
HAL Id: hal-01966180
https://laas.hal.science/hal-01966180

Submitted on 27 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flyweight Network Functions for Network Slicing in IoT
Clovis Anicet Ouedraogo, Samir Medjiah, Christophe Chassot, José Aguilar

To cite this version:
Clovis Anicet Ouedraogo, Samir Medjiah, Christophe Chassot, José Aguilar. Flyweight Network
Functions for Network Slicing in IoT. 2018 International Conference on Smart Communications in
Network Technologies (SaCoNeT), Oct 2018, El Oued, Algeria. �hal-01966180�

https://laas.hal.science/hal-01966180
https://hal.archives-ouvertes.fr


Flyweight Network Functions for
Network Slicing in IoT

Clovis Anicet Ouedraogo∗, Samir Medjiah∗†, Christophe Chassot∗‡ and Jose Aguilar§
Univ. Toulouse, ∗ CNRS-LAAS, † UPS, ‡ INSA, F-31400 Toulouse, France

§ Universidad de Los Andes, CEMISID, Mérida, Venezuela
{ouedraogo, medjiah, chassot}@laas.fr, aguilar@ula.ve

Abstract—This paper proposes an approach for the network
slicing provisioning for Internet of Things (IoT) platforms based
on the concept of flyweight network functions (fNF). The network
slicing is a main characteristic of the 5G networks that our
proposal extends to IoT platforms, in order to support the most
diverse QoS requirements. The paper defines the fNF concept and
presents its utilization in the context of network slices provisioning
for IoT applications having QoS requirements and sharing the
same IoT platform. Additionally, we present a use case and a
comparison with previous works.

Index Terms—Network Function, Flyweight Network Function,
Network Slicing, Internet of Things (IoT).

I. INTRODUCTION

The potential number of connected devices, the massive
amount of data these devices generate, and the growing com-
plexity of the Internet of Things ((IoT) infrastructure, is a high
challenge to build future IoT applications. Such applications
exploit a set of characteristics, such as heterogeneity, interoper-
ability, dynamicity, and geographical distribution. Additionally,
the quality of service (QoS) notion is particularly relevant
in this context, because it affects user experience, resource
consumption, and energy efficiency, among other things. To
cope with the QoS problem, solutions have to be defined not
only at the network level but also within the IoT platforms
(typically based on intermediate gateways and server between
applications and things) on which the applications are dis-
tributed (see Fig. 1).

Fig. 1. IoT context.

Parallelly, the fifth generation (5G) networks will enable
a fully mobile and connected society, with new applications,
many of which being still unknown [1]. To realize the full
potential of 5G networks, it is necessary to rethink the way
to design architecture of the underlying communication in-
frastructure to support the variety of requirements for latency,
throughput, capacity, and availability of these applications.
New concepts related to design and management of such

architectures are thus required. Particularly, for the design of
IoT platform architecture et more generally for the future 5G-
based communication platforms, a promising concept is the
network slicing. A network slice is a set of network functions,
which logically create a dedicated virtual network that satisfies
the specific requirements of an application [2]. Network slic-
ing consists in provisioning and managing network slices on
demand. Network slicing enables multiple independent virtual
networks over a same communication infrastructure (such as
an IoT platform), which is shared by several applications. A
IoT slice consists in a set of the composition of network
functions - NF (e.g. broker, stream processor ...) which are
dynamically deployed in the IoT platform with the aim to
tackle a given set of QoS requirements. Most of the time,
these NF are mainly virtualized, thanks to the use of new
virtualization and network programmability technologies such
as Network function virtualization (NFV) and Software-defined
networking (SDN). However, this virtualisation-based approach
may be inappropriate in some domains, typically the IoT, due
to the limited resources of the targeted equipements (i.e. on
which the NFs are deployed). In this paper, we propose an
approach based on the notion of flyweight network functions
(fNF) for the implementation of the network slicing concept to
IoT platforms. The rest of this paper describes the fNF concept
and its utilization in the context of network slicing for IoT
(section IV), a use case (section V), and finally a comparison
with other works (section VI). Next sections II and III precise
the background and key issues, and detail the limitations of
virtualisation-based network slicing for the IoT.

