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1 Deliverable goal and content

The idea behind the monitoring in the RESCUE project deals with monitoring wireless

networks from the signal at the air interface up to the digital data. The expectation is that

by monitoring the signal at the physical level, it would be possible to infer the behavior of

these networks at all upper layers, and to predict the evolution of the physical medium and of

the services provided on the upper layers, at least on a few hundreds of milliseconds. Based

on this information, it would then be possible to anticipate the need for using a substitution

mobile router or communication device in a specific place, thus allowing a better network

service. For this purpose, experimental environment and platform have been set at LAAS for

running controlled experiments on wireless networks, and an analysis methodology has been

designed. The platform has been set up in an anechoic room to avoid external perturbations,

and in order to control the signals generated. Large experiment campaigns have been run.

The analysis of the traces captured is made using an SVM (Support Vector Machine) based

method. Results exhibit that by looking at very few signal parameters is enough to predict

the evolution of the physical air environment, and of the service provided by the network at

the network digital level. It also exhibits that this is possible to predict on a 500 ms basis

the evolution of the network quality of service.

This work is described in the paper ”Predictive Estimation of Wireless Link Performance

from Medium Physical Parameters Using Support Vector Regression and k-Nearest Neigh-

bors” that has been accepted for presentation at the TMA (Traffic Monitoring and Analysis

workshop) to be held in London on April 14th, 2014.

Networks considered in the RESCUE project are wireless (at least for the substitution

routers) and dynamic (potentially highly dynamic). Indeed, this last decade has seen an

increasing interest for wireless communications. With the current use of smart-phones and

tablets coupled to the rise of the Internet of Things, the number of mobile terminal nodes in

networks will significantly change the way we manage them. Indeed, these wireless networks

are more and more dynamic, especially concerning topology. Therefore distributed network

control, and traffic management are of increasing complexities: How to face a topology frag-

mentation in the network? Which considerations to take when lightening a crucial node?

Networks will need to be autonomous regarding the service they are providing to users and

their resilience. Mobile substitution networks will then be of essential importance in a very

short future. Thus, networks need a way to self-evaluate their wireless performance and

deploy routers at the best appropriate locations. We then introduce the concept of System

Development Index (SDI), which allows a system to judge how well it performs. The SDI is

a generic index. In the framework of the RESCUE project, we specifically integrate signal

level parameters for defining the SDI index. We then provide methods and algorithms, which

are based on events collection and distributed mining to analyze the evolution of this index.
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In our instantiation, nodes observe events, summarize these observations and can share them

with its neighbors to infer properties on the SDI. We illustrated it by simulation, considering

different scenarii under NS3. We evaluated the evolution of the SDI and analyzed its pos-

sible underlying reasons for one scenario and analyze error estimation for various network

properties.

Based on this SDI, it is then possible to infer when substitution routers are needed, and

at what place.

This work is described in the paper ”Event Based Performance Evaluation and Analysis

of Dynamic Wireless Networks” that has been presented at the CNSM conference (conference

on Network and System Management) held in Zurich on October 14th-18th, 2013. In this

report an extended version of the paper is included.
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Abstract—In wireless networks, the physical medium is the
cause of most of the errors and performance drops. Thus, an
efficient predictive estimation of wireless networks performance
w.r.t. medium status by the communication peers would be a
leap ahead in the improvement of wireless communication. For
that purpose, we designed a measurement bench that allows us
to accurately control the noise level on an unidirectional WIFI
communication link in the protected environment of an anechoic
room. This way, we generated different medium conditions and
collected several measurements for various PHY layer parameters
on that link. Using the collected data, we analyzed the ability
to predictively estimate the throughput performance of a noisy
wireless link from measured physical medium parameters, using
machine learning (ML) algorithms. For this purpose, we chose
two different classes of ML algorithms, namely SVR (Support
Vector Regression) [1] and k-NN (k-Nearest Neighbors) [2], to
study the tradoff between complexity and estimation accuracy.
Finally, we ranked the pertinence of the most common physical
parameters for estimating or predicting the throughput that can
be expected by users on top of the IP layer over a WIFI link.

I. INTRODUCTION

Wireless networks are of essential importance nowadays.
Users are more and more mobile and access the Internet thanks
to mobile devices as laptops, smart phones or tablets. Even
when staying at home, users want to get rid of wires. However,
the wireless medium does not provide the same capabilities
as wired networks on copper or fiber. In wireless networks,
the physical medium is limited in terms of capacity, and the
cause of most of the errors and performance drops. From a
user or administrator point of view, the quality of wireless
communication can appear as very versatile and unpredictable.
This makes wireless networks very complex to manage, and
users often experience communication quality drops that are
completely unexpected.

Monitoring wireless networks is then very difficult. Moni-
toring such networks at the IP layer is very inefficient (whereas
it is the way it is done in wired networks with extremely good
results). Some previous work tried to include the MAC level
in the monitoring of wireless networks [3], but none integrates
the full monitoring of the network from physical to network
layers. We nevertheless argue that this is the direction to follow,
and propose our preliminary study to estimate the relations
between the physical signal parameters and the performance
at the network level. Physicists are doing very strong studies on

the signal level, but do not study the impact on upper layers
[4]. In this paper, it is proposed to bridge the gap between
the signal and the digital world in wireless communication
networks.

This paper then presents a double contribution.

First, we designed and built a platform for benchmarking
wireless communications. Many wireless testbeds, identified
in the literature, already exist for that purpose. However, the
major trend is to build large grid of wireless nodes which
can be programmed individually to transmit, receive and/or
measure data. Custom topologies can be made out of the
grid by switching on and off nodes. For example, Orbits [5]
follows this approach. However, these platforms are built in
open environments and lack the isolation and environmental
control required to conduct an accurate cross-layer study on
wireless networks. Contrary to these works, our testbed is
built in an anechoic chamber to fully control the experimental
environment, and avoid external signals to disturb the be-
havior of the communicating devices and the quality of the
measurements. We used on this platform the common digital
communications devices that are widely used (laptops, tablets,
smart phones), as well as dedicated signal measurement tools
specifically designed for physicists. Anyway, because of space
limit, this paper concentrates on the study of a WIFI link.

Second, the paper presents the analysis of the relations
between the PHY parameters of the WIFI connection, and
the performance parameters on top of the IP layer. It aims
at demonstrating that, at the opposite of wired networks, the
monitoring of wireless network can not avoid monitoring the
physical level. It is shown that using a very limited number of
signal parameters (one or two), it is possible to very accurately
estimate communication performance and quality parameters
as network level throughput, delay or loss ratio. With a
carefully selected and set ML algorithm, it is even possible
to predict performance drops at the scale of one second.
For this purpose we rely on two kinds of supervised ML
algorithms: SVR and k-NN. Both of them are known to have
good prediction capabilities and to succeed in many domains
as long as these domains can provide accurate time series [2],
[6]. However their operational characteristics are very different
making them more prone to different usage and applications.
For example, SVR algorithms are strong learners whereas k-
NN’s learning is weak, thus making them unable to assimilate



training data on the fly because of the huge computational
complexity. However, SVR algorithms are more sophisticated
than k-NN and so are more efficient to generalize data and
usually more accurate on the estimations [2]. Therefore, we
will compare the relative estimation performances obtained
with SVR and k-NN as well as their performance concerning
their time of execution (learning and estimation delays). Again,
because of space limit, the paper only presents the results with
the most common physical signal parameters as SNR or RSS
for estimating the throughput obtained on top of the IP layer.

