlab.com/ontic-wp4/PUNADA
http://ict-ontic.eu/
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
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• the DBSCAN's radius. 

• an integer to fix the minimum number of points to form a cluster in DBSCAN. The 

minimum number of points is computed as (percentage/100)*tot with tot the 

total_number_of_flows. You need to provide the value of this percentage which must lie 

in [1, 99]. If you don't provide the two optional arguments, some defaults ones are used. 

 

How to run 

To launch PUNADA, the command line is: 

spark-submit --master spark://hostname:7077 --class spark.PUNADA  --conf "spark.default

.parallelism=100" --executor-memory 26g PUNADA-1.jar /Path/To/The/File 

To launch PUNADA with the two optional arguments, the command line is: 

spark-submit --master spark://hostname:7077 --class spark.PUNADA --conf "spark.default.

parallelism=100"  --executor-memory 26g PUNADA-1.jar /PathToTheFiles 0.1 5 

 

How to compile 

To compile the code source, the command line is: 

mvn compile 

To create a package from the code source, the command line is: 

mvn package 

 

Output 

It creates two directories res and processed. In the directory processed are put the input text 
files which have been processed. The results are stored in the res directory. For each input 
text file processed a text file of results is generated. This file lists the flows which have been 
detected as anomalies by PUNADA. Each line represents an anomaly and specifies its key 
and its features. 
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Annex D : Documentation of ORUNADA package 
Link to the code repository: https://gitlab.com/ontic-wp4/ORUNADA 

ORUNADA is a tool which detects anomalies in PCAP files in a continuous way. It relies on a 
sliding window and on grid subspace clustering and evidence accumulation techniques to 
identify in continuous anomalies and generate signatures to describe them. 
The algorithm is described in the deliverable 4.2 of the ONTIC project which can be found on 
the ONTIC site. 
The clustering step is performed with IGCA (Grid Clustering Algorithm) algorithm. 
 

Input dataset 

UNADA accepts as input a folder with pcap files. Furthermore, ORUNADA may take time (due 
to the extraction of the features which should be done in C to gain time) if the input files are 
very large and may then need a lot of RAM. UNADA looks for anomalous flows in this pcap 
file. 

 

Content of the package 

This package contains: 
• a file README.md: it describes the package and how to use it. 

• a directory src: it contains the sources of the program. 

• a file pom.xml: it provides the necessary information to MAVEN to build the project. 

• a file ExampleDirectory: an example of directory with pcap files to process. 

• a jar ORUNADA.jar: a jar file to launch UNADA. 

•  

 

Requirements 

If you want to recompile the code source, you must install MAVEN. We recommend using 
Apache Maven 3.3.3. To execute UNADA, with the pcap file 'ExampleInputFile.pcap' we 
recommend a machine with at least 12GB of RAM to apply UNADA with DBSCAN and 8GB of 
RAM to apply UNADA with GCA. 
You need to install the jNetPcap1.4 library 
 

Arguments 

UNADA takes 3 mandatory arguments plus 4 optional ones. The four mandatory arguments 
are: 

• the path to the pcap file to analyze. 

https://gitlab.com/ontic-wp4/ORUNADA
https://gitlab.com/ontic-wp4/ORUNADA
http://ict-ontic.eu/
http://www.jos.org.cn/1000-9825/13/1.pdf
http://jnetpcap.com/?q=jnetpcap-1.4
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• the direction of the aggregation. You have to specify whether the aggregation is made 

at the IP source 'src' or at the IP destination 'dst'. 

• the mask of the aggregation. You need to specify if it is '8', '16', '24', '32'. The four 

optional arguments are: 

• Time of a slot in seconds; 

• Nb of micro-slots in a slot; 

• for computing the size of the intervals for IGDCA. Each dimension has a different size 

of interval. This value is set as a percentage of the maximum distance between every 

pair of points for each dimension. To fix them, you need to specify this percentage and 

specify a value between 1 and 99."); 

• for computing the minimum number of points to form a cluster in IGDCA. This number 

is set as a percentage of the whole number of points. To fix it, you need to specify this 

percentage and specify a value between 1 and 99."); If you don't provide the four 

optional arguments, some defaults ones are used. 

 

How to run 

To launch ORUNADA with the aggregation level at the IP source with the mask 32 and with no 
optional arguments, the command line is: 

java -Djava.library.path=/pathToTheJnetPcapLibrary/jnetpcap -Xms7G -jar ORUNADA.jar /pa

thToThePCAPFolder/ src 32  

To launch UNADA with DBSCAN and the aggregation level at the IP source with the mask 16 
and with the two optional arguments, the command line is: 

java -Djava.library.path=/pathToTheJnetPcapLibrary/jnetpcap -Xms11G -jar ORUNADA.jar /p

athToThePCAPFile/file.pcap src 16 15 30 5 10 

 

How to compile 

To compile the code source, the command line is: 

mvn compile 

To create a package from the code source, the command line is: 

mvn package 
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Output 

It outputs on the standard output some information about ORUNADA's execution. It also 
creates an XML file for each micro-slot processed (apart for the n first micro-slots, n equals to 
the number of micro-slots in a window). This XML lists the anomalous flows found in the PCAP 
file at the end of each micro-slot considering the packets contained in the current window. For 
each anomalous flow it specifies its features, its score of dissimilarity and its signature. 
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