II. BACKGROUND AND KEY ISSUES

A. The IoT applications QoS requirements

The IoT is based on connection of billions of objects, going
beyond laptops and smartphones, including connected cars,
wearables, smart cities, smart homes, among others. According
to [3], connected devices will reach more than 20 billion
objects in 2010, with unknown new connections, such as
connected products or connected business processes, which are
very important in the Industry 4.0. In this context, new IoT-
based business applications are going to emerge in diverse
domain such as smart health/ cities/ transport/ etc. Those future
applications will have specific QoS needs (bounded response
time, availability, etc.) that will have to be considered by the
IoT platforms such as the one promoted by the OneM2M



Fig. 2. IoT platform QoS bottleneck.

consortium [4]. Such platforms (see Fig. 2) are formed by het-
erogeneous infrastructure nodes, typically server and gateways
having different resources / capabilities. These nodes represent
potential bottlenecks with respect to the QoS, for instance when
a too high number of application level requests have to be
processed by a given node [5].

B. Existing solutions to tackle QoS in IoT limitations

Several solutions have also been proposed that address the
QoS issue at the platform level [6] [7] [8]. Most of them
are based on a service differentiation principle that allows
processing the requests differently, depending on their priority.
Here, the services managed on each node are the ones that
have been provided at the initialisation of the platform, such
as traffic marker/shaper, message or task scheduler, etc. [9].
This principle is adequate when the available services allows
tackling all the application requirements. However, it becomes
inadequate when a service is not existing on a node, or when
the computing resources are not enough sufficient. The network
slicing is a new concept that allows answering this limitation.

C. Network slicing concept

The maturity of technologies such as SDN and NFV, allows
to consider new network concepts such as slicing networks that
will allow a more flexible management of networks. In this
section we present, this concept and the limits of its current
implementations especially for IoT.

1) Network Slicing: The ITU-T [10] defines a network slice
as a logical network that provides specific network capabilities
and network characteristics. The (network) slicing consists in
building slices on demand. It has been initially thought to share
resources on a communication infrastructure. It is now more
and more considered to perform QoS provisioning. The slicing
concept is based on the notions of network function (NF) and
NF Service chaining. Basically, a NF is a processing function
applied on a given data traffic (e.g. a delaying function applied
on IP packets). More formally, a NF is defined by 3GPP as a
processing function in a network, which has defined functional
behavior and interface. NF Service chaining represents a path
taken by traffic routed through several NFs to benefit from a
network service (NS). For instance, a NS composed of Firewall,
IDS and Parental control Nfs.

2) Limits of the existing slicing implementations: In general,
the instantiation of network slices is in the form of VNFs via
virtualization containers (VM / CNT). The use of virtualization
containers induces a virtualization overhead [11] potentially

problematic for some IoT deployment targets (e.g. RPi used as
IoT gateway) with very limited resources. Moreover for some
NF, by their size, utility, to be instantiated in the form of VNF
can be counterproductive. This type of NF is very similar to the
anti pattern SOA known as Nanoservice [12]. Also, this method
of instantiation of NF does not cover heterogeneity of the future
5G networks, i.e. the underlying networks will be both classical
and cloud-enabled. The concept of network slicing, as it is
conceived currently, is based on cloud-type infrastructure (to
allow the deployment of VNFs) and will be hardly usable to
achieve end-to-end slices, i.e. connecting data producers and
consumers. Our proposal aims to extend the network slicing
to environments that do not support virtualization, through the
concept of Flyweight Network Functions.

III. FLYWEIGHT NETWORK FUNCTIONS

In this section, we propose to extend NFs instantiation
as implemented today to include a new category. Indeed,
different studies, like Nandugudi et al. [13], show that the
virtualization techniques used nowadays, generally induce a
large consumption of resources. For example, deploying a VNF
as a standard linux VM requires a minimum1 of 256 MiB
RAM, a 300 MHz x86 processor, and 1.5 GB of disk space.
Deploying this VNF as a container requires a minimum2 of
29 MiB of disk space. This requirement strongly limits the
number of VNFs deployable on a host, and also reduces the
number of compatible hosts (i.e. which can host VNFs) by their
limited resources. For most IoT equipment, it is difficult to host
such NFs. To tackle this issue, we propose a new NF instance
class that we call Flyweight Network Features (fNF). Before
introducing this new concept, we first discuss about the NF
isolation issue.