II. MACHINE LEARNING ALGORITHMS

A. SVR theory

This section presents the basic theory behind SVR. More
details can be found in [7]. Given a set of training data
{(x1, y1), ..., (xn, yn)} ∈ X × R with X the input space. The
purpose of SVR algorithm is to estimate a function f(x)
with the requirements of having at most ε deviations from
the targets yi. Equations (1) and (2) show respectively SVR
approximation for linear and non-linear form, with 〈., .〉 the
notation for the dot product in X. In the linear case, SVR
performs a linear regression in the input space. In the non-
linear case, no regression can be done in the input space.
Therefore, on a first hand, the SVR algorithm has to map the
data into some feature space F via the function φ : X → F.
On a second hand, the classical SV regression algorithm is
applied in the new feature space.

f(x) = 〈w, x〉+ b with w ∈ X and b ∈ R. (1)
f(x) = 〈w, φ(x)〉+ b with w ∈ X and b ∈ R. (2)

The second requirement for the regression is to maximize the
”flatness” of the weights, here measured by ‖w‖2. Hence, in
the non-linear case both coefficients w and b are estimated
by minimizing the regularized risk function given in (4). In
this equation, C is a user-defined constant which controls the
trade-off between the training error and the model flatness. Lε
is the ε-insensitive loss function defined by equation (3). This
function allows the SVR algorithm to only penalize estimation
errors greater than ε.

Lε(yi, f(x(i), w) ={
|yi − f(x(i), w)| − ε if |yi − f(x(i), w)| ≥ ε.
0 otherwise.

(3)

R(f, C) = C

n∑
i=1

Lε(yi, f(x(i), w)) +
1

2
‖w‖2 . (4)

To complete the regression we need to solve a convex opti-
mization problem, which is more easily done by maximizing
its dual form and introducing the Lagrange multipliers (αi,α∗j ).
The new optimization problem is given by (5) and is subject
to
∑n
i=1(αi − α∗i ) = 0 and α∗i ∈ [0, C].

Maximize − 1
2

∑n
i,j=1(αi − α∗i )(αj − α∗j )〈φ(xi, xj)〉

−ε
∑n
i=1(αi + α∗i ) +

∑n
i=1 y(i)(αi − αi∗).

(5)
Solving this leads to a new definition of (2) as f(x) =∑n
i=1(αi − α∗i )〈φ(xi), φ(x)〉+ b.

At this point, this definition shows that the solution can
be found by only knowing 〈φ(xi), φ(x)〉 instead of explicitly

knowing φ. A function k(x, x′) which corresponds to a dot
product in some feature space F as defined by k(x, x′) =
〈φ(x), φ(x′)〉 is called a kernel. This kernel function can be
any symmetric function satisfying Mercer condition such as the
Gaussian Radial Basis (RBF) which is defined by K(xi, xj) =
exp(−γ ‖xi − xj‖2). The Gaussian kernel is parametrized by
γ (γ > 0) which impacts the generalization capability of the
regressor among other things.

B. k-NN for continuous variables estimation theory

The learning approach of k-NN [8] is to memorize the
entire training set. As so, the algorithm belongs to the class
of the so-called lazy learners as [9], [10] for instance. Given
a set of training data D = {(x1, y1), ..., (xn, yn)} ∈ X × R
, with X ⊆ R, the process followed by k-NN to estimate an
object z = (x′, y′) can be easily summed-up in three steps.
Firstly, the algorithm computes the distance d(x′, x) between
z and every object (xi, yi) ∈ D. Secondly, the set F of the k
closest neighbors to z is selected. Thirdly, k-NN computes
the estimation as ŷ = 1

k

∑k
i=1 xi with x ∈ F . Variants

exist and concern essentially the method used to compute
the distance d(x, x′) such as the Manhattan, Euclidean or
Minkowski distance. The p-order Minkowski distance for two
sets of points F = (x1, ...xn) and G = (y1, ..., yn) ∈ Rn is
defined by (

∑n
i=1 |xi − yi|)

1
p .

III. EXPERIMENTAL PLATFORM AND DATASET

A. Experimental conditions and measurement equipments

The implementation of a dedicated wireless testbed is a
major requirement for our work. First of all, experimentations
must be reproducible, allowing comparison between different
sets of measurements and algorithms. This point is not trivial
when using wireless networks as the environment factors have
a high impact on the network performances. Secondly, part
of the originality of this work comes from the combination
of measurements made at multiple network layers, using
electronics instruments and software tools. This was also a
strong requirement to be able to monitor the physical layer (the
wireless transmission), and compare it to the higher layers,
from the mac layer information given by the network cards
to the end-to-end layers as transport throughput for instance.
The hardware introspection requirement has an impact on
the components choice as explained below. Thirdly, the syn-
chronization of all of these datasets was a sticky point, but
absolutely required to ensure a good behavior of the learning
algorithms.

B. Reproducibility requirement

Our wireless testbed was designed inside an anechoic room.
An anechoic room is a protected RF room which simulates free
space conditions. Our model of chamber is 4,10 meters long
for 2,50 meters wide. Inside, walls are covered of microwave
absorbers materials that break and scatter any wireless signal
that would come from an inside source. The chamber is then
free of any multi-path propagation. There are different types
of absorbers, each of them is defined for a specific frequency
range that allows us to use the anechoic chamber for different
purposes and frequencies. The absorbers protect also the inner
environment of the room from outside perturbations. This



TABLE I: Constitutions and characteristics of our training sets. Each vector represents 1 second of measurements

Training set Dataset definition
notation {Tx Power (dBm); Noise Power (dBm)}; {sample 2};...

Dataset1 (5323 vectors) {10;-20};{10;-17};{10;-15};{10;-13};{10;-10};{10;-7};{10;-5};
{20;-20};{20;-17};{20;-15};{20;-13};{20;-10};{20;-7};{20;-5}

Dataset2 (2661 vectors) {10;-20};{10;-17};{10;-15};{10;-13};{20;-20};{20;-17};{20;-15};{20;-13}
Dataset3 (1330 vectors) {10;-20};{10;-17};{10;-15};{10;-7};{10;-5};{20;-20};

protected context minimizes the uncontrolled parameters of
our communication.

C. Introspection requirement and components choice

Inside the anechoic chamber we placed two WIFI nodes.
The nodes are controlled through a wired network to avoid
interference with the wireless communication. The nodes are
Avila-GW2348-4 gateway platforms and run a Linux OpenWrt
OS. The boxes have an Intel Xscale processor, 64 MB of
SDRAM and 16MBytes of Flash memory. The WIFI network
controllers are based on the AR5414 chip-set from Atheros
which uses the ath5k driver and are attached to an omni-
directional antenna. The choice of the wifi chipset and its driver
was crucial because they define the amount of metrics and the
accuracy that it will be possible to obtain. The ath5k driver is
open-source and well documented thanks to an active online
community support. It has also a good integration within the
OpenWrt OS. The OpenWrt OS is flexible enough to allow
the implementation of new functionalities so that it accelerates
the upgrade of the bench. In addition and because we were
unable to capture the noise strength of the received signal with
the Atheros hardware, we used an oscilloscope connected to
the receiver antenna. It records the amplitude of the received
signal. The oscilloscope chosen was a fast Lecroy WaveRunner
which allows us to capture a maximum number of frame signal
with little loss and to record them on internal memory. The
precision of this instrument gives us the ground truth required
by the training methods used. It also embeds a large library of
filters, and operators which can be applied on the input signals.
The oscilloscope is also synchronized by NTP.

1) Synchronization requirement: As we used several equip-
ments to get measurements, it is needed to have their clock
very accurately synchronized. This was done with NTP by
using a dedicated wired connection to a remote NTP server
(accuracy with a shared network bus is not sufficient).

2) Capture and measurement processes: The configuration
of the network interfaces is done in promiscuous mode to
capture any packets sensed by their antenna. The packets are
captured at the MAC layer using the PCAP library and tools
when they arrive at the kernel interface. The packets contain
data from link to application layers, such as the 802.11 channel
number, the type of frame at the MAC layer, or packet size
at the network layer. Additionally, a packet also contains a
RADIOTAP header which gives radio level information such
as the received signal strength (RSS) reported by the ath5k
driver. We modified the ath5k drivers of the OpenWrt OS to
permit, when possible, the propagation of packets with frame
check sequence (FCS) errors to the upper layers, while on
the original kernel they were discarded. The propagation is

only possible if the error corrupted the data but not the header
fields. Following this modification the RADIOTAP header now
contains a flag specifying whether a FCS error was detected
when decoding the packet.