A. About isolation of NFs in IoT

One of the features highlighted in current NFV platform
deployments is the isolation so that NFs running on the same
(physical) hardware do not interfere with each other from two
standpoints [14]: security and performance. To provide this
functionality, virtual machines (VMs) and containers (CNTs)
are used. However, as presented in the following section, using
these techniques induces an overhead. In this paper, we claim
that this feature can be discussed and ignored in some areas,
such as IoT. Indeed, when it comes to:

• Security: assuming that the slice provider is the only actor
capable of building slices, the isolation can be ignored
and the burden of protecting the source code and the
traffic of the NFs will be guaranteed upstream by integrity
verification techniques (before deployment of NFs) and
encryption of the traffic.

• Performance: considering a slice as a chain of NFs offering
services with well-defined characteristics, the management
of the overall performance of the slice will make it pos-
sible to balance the expected ”characteristics” by taking
into account the workload of hosts hosting NFs.

1help.ubuntu.com/community/Installation/SystemRequirements
2hub.docker.com/r/ /ubuntu/

https://help.ubuntu.com/community/Installation/SystemRequirements
https://hub.docker.com/r/_/ubuntu/


Fig. 3. NFs instantiation frameworks.

Thus, by removing the isolation techniques between NF:
• we lose: level of security, performance guarantee;
• we win: removal of the overhead (resource, deployment

time, etc.), reduction of the complexity of the host plat-
form of NFs, increase of the possible number of hosts of
NF.

Considering, under certain conditions/domains, the isolation as
a non mandatory functionality for the installation of the NFs,
we propose the concept of fNF in order to allow network slicing
for the field of IoT.

B. Presentation of the fNF concept

In the instantiation of VNFs, we distinguish, according to
their resource consumption and the overhead related to virtual-
ization, two subcategories (see Fig. 3): heavy VNFs instantiated
by VMs, and light VNFs instantiated by containers. Flyweight
NF are deployable network functions in the form of software
modules. Their deployment induces almost no virtualization
overhead and is adapted to IoT equipments. Note: this is due
to the NF size which is around a few hundred KiB. Formally,
a fNF is defined as an instantiation of NF having the following
properties:

• P1: a fNF is the instantiation of a NF in the form of a
software module without virtualization overhead;

• P2: a fNF is an implementation of a NF without isolation
in the User space, just like an application;

• P3: a fNF is dynamically deployable / deletable / editable
/ configurable;

• P4: a fNF is instantiable on a compatible platform for fNFs
deployment, typically a modular framework.

What a fNF is not:
• N1: a VNF, because it is not instantiated as a virtualization

container (CNT/VM) but as a software module;
• N2: a PNF, because it is not instantiated on hardware built

for this unique (dedicated) use.
The fNFs are adapted:

• for network slice deployment;
• for network function chaining;
• for environments with constraints in resources like the IoT

gateways (ex: RPi, Odroid, etc.).
The fNFs will not be adapted:

• for highly security-sensitive environments (because the
isolation between NF is not assured);

Fig. 4. Model of 3GPP network functions.

• for complex NFs, i.e. whose source code is several hun-
dred KiB and whose failure will cause a general failure of
the host.

C. A Framework of Modular Flyweight Network Functions

Several works exist in NF modeling. In this paper, we
consider the model proposed by the 3GPP [15] shown in Fig.
4.In this model, a NF has 2 types of interface: a first one
offering a functional management to an external entity and
another one for data exchange.

According to this model, for the implementation of fNFs, we
propose the architecture shown in Fig. 5:

This architecture is composed of several components that
communicate through specific interfaces. Components:

• Function Management represents all the functionalities
needed to configure fNFs. This is a specific component of
the host. Its role is to configure the fNFs and the Service
Function Chaining component with the slicing policy it
has received from the Slice Controller through the service
controller interface (SCi);

• Service Function Chaining (SFC) deals with the inter-
connection of fNFs between them. It performs this task
based on the configuration received from the Function
Management;

• Modular Platform is the fNFs execution platform; it im-
plements a complete and dynamic component model for
the fNFs deployment. It allows to remotely install, start,
stop, update, and uninstall fNFs on demand. CCM, OSGi,
Vert.x are examples of modular execution platforms that
allow deploying and managing (non virtualized) software
components [16].

Fig. 5. Architecture of an compatible-host.



Interfaces:
• Mi: Management interface (north interface). This is the

interface that allows the Function Management to manage
the fNFs;

• Di: Data interface (south interface). This interface allows
the fNFs to exchange data through the SCF;

• SCFi: Service Chaining Function interface. It allows the
Function Management component to configure routing in
the managed host;

• SCi: Slice Controller interface. This is the external inter-
face of the framework; it is used by the Slice Controller
for setting up and managing slices.

Several frameworks exist for the software implementation
of this architecture [16]. We propose the use of the OSGi
framework for building fNFs as OSGi bundles.

D. Network Slices provisioning

With respect to the concept that we presented below, the
deployment of a slice is done in 5 steps (Fig. 6).

Fig. 6. Slices provisioning steps.

The slice controller:
0) retrieves the QoS requirements of IoT applications;
1) analyzes these needs and choose a network service con-

sisting of V/fNFs with properly defined characteristics;
2) packages NFs according to hosts that can meet the desired

characteristics;
3) instantiates these V/f NFs on the selected hosts;
4) implements the policy associated with the network service,

i.e.: (i) configures the deployed fNFs; and (ii) configures
the policy associated with the slice on the SFC.

Fig. 7. Multi-hosts (distributed) management architecture.

The consistency of the multi-node slicing is ensured by an
external Slice Controller, as is shown in Fig. 7.

IV. USE CASE

As presented above, the fNFs can be used at the different
protocol layers. In this section, we present a case of utilization
of fNFs for creating network slices at the platform level of the
IoT domain.

A. Presentation of the use case

The considered application is wildfire monitoring. We also
consider an environment composed of a Cloud, a Fog node,
and two IoT gateways. Relationships between these elements
are shown in Fig. 8.

Fig. 8. Architecture of the case study.

A user, typically a fire brigade, request a given platform level
slice from a Slice Controller. The controller, through a set of
successive tasks, sets up this slice using VNFs, but also fNFs.

B. Characteristics of the requested slice

The requested slice has the following functional and non
functional (i.e. QoS oriented) characteristics:

• allowable latency: 10ms
• availability: 90
• services: Data Collection, Stream processing, Data Storage
• service life: 7h.

C. Slice construction

Step 0 & 1: Upon receipt of the user’s request, the slice
controller selects in a service catalog the network service (NS)
to offer for such a request. This NS is composed of nine NFs
(Fig. 9): four brokers, four stream processors, and a database.

Fig. 9. Mapping Network Services to available hosts.

Step 2: The Slice Controller then packages the selected NFs
into VMs or CNTs (for VNF) and Components (for fNF).
This selection of packages is done with regard to the resources
available in the environment. As introduced in section A, we
have two gateways with limited resources that can only host
fNFs, a Fog node that can host both fNFs and VNFs, and
a cloud able to host VNFs. From this observation, the Slice
Controller completes the NS with the associated packages
information (Fig. 10):



• each gateway: an fNF broker and an fNF Stream processor,
• the Fog node: an fNF broker and a VNF Stream processor,
• the Cloud: a VNF broker, a VNF Stream processor and

VNF Storage.
Step 3: Once the NS is built, the V/f NFs are deployed on

the selected hosts as shown in Fig. 10.
Step 4: At the end of the deployment, the V/f NFs are

configured with the slicing policy associated with the NS. The
slice is then ready to be used, and a positive response is sent
to the user having requested the slice.

Fig. 10. Slice deployment.

V. RELATED WORKS

Our approach to reduce overhead induced by VM/CNT in
areas such as IoT, has like related works in the literature
classified into two major groups: the first group we call User-
space flow-level network function frameworks, which does not
use virtualization or containerization as an isolation technique
for NFs; and the second group that uses these techniques but
trying to reduce their overhead, which we call Light NFV
frameworks.