The Lecroy oscilloscope was set to capture and flush the
data as soon as a frame is detected on the input cable. This
happens when the amplitude of the sensed signal is above a
specific threshold, set to be in between the current noise floor
and the minimal amplitude value of a frame. This threshold
has to be set in a way to prevent exceptional high noise values
that could be incorrectly detected as a frame.

D. Experimental protocol

1) Noise generation.: One of the objectives of our envi-
ronment is to minimize the presence of these uncontrolled
parameters on the communication. Another objective is to
generate and control selected parameters that will impact our
communications.

The noise and the interferences significantly impact the
communication. We then inject noise in the environment
using a signal generator to perturb the communication. The
signal generator is a device which emits RF signals. It can
be configured to generate very realistic noise. Among the
parameters of the generated noise, two important elements
have a crucial impact: on a first hand the modulation used
characterizes the main characteristics of the noise signal in the
time and frequency domains (i.e. it characterizes the spectral
occupancy of the generated signal, its fading or narrowness).
On a second hand, the amplitude of the signal also affects the
measured level of noise on the receiver side. We found that the
AWGN (Adaptive White Gaussian Noise) noise modulation
was a good choice for our preliminary studies because of
its simplicity. Moreover it can be used to impact the entire
bandwidth of a 802.11g channel contrary to most other mod-
ulation schemes which produce narrow band noise. The noise
level was determined empirically by testing the effects on
the communication. Finally, a major element that affects the
noise generated in the anechoic chamber is the antenna. It
characterizes the waveform, the direction and the amplitude
of the noise wave. In order to perturb only one side of the
communication we used a very directional antenna pointed to
the receiving station. We use IPERF to generate traffic between
the two peers. The traffic is a TCP flow with a constant
throughput of 24 Mb/s. The size of the packets is set to 1470
bytes.

2) Training and datasets: We generated different samples
with different noise levels and different transmission powers.
All the samples have the same duration of 5 minutes and will



be used to constitute our training datasets. Table I sums up the
characteristics of the different samples. The same experimental
settings (transmission power and noise) are used for training
and testing. Therefore a training dataset which contains all
these samples will be considered as having full knowledge
about the possible use cases met in the test dataset. Hence,
to test the generalization capacity of our algorithm, we built
three different training datasets as described in table I. These
datasets differ by the quantities of samples they are made of,
and consequently by the level of knowledge they represent.

E. SVR features definitions

1) Atheros Received Throughput: This is the performance
metric of the communication that we are considering in
this paper. It is computed from the PCAP captured at the
receiver side of the transmission. It is defined by BWi =
n∑
k=1

L(pk) with k ∈ N. BWi is the computed throughput at

second i, L(pk) is the length of the payload at the network
layer for packet pk such as pk ∈ Pi which is defined as the set
of the nth received packets without FCS error during second
i: Pi = {p1, ..., pn}.

2) Atheros RSS: The Atheros RSS is extracted from the
RSS field in the RADIOTAP headers of the packets included
in the PCAP files. Given that RSS(pk) is the RSS of packet
pk such as pk ∈ Pi, and Ri is the set of RSS extracted
from packets captured during second i, it is defined as
ATH RSSi = Ri with Ri = {RSS(p1), ..., RSS(pn))} .

3) Lecroy noise: In addition to the Atheros values, we
extract different metrics from the Lecroy datasets. These values
are computed from the Root Mean Square (RMS) values of the
raw data. These RMS values can be split into three parts, which
are the data that are before, during and after the frame. The
part of the data before and after the frame are the noise values
and therefore can be used to extract the noise floor during the
reception of that frame. We consider A and C, the sets of these
points. Therefore we compute the average noise floor of the
data during the reception of frame f with Nf = A ∪ C.

With Mi the set of noise levels extracted from the
frames captured by the Lecroy oscilloscope during second
i, we compute the feature for the noise floor at second i
LECR NOISEi as LECR NOISEi = Mi with Mi =
{Np1 , ..., Npn} and pk ∈ Pi.

4) Lecroy RSS: The RSS of the received frame is computed
on the first 8 symbols to comply with 802.11 standard (see
http://standards.ieee.org/getieee802/ ). These points constitute
the set D. Thus, similarly to previous equations, the RSS
for a frame f is given by Rf = D and LECR RSSi =
{Rp1 , ..., Rpn} , where LECR RSSi is the feature of the
Lecroy RSS at second i.

5) Lecroy SNR: Finally we compute the SNR Sf for frame
f as the difference between the noise floor and the RSS of the
frame P and therefore, similarly to previous formulas: Sf =
Rf−Nf and LECR SNRi =Wi with Wi = {Sp1 , ..., Spn}
and pk ∈ Pi.

IV. ESTIMATION OF THE RELATIONS BETWEEN PHYSICAL
AND PERFORMANCE PARAMETERS IN WIFI

COMMUNICATIONS

A. ML based methodology

The 2nd contribution of this paper is the analysis of the
relations linking the PHY layer parameters and the upper layers
performance.

1) SVR: SVR algorithm has been used with RBF as a
kernel function. As section II-A points it out, in our configura-
tion SVR requires three user-defined parameters (C, γ and ε)
which can impact performance and therefore must be carefully
selected with regard to the application. For our estimations,
we used a grid search to select these SVR parameters. It is
a common empirical method which consists in an exhaustive
test run of SVR training using generated settings combinations.
We then select the best combination of C, γ and ε among the
results.

2) k-NN: For the performance of k-NN, the value of k must
be carefully selected. Therefore, after several tests on the dif-
ferent datasets, we chose a value which allows a good tradeoff
between the estimation accuracy and the generalization results.
Hence, in the presented experimentation, we set the value of
k to 3. The distance method used is Minkowski with order
2 which corresponds to the Euclidean distance recommended
with the traditional version of the algorithm [8].

3) Training and estimation delays measurements: One part
of the analysis of the machine learning estimations concerns
the computational time associated with the training and esti-
mations process. Our ML setup uses Python scikit-learn imple-
mentation [11] of SVR and k-NN. The delays are computed
by reading the current clock using the ’time’ function. The
clock is read twice: before and after the measured process.
The difference of the two measures constitutes the delay for
the measured process. For each estimation, we made 100 runs
and then computed the average and standard deviation of the
delays. The CPU used to conduct the measures is a 64 bits Intel
Core 2 Duo (2x2.53 GHz) with 6 MB of cache memory. The
computer disposes of 4 GB of RAM memory. The operating
system is Debian Linux.

B. Estimation performance

To evaluate the estimations, two methods are used.

1) Mean Squared Error (MSE): Given that Ŷi, ..., Ŷn are
estimations and Yi, ..., Yn are the real values, the MSE is
defined as MSE = 1

n

∑n
i=1(Ŷi − Yi)2.

2) Percentage of correct estimations: We also use the
percentage of correct estimations noted P (e < d) and defined
by P (e < d) = 1

n

∑n
i=1D(Ŷi, Yi, d). This value is the

percentage of estimations which differ from the corresponding
real values by less than a defined threshold d as shown on
equation (6). These estimations are then considered ’correct’.
Given the maximum throughput of 24 Mbps and the size of
the packets defined to be 1470 bytes, we set the value of the
threshold d to 1 Mbps. Indeed, this threshold corresponds to an
error in the estimation of 4% (89 packets over 2139 transmitted
during one second). By considering the preliminary measured
performance of the algorithms this value could be considered
to be fair to assess the goodness of the algorithms.



TABLE II: Results of the estimations using physical layer metrics. D1, D2 and D3 stands respectively for Dataset1, Dataset2
and Dataset3.

(a) Scores and pertinence of the estimations.