In the first group we find frameworks like [17], but also other
frameworks that isolate instances of NF with techniques such
as Intel Software Guard Extensions (SGX), Zero Copy Soft
Isolation (ZCSI), etc. In the early 2000s, Kohler et al. have pro-
posed a software architecture for the construction of modular
and extensible routers [17]: The Click Router. This architecture
later inspired CoMb [18], ClickMB [19], ClicNF [20], NetServ
[21] and Click-Up [22]. From a different inspiration, Eden
[23] is an architecture for implementing network functions
at end hosts with minimal network support. Eden comprises
three components, a centralized controller, an enclave at each
end host, and Eden-compliant applications called stages. To
implement network functions, the controller configures stages
to classify their data into messages and the enclaves to apply
action functions based on a packets class. Clayman et al. offer
VLSP [24], propose a framework that provides a complete envi-
ronment from the protocol stack up to the service management
level, including a tailor-made monitoring facility. Duan et al.
have proposed LightBox [25], a system for secure and trust-
worthy middlebox outsourcing, built on top of SGX. LightBox
allows enterprise to outsource middlebox functionality with
minimal development and deployment effort. Poddar et al. have

proposed SafeBricks, an extension of NetBricks [26], a system
that shields generic network functions (NFs) from an untrusted
cloud. SafeBricks [27] ensures that only encrypted traffic is
exposed to the cloud provider, and preserves the integrity of
both traffic and the NFs. At the same time, it enables clients
to reduce their trust in NF implementations by enforcing least
privilege across NFs deployed in a chain. Boucher et al. [28]
proposed, a novel design for providing functions as a service
(FaaS): cold launch times in microseconds that enable even
finer-grained resource accounting and support latency-critical
applications. Their proposal is to eschew much of the traditional
serverless infrastructure in favor of language-based isolation.

In the second group, we find NFV frameworks that try to
minimize the overhead induced by the isolation techniques they
use. Palkar et al. have proposed E2 [29], a framework for
NFV packet processing. It provides the operator with a single
coherent system for managing NFs, while relieving developers
from having to develop per-NF solutions for placement, scaling,
fault-tolerance, and other functionalities. Riggio et al [30] have
proposed 5G-EmPOWER, a Multi-access Edge Computing
Operating System supporting lightweight virtualization and
heterogeneous radio access technologies. Cziva et al. [31] have
proposed Glasgow Network Functions (GNF), an NFV platform
built on top of standard Linux containers. Yasukata et al. have
proposed HyperNF [32] a high performance NFV framework
aimed at maximizing server performance when concurrently
running large numbers of NFs. HyperNF implements hypercall-
based virtual I/O, placing packet forwarding logic inside the hy-
pervisor to significantly reduce I/O synchronization overheads.
Gallo et al. have proposed CliMBOS [33], a scalable NFV-
based solution, as a novel approach that satisfies the stated
requirements for user-centric support of IoT devices. The table
1 compares the existing works according to 3 criteria: i) the
isolation technique used, ii) support for an orchestration of
NFs on different nodes, iii) the virtualization overhead. In this
table, we consider that the VM has a very high overhead,
the CNT high overhead, the JVM medium overhead, and non
isolation or the use of techniques like SGX, language-based
produce low overhead. The main differences between all these
frameworks and our proposal concern the isolation of NFs and
the distribution of the framework. Our approach is the only
one among the approaches without isolation between NF in a
distributed framework.

VI. CONCLUSION

Network Slicing is a promising concept in response to QoS
and other needs of future communication infrastructures. In
particular, future IoT platforms will benefit from the implemen-
tation of this concept, which allows addressing the limitations
of more traditional QoS management approaches. In this paper,
we have shown how to extend the basic network slicing tools
that are VNFs (implemented in the form of VM or CTN) to
overcome the resource limitations of the IoT environments on
which to deploy the NF constituting the slices. We have defined
and formalized the concept of flyweight NF (fNF), which
allows to build slices not only on VNFs but also on software



TABLE I
COMPARISON OF THE NF FRAMEWORKS.