Physical layer parameter(s) MSE (Mbps2) P(e < 1Mbps) (%) SVR Pertinence ranking k-NN Pertinence ranking

SVR k-NN SVR k-NN MSE P(e < 1Mbps) MSE P(e < 1Mbps)

no D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

1 ATH RSS 11.24 11 10.17 23 33 34 35 33 34 24 22 14 6 6 6 6 6 5 6 6 6 5 6 6

2 LECR RSS 4.42 3.9 4.5 27 7.1 10 51 59 32 18 35 31 5 4 4 5 2 6 5 5 5 6 5 4

3 LECR NOISE 2.28 5.4 5.8 5 2.8 4.2 69 55 44 50 44 24 4 5 5 3 4 3 4 4 4 3 4 5

4 LECR SNR 1.69 1.6 1.6 4 2.3 2.8 64 66 62 48 50 45 3 1 1 4 1 1 2 3 3 4 3 3

5 ATH RSS + LECR NOISE 1.02 2.3 3.3 4 1.3 1.7 70 49 41 54 60 50 2 3 3 2 5 4 2 2 1 2 2 1
6 LECR RSS + LECR NOISE 0.88 2.0 2.53 2 1.2 2.2 75 57 49 64 63 46 1 2 2 1 3 2 1 1 2 1 1 2

(b) Average delays observed for the training and estimations processes on 100 runs (values into brackets are the standard deviation of the distributions. Due to
space limitation, standard deviation values are given in 103 unit).

Physical layer parameter(s) Time used for training (s) Time used for estimation (s)

SVR k-NN SVR k-NN

no D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

1 ATH RSS 5.39 (40) 1.40 (2) 0.36 (0.4) 0.048 (2) 0.023 (0.1) 0.012 (0.1) 1.52 (10) 0.78 (6) 0.40 (3) 1.13 (10) 0.63 (1) 0.39 (0.6)

2 LECR RSS 41.27 (300) 11.71 (7) 3.12 (2) 0.048 (1) 0.023 (0.2) 0.012 (0.1) 1.58 (20) 0.81 (10) 0.42 (3) 0.61 (3) 0.44 (0.8) 0.29 (0.6)

3 LECR NOISE 5.17 (10) 1.38 (1) 0.36 (0.8) 0.051 (6) 0.023 (0.2) 0.012 (0.1) 1.47 (20) 0.76 (10) 0.42 (4) 0.96 (30) 0.35 (0.9) 0.08 (0.3)

4 LECR SNR 11.54 (6) 3.87 (4) 1.35 (2) 0.048 (4) 0.023 (0.2) 0.012 (0.1) 1.38 (30) 0.70 (10) 0.36 (3) 0.74 (60) 0.45 (0.8) 0.19 (0.3)

5 ATH RSS + LECR NOISE 4.50 (4) 1.15 (2) 0.30 (0.2) 0.048 (0.6) 0.023 (0.1) 0.012 (0.1) 1.34 (9) 0.67 (10) 0.35 (8) 0.32 (10) 0.15 (0.3) 0.06 (0.1)

6 LECR RSS + LECR NOISE 4.72 (9) 1.23 (2) 0.31 (3) 0.046 (0.5) 0.023 (0.1) 0.012 (0.08) 1.38 (1) 0.70 (4) 0.36 (3) 0.27 (0.4) 0.15 (0.2) 0.08 (0.1)

D(Ŷi, Yi, d) =

{
1 if |Ŷi − Yi| < d.

0 if |Ŷi − Yi| ≥ d.
(6)

C. Estimation results

Table II contains the results of the throughput estimation
based on 6 different PHY or combinations of PHY parameters
for respectivelyDataset1, Dataset2, and Dataset3. The first
column quotes the PHY parameters that have been used for the
SVR estimation of the IP throughput. Columns 2 to 4 show the
figures obtained for the MSE and the probability P (e < 1Mb)
for both ML algorithms. The four last columns give the ranking
for the PHY parameters according to their ability to allow good
estimations of the throughput. A ranking of 1 corresponds to
the best result among the 6 PHY parameters considered.

For Dataset1, i.e. the full one, the best result is obtained
with LECR RSS + LECR NOISE for both families of
algorithms. The estimations for SVR are plotted on figure 1.
This figure exhibits impressive matching between the real and
estimated values of the throughput, with just very few outliers
appearing (75% matchings). We got as impressive results for
Dataset2, and Dataset3, but this time, the best results for
SVR have been obtained with the LECR SNR parameter
(60% matchings). The difference of the results when using a
full trace for the training compared to a sampled one exhibits
the non empty intersection between PHY parameters as SNR,
RSS and NOISE. These 3 parameters are closely related. The
results for k-NN improve with the use of Dataset2. Contrary
to SVR, the best estimations are obtained with the features
5 and 6 for every training datasets. Generally speaking, SVR
performs better than k-NN excepts in the 2nd training dataset
where k-NN outperforms SVR in terms of MSE.

It nevertheless clearly appears with these figures that SNR,
RSS and NOISE can help to perfectly estimate and predict

(on a one second scale) the performance of the network at
layers 3 and 4. Nevertheless, a deeper analysis on larger
datasets, that still need to be produced, would allow a more
accurate characterization of the link between PHY parameters
and network performance. Actually, it appears that while the
combined features metrics performance decreases, the overall
performance of the RSS metrics 1 and 2 increases or stays
more or less the same. This seems to suggest that the full
training set was not adapted to these metrics. This is even more
visible in k-NN results, while MSE performances improve
impressively between Dataset1 and Dataset2. The difference
between the full and the reduced sets is that the samples
obtained with high noise are not present in the reduced
datasets. This could be caused by incoherent values existing
in Dataset1 because of the bad and noisy conditions. One
possibility is that these values could deteriorate the model
issued from the training process. This hypothesis seems to
be corroborated by the results obtained with k-NN and the
simplicity of its algorithm which makes it more sensible to
the general quality of the training dataset and the choice of
the feature. This aspect needs to be considered for improving
our platform and experiment protocol.

D. Training and estimation time performance

Table II presents the results of the measured delays for
training and estimations using SVR and k-NN. According to
these numbers, the time taken by SVR to train can be very
high. Hence, with Dataset1 and the RSS metrics, the delays
goes up to the tens of seconds. Then the time decreases with
the use of smaller training sets. In the case of k-NN, no model
are computed, the data are simply memorized. Therefore the
training is very fast and essentially depends on the size of
the training sets. As a consequence, k-NN values decrease
geometrically by a factor of 2 when changing from Dataset1
to Dataset2 and then from Dataset2 to Dataset3. According
to section II-A, SVR forces the estimated function to be within



Fig. 1: Throughput estimation results obtained with the LECR RSS+LECR NOISE metric compared to the real throughput.

an ε distance of the averaged data, a requirement which can
be tedious for the algorithm to fulfill. Hence, the high value
for SVR model training are explained by the usage of this ε
parameter which affects greatly the training accuracy as well as
the delays. However, this affirmation would need more study
focused on the SVR parameters and these specific data. The
time taken for the estimation are higher when using SVR, than
when using k-NN. The SNR delays vary with the size of the
training set. This result seems unintuitive since SVR training
model is based on regression. However, the results obtained
with k-NN are conform to its training model which is based
on the memorization of the entire training set. k-NN results
are very good comparatively to the one of SVR. By observing
the global results, we see that k-NN can largely compete with
SVR when it comes to accuracy while at the same time being
slightly faster.

V. CONCLUSIONS AND FUTURE WORK

The main contribution presented in this paper deals with
the design of a generic platform for monitoring and analyzing
wireless networks. This wireless testbed is set in the RF
protected environment of an anechoic room, allowing us to
control the perturbation on the physical medium by generating
noise. It also has the originality to integrate pure physical
signal measurement tools as Lecroy oscilloscopes for very
accurate measurements serving as ground truth. Based on the
collected data, the second contribution of the paper deals with
exhibiting the importance of PHY parameters on network com-
munication performance. The correlation between the physical
environment and the communication performance is so strong
that it is possible by only monitoring the SNR and the RSS
of the signal to predict the performance level at the TCP/IP
level. This result has been demonstrated using different kinds
of models, in particular the SVR and k-NN models presented
in this paper. Future work includes a large exploitation of our
platform. Indeed, for this preliminary stage, we just set simple
scenarios with a single connection and simple noise model
that can appear a bit far from realistic situations. These first
simplistic scenarios were manadatory to validate the platform
accuracy, and the monitoring and analysis tools, as well as
for gaining the required skills required for this multi-thematic
work, especially in the domain of the signal propagation and
behaviour. We now plan to generate large datasets with more
complex and realistic scenarios, and this for different kinds of
wireless networks, including WIFI, UMTS, LTE, etc. We will
also exploit this datasets by deeply analyzing them, understand
how wireless networks behave, and then trying to improve the
way we use and manage them.
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Abstract—This last decade has seen an increasing interest for
wireless communications. With the current use of smart-phones
and tablets coupled to the rise of the Internet of Things, the
number of mobile terminal nodes in networks will significantly
change the way we manage them. Indeed, these wireless networks
are more and more dynamic, especially concerning topology.
Therefore distributed network control, and traffic management
are of increasing complexities: How to face a topology frag-
mentation in the network? Which considerations to take when
lightening a crucial node? Networks will need to be autonomous
regarding the service they are providing to users and their
resilience. Mobile substitution networks will then be of essential
importance in a very short future. Thus, networks need a way to
self-evaluate their wireless performance and deploy routers at the
best appropriate locations. In this paper, describing our work in
the framework of the RESCUE project, we introduce the concept
of System Development Index (SDI), which allows a system
to judge how well it performs. We then provide methods and
algorithms, which are based on events collection and distributed
mining to analyze the evolution of this index. In our instantiation,
nodes observe events, summarize these observations and can
share them with its neighbors to infer properties on the SDI.We
illustrated it by simulation, considering different scenarii under
NS3. We evaluated the evolution of the SDI and analyzed its
possible underlying reasons for one scenario and analyze error
estimation for various network properties.

I. I NTRODUCTION

Nowadays, one can say that wireless mobile networks have
definitely invaded our daily lives. When looking at forecasts
from Cisco [1], mobile traffic should increase 7.5-times in
the 4 next years. While the service quality will be of primer
interest (two-thirds of this traffic will be dedicated to video),
provider systems will be tricky to manage. Managing wired
networks to sustain unpredictable traffic is still a complexand
unsolved technical domain. The problem raised by wireless
networks will be even more complex: in particular, wirelessin-
frastructures will experience dynamic topologies depending on
terminals position and needs, thus adding a level of magnitude
of complexity. Indeed, complex phenomena will arise with the
Internet of Things where random interactions might generate
new kinds of traffic. As a result, system managers will not be
able to quickly analyze the underlying reasons that affect their
networks’ behaviours, and so, to launch appropriate corrective
measures. Thus, this task needs to be mainly delegated to
systems themselves, for providing fast autonomous adaptative
actions when required (when detecting events leading to
network QoS decreases, or even better when predicting such

QoS decreases). In this paper we provide a reference model for
an observer to assess a system and then conduct an assessment-
centric analysis. While this model could be applied to systems
in general, we consider self-assessment and self-analysiscapa-
bilities for dynamic wireless network of collaborative nodes.
More specifically, our work is focused on the service provided
by the network layer. In this particular case we will have
to face two majors difficulties: (1) nodes only have partial
information on the network state, (2) the level of service relies
on a wireless medium which is complex and not reliable by
nature. Concerning self-assessment, partial informationforces
nodes to agree on a value based on their local information.
Also, this value is time varying and the problem is from the
class of distributed consensus. Concerning self-analysis, nodes
will have to search and share the information they dispose to
understand the law followed by the consensus value. Then,
they will have to determine whether they are responsible for
its evolution. This could be seen as a distributed data-mining
in uncertain context problem, uncertainty being harshenedby
the medium kind. Therefore, the remainder of this paper is
structured as follows. The following section describes the
related work on data-mining applied to network management
and distributed consensus. We introduce in section III our
general assessment and analysis framework for multi-agent
systems. In section IV, we instantiate this framework in the
case of wireless dynamic systems and lead an off-line analysis
through an example scenario. In the fifth section a distributed
assessment algorithm is provided for our network, we also
evaluate it under various network conditions. We will conclude
on future work in a last section.

II. RELATED WORK

A. Knowledge Extraction and Network Analysis

Understanding and Managing wireless network is one of
the operator concern. Orange Labs have shown interest on the
optimal deployment of wireless substitution network [2]. On
its side, AT&T Labs worked on data-mining to analyze its own
wireless infrastructure [3]. Data-mining applied to networking
has already been investigated, in particular by the security
community which is quite fond of this angle. The approach
is applied to network intrusion detection but also in traffic
monitoring and anomaly detection. The main idea is to lighten
network manager task by removing false positive alert. In [4]
the authors mentioned that data-mining was a valuable tool



but which was not about making human analysis unnecessary,
specifically in the attribute choices. Then data-mining are
useful to construct new rules. For example, technical results
can be found in [5] where Casas & al. demonstrated the
efficiency of clustering techniques to detect traffic anomaly
and construct new filtering rules without knowledge. Also,
understanding cause and effect between network events is
not the stronghold of security. We found in [6]–[8] analysis
concerned by the understanding of network behavior. In [6]
authors highlighted the sources of TCP reset anomalies. The
field of wireless communication is investigated in [7] where
the key characteristics of the traffic are captured on several
base stations to optimize their coordination. Authors showed
a significant enhancement on the downlink delay performance
by clustering users in profiles. Finally authors of [8] focused
on the relation that can exist between user experience and
the network quality of service. The studies was lead on a
set of mobile users and explained the relation between server
response time, round time trip and user satisfaction. While
[5], [7] have brought methods to extract information, [6], [8]
have tailored their studies toward a very specific goals. These
two approaches need to be linked by a common objective
which is the network performance. Also, narrowing extracted
information down to assessment will allow one to take up the
issue of partial information. Indeed, despite the efficientwork
cited above, it only considers an omniscient and centralized
approach because of their domain complexity. Therefore we
insert our work in between, with the motivation to only extract
clues on a system relatively to its assessment. The assessment
needs to be shared among all the nodes, which leads us to the
distributed consensus problem. Since our assessment method
relies on an average over nodes, we will focus on the average
consensus problem.

B. Distributed Consensus And Average Sharing

In distributed algorithms, when agents need to agree on
a value, it remains on the well known consensus problem.
This class of problem has been deeply studied from various
angles (termination, fault tolerance, etc...). A subclassof this
problem is called average consensus, where each agent i keeps
a valuevi. The consensus for agents is to find the average
x of the kept values. Many algorithms have been designed,
this is perfectly illustrated in [9]. Every algorithm is a trade-
off between time convergence, memory used by each agent
and the number of exchanged messages. Among the ones that
require few communications and computational resources, the
most famous are : the maximum degree weight given in [10],
the metropolis weight given in [11]. In these schemes, each
node proceeds iteratively, computes values and sends them to
its neighborhood at each step. These linear algorithms both
consider that the dynamic of the average is greater than the
convergence time for a connected network. The estimation
x̂i(t) of x for node i at stept+ 1 is given by :

x̂i(t+ 1) = αi.x̂i(t) +
∑

j∈Ni(t)

αj .x̂j(t) and x̂i(0) = vi

whereNi(t) is the neighborhood of i at step t andαk depends
on the algorithm:

Maximum degree weight algorithm for N agent:

αk =
1

n
if k = i and αk = 1−

|Ni(t)|

n
otherwise

Metropolis weight algorithm:

αk =
1

1 +max(|Ni(t)|, |Nj(t)|)
if k 6= i

and αk = 1−
∑

k 6=j

αk otherwise

Keeping in mind the introduced related work, we can now
detail our assessment and analysis framework of systems.

III. A N ASSESSMENT ANDANALYSIS FRAMEWORK FOR

MULTI -AGENT SYSTEMS

A. System Development Index and Assessment

1) A Multi-Agent Systems Model:Inspired from the Multi-
Agent Systems theory, our framework considers a System as
a set of agents. An agent is an entity which owns interfaces
to interact with its environment and specifically with others
agents. An agent also owns interfaces to observe events or
interactions that occurred to him or to its neighborhood. Each
agent has an utility value that represents its wellness overtime.
We defined utility values in the real interval[0, 1] , where 0
is a worst case and 1 is a best case. The utility value of an
agent can also be seen as its percentage of satisfaction driven
by a possibly unknown utility function. Each agent is able to
store a set of observed interactions as well as its satisfaction
history. The formalism we used to describe these observations
is detailed in the next section.