Framework Isolation Distributed Overhead
Eden [23] VM No Very high
VLSP [24] JVM Yes Medium

LightBox [25] SGX No Low
Click-based: CoMb [18],

ClickMB [19], ClicNF [20],
Click-UP [22], NetServ [21]

None No Low

NetBricks [26] ZCSI No Low

SafeBricks [27] SGX and
Language No Low

Putting the Micro Back
in Microservice [28] Language No Low

E2 [29] VM Yes Very High
EmPOWER [30] CNT Yes High

GNF [31] CNT Yes High
HyperNF [32] VM No Very High
CliMBOS [33] VM No Very High

fNF None Yes Low

components that can be integrated into modular environments,
out of context virtualization. We then defined the steps sequence
to be followed in constructing a slice including VNFs and fNFs
for a case study of fire monitoring. As a final contribution to
this paper, we have made a comparison of the concept of fNF
with all these equivalents in the literature. The perspectives of
our current work deal: on the one hand, on the design of a
testbed for the deployment of slices based on VNfs and fNFs,
and on the other hand, on an evaluation of the performances
induced by the use of the fNF concept, compared to the VNF
one.

REFERENCES

[1] N. Alliance, “5g white paper,” Next generation mobile networks, white
paper, pp. 1–125, 2015.

[2] P. Hedman, “Decription of network slicing concept (ngmn 5g p1),”
NGMN (Next Generation Mobile Networks) Alliance, 2016.

[3] M. Hung, “Leading the iot, gartner insights on how to lead in a connected
world,” Gartner Research, pp. 1–29, 2017.

[4] oneM2M, oneM2M Requirements, 9 2016. Release 2.
[5] Y. Banouar, T. Monteil, and C. Chassot, “Analytical model for adaptive

qos management at the middleware level in iot,” in Computers and
Communications (ISCC), 2017 IEEE Symposium on, pp. 1201–1208,
IEEE, 2017.

[6] A. Agirre, J. Parra, A. Armentia, et al., “Qos aware middleware sup-
port for dynamically reconfigurable component based iot applications,”
International Journal of Distributed Sensor Networks, vol. 12, no. 4,
p. 2702789, 2016.

[7] W. B. Heinzelman, A. L. Murphy, H. Carvalho, et al., “Middleware to
support sensor network applications,” IEEE network, vol. 18, no. 1, pp. 6–
14, 2004.

[8] S. Yu, C. Shih, J. Hsu, et al., “Qos oriented sensor selection in iot system,”
in Internet of Things (iThings), 2014 IEEE International Conference
on, and Green Computing and Communications (GreenCom/CPSCom),
IEEE, pp. 201–206, IEEE, 2014.

[9] C. A. Ouedraogo, S. Medjiah, and C. Chassot, “A modular framework for
dynamic qos management at the middleware level of the iot: Application
to a onem2m compliant iot platform,” in 2018 IEEE International
Conference on Communications (ICC), pp. 1–7, IEEE, 2018.

[10] ITU, Terms and definitions for IMT-2020 network, 2017. Recommenda-
tion ITU-T Y.3100.

[11] Z. Li, M. Kihl, Q. Lu, et al., “Performance overhead comparison between
hypervisor and container based virtualization,” in Advanced Information
Networking and Applications (AINA), 2017 IEEE 31st International
Conference on, pp. 955–962, IEEE, 2017.

[12] A. Rotem-Gal-Oz, “Services, microservices, nanoservicesoh my,” 2016.

[13] A. Nandugudi, M. Gallo, D. Perino, et al., “Network function virtualiza-
tion: through the looking-glass,” Annals of Telecommunications, vol. 71,
no. 11-12, pp. 573–581, 2016.

[14] A. Panda, A New Approach to Network Function Virtualization. PhD
thesis, UC Berkeley, 2017.

[15] 3GPP, “Study on architecture for next generation system,” Tech. Rep.
23799, 3GPP, 2016. V14.0.0.

[16] I. Crnkovic, S. Sentilles, A. Vulgarakis, et al., “A classification frame-
work for software component models,” IEEE Transactions on Software
Engineering, vol. 37, no. 5, pp. 593–615, 2011.