2) System Ideality and System Development Index:When
considering system assessment, our main axioms are the
following:

• Systems where all agents are 100% satisfied are ideal.
• Systems where all agents are 0% satisfied are not ideal.

Therefore we can summarize the level of ideality of a N-agents
system in a N-dimensional vector of utility values.

• Let S be an N-agents system
• Let u(t) be the utility vector of agents in S at time t
• Let ui(t) be the utility of agent i in S at time t
• Let z ∈ [0, 1]N such aszi = 0 ∀ i ∈ [1, N ]
• Let o ∈ [0, 1]N such asoi = 1 ∀ i ∈ [1, N ]

A SDI for a N-agents System S is a function from[0, 1]N to
[0, 1] that satisfies both of our axioms, thus the space of SDI
function for S is given by:

{g : [0, 1]N → [0, 1] | g(o) = 1 and g(z) 6= 1}

The system S is said ideal for a given SDI g at time t if and
only if :

g(u(t)) = 1

Thus in our framework, system ideality is related to a point
of view or function. The classical form of SDI is given by



f(s) =
N∑
i=1

γi.ui with
N∑
i=1

γi = 1

The value ofγi could be based on the pricing policy of a
system manager who gives preferences to some users classes.
For a selfish agent i, the system will be ideal as far as its own
satisfaction equals 1. In the latter caseγj = 0 for j 6= i and
γi = 1. One can also base a SDI on a distance between the
satisfaction distribution and the perfect distribution where all
agents are fully satisfied. The main point is that a SDI is an
index that one wants to follow. For an external observer, this
index can just be studied. In the case of a concerned observer
like a system manager, this index will be tracked in order to
be maximized. Finally if the observer is an agent, the index
indicates how well the system in which it evolves is ideal
given its point of view.

3) SDI Estimation and Analysis in Various Systems:Com-
puting the value of the SDI in real time is not trivial for
systems with a large number of nodes. Indeed one needs to
have access in real time to the utility value of each agent to
be able to compute its exact SDI. From an agent point of
view, it means that he should collaborate with others, which
is not always the case. For the same reasons, accessing the
necessary information to understand the evolution of the SDI is
not always possible. We can thus study the SDI with different
angles which depend on omniscience, and interactivity (off-
line vs on-line):

Omniscient Off-line Studies:This kind of study considers
the whole set of information contained by the agents and
analyzes it passively. The aim here is to identify behaviors,
cause-and-effect regarding the evolution of the SDI for a
whole system. It allows one to retrieve knowledge on the
underlying reasons that drive the assessment of a system under
a given point of view (SDI). Consequently, these studies are
preliminary studies.

Partially informed Off-line Studies:In this case the
information considered is only contained by a subset of agents
(or a unique agent) under a passive analysis. The main goal
of these studies is to characterize the possible conclusionthat
a subset of agents could draw with partial information.

On-line Studies:While for Off-line study it is possible to
be omniscient, in the case of On-line studies, the information
will always be considered as partial, since the agents can not
know the whole state of the system. Thus they can not be sure
of the consequences of their actions. That is the reason why
this type of analysis better requires preliminary off-linesurvey
and calibration.

B. Event Based SDI Analysis

In order to analyze the evolution of a system, we consider
its initial state and its succession of events. We have previously
described our model such as a set of agents having interfaces
through which they observe events. In this section we will
detail the formalization of these observations and the way to
analyze them.

1) Observation and Event Definitions:An observation can
be seen as tri-dimensional point. More specifically an observa-
tion has a time dimension, an observer (or agent) dimension
and an event dimension where events are also multidimen-
sional. An example of table is illustrated in table III-B1.

Time: The time dimension is crucial since we want to
study and manage the temporal evolution of the SDI. Time
is considered continuous, second(s) is the principal unit.We
keep only one time representation which is called#Time. In
our implementation, we considered time as a float value with
the experiment start as the origin.

Agent: Agents are the main entities of our systems they
interact each others, observe, analyze and make decision. They
will have a unique identifier#Agent.

Event: An event is aperceptiblemodification of the
system state. Combining the initial state and events, one can
trace a partial history of a system. As specified above, an
event is a multidimensional object identified by a primary
key #Event. It can be represented by a frame where the first
field is the event type (eType) which determines the validity
and the meaning of the following ones. An Event can occurs
several times and be observed at different moment by distinct
agents.

(a) Example of Observations Table

Observations

#Time #Agent #Event

float int int

1.2 0 0

1.25 1 1

1.255 0 1

1.3 1 0

(b) Example of Event Table

Events

#Event eType eSource eSpeed eLength ...

int string int float int ...

0 ’Move’ 0 3.0 - ...

1 ’Packet’ 1 - 1500 ...

TABLE I
*

In this scenario, we have two agents, each of them produces anevent. Each
event is observed by both agents. Agent 0 moves at time 1.2s while agent 1
sends a packet at time 1.25s. Agent 0 observes the same packet5ms later

while agent 1 realizes that agent 0 has moved at 1.3s. The two events have
a field in common which is the agent id that produced the event (eSource).

The two events have also distinct fields: an event of typePackethas a
length (eLength) whereas aMove has a speed (eSpeed)

2) Constructing Observation Features:The idea behind an
event based SDI analysis is to link the evolution of an SDI
to the evolution of observations features. We call feature a
property of an observation cluster. Thus, we will create clusters
of observations, compute some cluster properties that varyover
time and then study the association between these properties
and the SDI. As a result, when proceeding to an SDI analysis,



one wants to define three important things : (1) An algorithm
to define clusters, (2) distance functions between observations
and (3) the properties to observe. Therefore we give in table
III-B2 examples of canonical distances that one could use to
build a distance between observations.

Dimension Distance(o1,o2)

Time
abs(o1.#time-o2.#time)

abs(HoD(o1.#time)-HoD(o2.#time))
abs(DoW(o1.#time)-DoW(o2.#time))

Agent 2-norm(o1.#agent.position,o2.#agent.position)
o1.#agent.nbHop(o2)+o2.#agent.nbHop(o1))

RTT(o1.#agent,o2.#agent)

Event
LevenshteinDist(o1.#Event.eType,o2.#Event.eType)

card({field | o1.#Event.field6=’-’ ⊕ o2.#Event.field6=’-’ })

Generalized Same(f(o1),f(o2))
where Same(x,y)=0 if x=y ;∞ otherwise
example : f(x)=(x.#agent,seconds(x.#time))

TABLE II
*

This table gives canonical distances for each dimension to be used when
grouping observations. For time dimension we suggest the use of Hour of

Day (HoD) or Day of Week(DoW). For event dimension, the string
comparison of type name is possible (Levenshtein or edit distance). In this

paper, we will use a generalized distance (Same) based on lambda functions
(in our case key comparison)

Regarding time, one can express naturally the distance
between two timestamps as a simple difference of the values
in seconds. Nevertheless, depending on the studied system,
it could be meaningful to use seasonal distance like the
difference between hour of day or day of week. When consid-
ering agents, the natural way to evaluate distance is to use
geographical positions. This last approach might not make
sense if agents are software entities in a same physical system.
Then, analysts might want to define other distances like the
proximity of their state or the number of hops in the case
of networks. Distance between events are less obvious to
determine. However it is still possible to create generic metrics
based on the string distance between their type names, their
number of common fields or the value of their fields.

Fig. 1. Features and SDI Analysis

3) Temporal Correlation Between Feature and SDI:In this
paper, we will only construct features in a supervised way
using aggregation over observations. After having grouped
observations (for example by observers and/or type of event)
we construct subgroups by time intervals. We then apply an
aggregate function (such as count, or average over a field) to
build time series of features. For illustration purpose, a trivial
but significant example of feature is the number of events
observed by an agent during a unit of time like illustrated
in the figure 1. Following this process we can construct a
set of time series of features{f1(t), f2(t), fi(t), ..., fp(t)}.
Once these time series are built, we can study their delayed
correlations with a SDIg(t) over a period of time. We can
thus determine the features that might have driven the SDI
evolution during this period.

• Let t ∈ [1, T ] be a period of time
• Let {fi(t) | i ∈ [1, P ]} be the associated time series
• Let g(t) be an SDI
• Let d ∈ [1, D] be a delay

We defined the matrix R:P×D of ri,d as the delay correlation
matrix whereri,d is the correlation coefficient betweenfi(t)
and g(t + d). The final goal is to find the coefficient in the
matrix that have the highest magnitude in order to highlight
plausible causes of the SDI evolution.

IV. A PPLICATION TO DYNAMIC WIRELESSNETWORKS

So far, we have presented a framework to assess systems
and to analyze the underlaying factors of this assessment. In
this section, we will use this framework to assess dynamic
wireless networks. This instantiation narrows the generalcase
to systems where agents are not malicious, use the same SDI
functions and share a protocol to exchange information on this
SDI.

A. Considered Network Scenarii

The considered system is a wireless mobile ad-hoc network.
We implemented it under the Ns3 simulator . Each node has
its own mobility model and dynamism. Nodes have a unique
wireless interface, might run an UDP server, and instantiate
severals UDP On/Off Constant Bit Rate traffic sources. Each
UDP source has a destination among the set of server nodes.
A source has a fixed data rate and packet size. Duration of
activity phasis follows a uniform distribution with fixed bound.
We used Ns3 YansWifi Model. Controllers are set in ad-hoc
mode and use the adaptive auto rate fallback algorithm without
any quality of service. Routes are discovered through the use
of AODV. The full list of configurable parameters is described
in table IV-A, while a scenario illustration is given figure 2.

B. Framework Instantiation

In this network, nodes are the agents. Each node has a sat-
isfaction function based on the delay it experiences duringits
communications. It interacts with its environment essentially
by its moves and its communications. It can observe others
communications and record its own events.



Network Parameters
N Number of Nodes
randSeed Pseudo-random generator initializer

For each node
X Initial position on X axis
Y Initial position on Y axis
hasServer Implement an UDP server
nbSrc Number of UDP source
dataRate Source data rate
pktLen Packet size
onTime Min-Max On period duration of sources
offTime Min-Max Off period duration of sources
noiseFig Noise figure of the Wifi receiver

mobiModel
Mobility Model
(Constant, Random Waypoint, Random Walk)

speed Min-Max Speed
pause Min-Max duration of a stable position
xRange Min-Max position on X-axis
yRange Min-Max position on Y-axis

TABLE III
*

We can configure several parameters in our Ns3 environment. In the
network, each node has an initial position and can move in a defined area

with a tuned mobility. We can also influence the traffic matrixby
configuring UDP sources and servers

Event, Agent and Observations: Since Ns3 is an event
based simulator, it offers interesting properties to instantiate
our framework. Among them, its tracing system allows the
easy implementation of event observations. In our instantia-
tion, time is a float where the origin is the beginning of the
simulation, each observer is an agent, whose id is derived
from its IP or MAC address. We have defined various types of
events, but we can sort them into two main classes: (1) Packet
events observable from different nodes (2) Others events,
internal to an agent and only accessible by this agent. The
latter are : nodes moves, routing table attributes modifications,
errors and drops. Table IV delivers further details on the
different instantiated types of events.

TABLE IV
EVENT TYPE DESCRIPTION

Type Information
Packet Packet capture in promiscuous

mode with radiotap header
Rtam A routing table attribute is modified

(number of valid entries, longuest path...)
Move Speed modification along at least one axis
Ipv4Drop Packet Drop for a routing reason
PhyRxError Frame has been received unsuccessfully
PhyRxDrop Frame dropped during reception
MacTxDrop Packet dropped before being

queued for transmission
MacRxDrop Packet dropped after the Physical layer
MacTxDataFailed Data packet transmission failed at mac layer
MacTxRtsFailed RTS transmission failed at mac layer
MacTxFinal The number of consecutive
DataFailed MacTxDataFailed has reach a threshold
MacTxFinal The number of consecutive
RtsFailed MacTxRtsFailed has reach a threshold

Satisfaction and SDI: In our particular case, the SDI is
computed from the observations themselves. We have chosen

a fixed aggregation time of 1 second to analyze the network
events and construct features. This value is small enough to
follow the SDI evolution while sufficiently large to smooth
small wireless dynamics. The network assessment is given by
the following formulas. Each packet that an UDP source has
generated is scored. The scoring function is :

score(d) = max
(
0,

threshold− d

threshold

)
d = delay(p)

The score linearly decreases when the delay increase between
0 and a given threshold. It equals 1 for a null delay and 0
if the delay is greater than a threshold (or if the packet is
lost). We set the threshold to the arbitrary value of 10ms.
A delay associated to a Packet is the timestamps difference
between its first observation on the wireless medium and its
first observation by its destination. This score is a QoS metric
that could be link to the user satisfaction like [8] did. The
satisfaction of node i for the interval T is given by the average
score for packets that have been generated by i during the
interval T:

Sati(T ) = |D|−1.
∑

d∈D

score(d)

Sati(T ) = 1 for |D| = 0

D = {delay(p) | p.ipSrc = ip(i) ∩ p.time ∈ T }

The SDI we choose is a simple average of satisfaction over
nodes. Thus the SDI for a network of N nodes associated to
the interval T is given by:

SDI(T ) = |N |−1.

N∑

i=1

Sati(T )

C. Analysis of Dynamic Wireless Networks

For understanding purpose, we will illustrate the analysis
of the scenario given in figure 2. This analysis will be off-
line and the observation will be omniscient. As we specified
above, we have constructed our features based on aggregation
function. Mainly, we grouped observations by observer and
by second. We have designed more than twenty features by
nodes, table V details the most relevant ones for this scenario.

Name Information
AvgnbGateway Average # gateway in the routing table
AvgnbValid Average # valid entry in the routing table
CountPhyRx # received frame
CountAllRetry # frame having a retry flag
CountMyRetry # transmitted frame with a retry flag
CountMyIpFlow # local distinct IP destination
CountMyUdpSrc # local active UDP sources
CountAllFlow # IP flow going through the local node
CountPhyRxError # PhyRxError events
CountPhyRxDrop # PhyRxError events
CountDropRouteErr # IPv4Drop events for a route error reason

TABLE V
FEATURESDESCRIPTION

Most relevant constructed features related to the scenario. Each features is
related to an observer (called local node). The # stands for ”number of”



Fig. 2. *

In this scenario, Node 2 and 5 are UDP sinks. Node 3 is
mobile. On the top node 0 and 1 might overload node 2

while at the bottom, route toward 5 is down.

At the beginning of the scenario, all the sources where off,
thus all nodes were fully satisfied. Traffic sources started to
transmit from second 2 when the SDI brutally decreased. Then,
for every significant move of node 3, IP routes are lost or
recovered, impacting significantly the SDI. When routes are
up, fluctuations can be explained by the delay variations. When
nodes 2 experiences some difficulty to transmit, its number of
retry will increase and impact the delay. Even if only few
packets are concerned, this might have a significant impact
on the source satisfaction if these packets are the only ones
sent by the source node. Since our SDI takes every nodes
in consideration, without any regards on their source volume,
we can see an effect on the SDI. After having computed the
delayed correlation matrix we found high values for the three
features illustrated in figure 3.CountDropRouteErron node
1, CountPhyRxDropon node 5 andCountMyRetryon node 2
scores are respectively -0.92, 0.79, -0.88. In figure 3(a), we
clearly show that the main fluctuation of the sdi is due to a
routing error. Indeed, the node 1 can not find a route to node
since node 3 has left the path. The retries experienced by node
2 is detailed in figure 3(b) it impact the SDI when the route is
up with a bad communication link between 2 and 3. At first,
one can think that transmission retries of node 2 are introduced
by the physical drops on node 5. In fact, those events are
negatively correlated. Indeed, these nodes can not reach each
others due to their relative distances, since the number of drop
is much greater than the retry, it might come from the fact that
node 5 could still be in the carrier range of node 2. Figure 3(c)
confirms that node 5 does not drop packet for low SDI, since
node 2 does not sent them because of routing errors.
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Fig. 3. Temporal Evolution of SDI Regarding 3 Features

In this case, we led an off-line analysis based on the real
value of the SDI. Using simple features based on event counts,
we were able to diagnosis the sources of the SDI fluctuation.
By construction, these features can be computed in real time
by nodes and exchanged to analyze the situation.