[17] E. Kohler, R. Morris, B. Chen, et al., “The click modular router. acm
transactions on computer systems,” ACM Transactions on Computer
Systems, vol. 18, no. 3, p. 263, 2000.

[18] V. Sekar, N. Egi, S. Ratnasamy, et al., “Design and implementation of a
consolidated middlebox architecture,” in Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pp. 24–24,
USENIX Association, 2012.

[19] R. Laufer, M. Gallo, D. Perino, et al., “Climb: Enabling network func-
tion composition with click middleboxes,” ACM SIGCOMM Computer
Communication Review, vol. 46, no. 4, pp. 17–22, 2016.

[20] M. Gallo and R. Laufer, “Clicknf: a modular stack for custom network
functions,” in 2018 USENIX Annual Technical Conference (USENIX ATC
18), USENIX Association, 2018.

[21] J. W. Lee, R. Francescangeli, J. Janak, et al., “Netserv: active networking
2.0,” in Communications Workshops (ICC), 2011 IEEE International
Conference on, pp. 1–6, IEEE, 2011.

[22] J. Wang, Y. Huang, H. Qi, et al., “Click-up: Towards software upgrades
of click-driven stateful network elements,” in Proceedings of the ACM
SIGCOMM 2018 Conference on Posters and Demos, pp. 117–119, ACM,
2018.

[23] H. Ballani, P. Costa, C. Gkantsidis, et al., “Enabling end-host net-
work functions,” in ACM SIGCOMM Computer Communication Review,
vol. 45, pp. 493–507, ACM, 2015.

[24] S. Clayman, L. Mamatas, and A. Galis, “Efficient management solutions
for software-defined infrastructures,” in Network Operations and Man-
agement Symposium (NOMS), 2016 IEEE/IFIP, pp. 1291–1296, IEEE,
2016.

[25] H. Duan, X. Yuan, and C. Wang, “Lightbox: Sgx-assisted secure network
functions at near-native speed,” arXiv preprint arXiv:1706.06261, 2017.

[26] A. Panda, S. Han, K. Jang, et al., “Netbricks: Taking the v out of nfv.,”
in OSDI, pp. 203–216, 2016.

[27] R. Poddar, C. Lan, R. A. Popa, et al., “Safebricks: Shielding network
functions in the cloud,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’18), Renton, WA, 2018.

[28] S. Boucher, A. Kalia, D. Andersen, et al., “Putting the micro back in
microservice,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pp. 645–650, USENIX Association, 2018.

[29] S. Palkar, C. Lan, S. Han, et al., “E2: a framework for nfv applications,”
in Proceedings of the 25th Symposium on Operating Systems Principles,
pp. 121–136, ACM, 2015.

[30] R. Riggio, M. K. Marina, J. Schulz-Zander, et al., “Programming abstrac-
tions for software-defined wireless networks.,” IEEE Trans. Network and
Service Management, vol. 12, no. 2, pp. 146–162, 2015.

[31] R. Cziva and D. P. Pezaros, “Container network functions: bringing nfv
to the network edge,” IEEE Communications Magazine, vol. 55, no. 6,
pp. 24–31, 2017.

[32] K. Yasukata, F. Huici, V. Maffione, et al., “Hypernf: building a high
performance, high utilization and fair nfv platform,” in Proceedings of
the 2017 Symposium on Cloud Computing, pp. 157–169, ACM, 2017.

[33] M. Gallo, S. Ghamri-Doudane, and F. Pianese, “Climbos: A modular nfv
cloud backend for the internet of things,” in New Technologies, Mobility
and Security (NTMS), 2018 9th IFIP International Conference on, pp. 1–
5, IEEE, 2018.


	Introduction
	Background And Key Issues
	The IoT applications QoS requirements
	Existing solutions to tackle QoS in IoT limitations
	Network slicing concept
	Network Slicing
	Limits of the existing slicing implementations


	Flyweight Network Functions
	About â•œisolationâ•š of NFs in IoT
	Presentation of the fNF concept
	A Framework of Modular Flyweight Network Functions
	Network Slices provisioning

	Use Case
	Presentation of the use case
	Characteristics of the requested slice
	Slice construction

	Related Works
	Conclusion
	References