V. A COLLABORATIVE SDI ESTIMATION

Agents consider their own observations to estimate the SDI
value and communicate with their neighbors. We suggest an
estimation based on existing consensus algorithm. At this
point, network layer needs to estimate the satisfaction of upper
layers. In our case this comes to evaluate the end-to-end delay
experienced by the local application. Thus, in order to estimate
the SDI, we first estimate the delay, this estimation will serve
to approximate the local satisfaction. Finally we exchangethis
local satisfaction to have an estimated SDI.



A. Delay Estimation

The end-to-end delay for a packet has already been defined
above as the temporal difference between source and destina-
tion observations. Each time a packet needs to be forwarded by
a node, it waits for a medium access. This time is difficult to
predict in our case. Indeed, medium access will be impacted by
the level of noise, the number of neighbors, their proximity,
their load and the level of interference they produce. As a
result, we will approximate the average delay by a sum of
average medium access times. Our approximation will take
into account the traffic matrix so that for an interval T, the
estimated average delay that a packet can experience when
leaving a node i is:

D̂i(T ) = Li(T ) +
∑

j∈Gi(T )

ρj(T ).D̂j(T − 1)

with D̂i(0) = Li(0)

Li(T ) is the average local medium access time,Gi(T ) is
the set of gateway used by node i during T,ρj(T ) is the
percentage of data traffic sent/forwarded by node i during T
that should be forwarded by node j. For each packet, the local
processing time equals 0 if the local node is the destination,
it equals the threshold value if the packet is dropped, in other
cases it is the time between the first observation of the packet
from the upcoming link, and the last observation of the packet
on the outgoing link. Given a packet arriving at node i, its
expected delay is at least the local link process. Dependingon
its destination, this process time will be added to the expected
delay of its destination. The expectation is materialized by
ρ, which is a percentage of traffic. The computed average
delay for a node will depend on the previous computed value
of its neighbors. This implies that nodes have to regularly
communicate to update the value of their delay.

B. Local Satisfaction Estimation

Once a node is aware of the average delay it experiences,
it is capable to estimate its satisfaction. We approximate the
satisfaction by assuming that expectation and scoring function
can commute. That is to say (withED the expectation function
over a set D of delay):

ED(score(d)) ≈ score(ED(d))

The approximation error is null when all the observed delays
are under the threshold, since the scoring function is linear on
the interval [0,threshold]. Thus, we can find a threshold where
the approximation can be acceptable. Therefore, we use the
average delaŷDi to approximateSati(T )

Ŝati(T ) = score(D̂i(T )) ≈ Sati(T )

C. SDI Estimation

Since we have defined our SDI as an average, the SDI
estimation problem is in fact a dynamic average consensus
problem. In our case, the average evolves over time as well
as the topology, which is not a fortunate case for previous

algorithm. However, despite our problem complexity, satisfac-
tion of nodes over a network are linked in some ways and
their dynamics rely on events. Thus the values that composed
our average are related and their temporal evolution are driven
by the network itself. Therefore we derive an algorithm from
existing ones to estimate the SDI value, then we study the
impact of satisfaction fluctuation and dynamic topology. Inour
case, we want to estimate the SDI, which is a time-varying
average of the satisfactions. We modified the scheme presented
in II-B to suggest the following iteration:

ŜDIi(t+ 1) = αi.Ŝati(t) +
∑

j∈Ni(t)

αj .ŜDIj(t)

ŜDIi(0) = Ŝati(0)

Also if the local satisfaction is known, the real value can
be used instead. In this scheme, the satisfaction term allows
the consideration of the local satisfaction while the SDI term
permits the estimation propagation over the network. The main
difference is introduce bŷSati(t). This term introduce the
variability of the satisfaction over time, which was not the
case in previous algorithms. The value ofαk could be choose
from the metropolis weight or the maximum degree weight.

D. Local Estimation Results

In order to assess the accuracy of our local SDI estimation,
we compare estimated SDI values with the real SDI. We
conducted 432 Ns3 simulations run to measure the impact of
networks characteristics like radius, load and dynamic. We
fixed the number of node to ten. Each scenario combines
different values of the following parameters : Number of
source, Initial average distance, mobility and random seedlike
illustrated in table V-D

Network properties
Number of Nodes 10
Source Data Rate 1 Mb/s
Packet size 1470 Byte
Source duty cycle 1 (always On)
Min-Max Speed 5-7
Random seed 0,1,2
Number of source (L) 1,4,7,9
Number of server 10-L
Initial spacing (d) 20,45,65,75
Mobility Model Constant Random Walk Random Waypoint
Area size - dxd d/2xd/2 dxd d/2xd/2
Pause duration - - - 10, 25, 65 10,25,65

Based on the data set obtained from these simulations,
we were able to study the behavior of both weighting al-
gorithm for the average consensus : Metropolis algorithm
and Maximum weight algorithm. We compare their properties
in different situations. In the first situation we considered a
constant topology and two levels of load which were L=1 and
L=9. In the second case we considered an heavy load (L=9)
with two levels of mobility. For the first level of mobility,
nodes were able to move in a constraint area (D≤ 50), for the
second level nodes were moving in a wider area (D>50). For
all scenarii, we computed the absolute value of the difference



between the real SDI and the estimated SDI for each node
and iteration. To study the convergence rate and the evolution
over time, we computed the average of this error. In figure
4 we plotted the obtained average for all the scenario in the
considered cases.
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Fig. 4. Average error for estimated SDI under several network profiles. For
clarity purpose, we did not plot the interquartile distance. For information,
their values were always under 0.20 for all the curves.

As expected, the initial error tends to be important since
nodes have no idea of their neighbor satisfactions. Considering
figure 4, because the SDI does not have a constant value, the
convergence is not reached. However, the algorithm tends to
reduce the estimation error over time. This error converges
toward 0.1. In 4(a) like in the case of a constant value,
metropolis weight seems more reactive than the maximum
degree weight, which, in the case of low traffic might be
seen as an over-reaction. When regarding figure 4(b), under
an heavy traffic, algorithm appears to better perform under a
very dynamic topology. The reasons come from the SDI itself.
When the network is too dynamic, routing protocols do not
perform well. As a result, the local satisfaction are sufficient
not to make mistake in the SDI estimation.

VI. CONCLUSION AND FUTURES WORKS

The invasion of mobile communication in our network have
definitely changed their level of complexities. The terminal

heterogeneity have multiplied traffic profiles, users are dy-
namic as well as the topologies. Thus, the management task
needs to be mainly delegated to network. In doing so, networks
need to evaluate themselves and understand the way they
behave. In this paper, our contribution was two-folds. First
we introduced a reference model for an observer to assess
multi-agent systems and conduct an analysis focused on this
assessment. We consider that evaluation are temporal scores,
besides we collect event observations to construct time series
of features. Our analysis is based on feature correlations to
detect which features might have impacted our evaluation.
Our model could be applied to distributed systems of several
kind as far as they respect few properties. Future work could
be lead on the unsupervised way to construct features in
order to automate the analysis process. Second, we specifically
applied this framework to the self-assessment and self analysis
of dynamic wireless networks in the environment of Ns3.
After having defined an evaluation policy for our network, we
provided a distributed algorithm derived from existing average
consensus schemes to compute this assessment. We evaluated
this algorithm under various networking conditions to describe
its sensitivity to load and topology dynamicity. To improvethe
algorithm accuracy, future work will be pursued on the use of
the designed feature to have a better estimation propagation.
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