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Improvements in bounded error parameter estimation using
distribution theory

Nathalie Verdière1 and Carine Jauberthie2 and Louise Travé-Massuyès2

Abstract— A bounded error estimation procedure based on
integro-differential polynomials linking the inputs, the outputs
and the parameters of the model is presented in this paper.
These polynomials are obtained from differential algebra tools
given input-output polynomials. The use of the distribution
theory permits to obtain new relations in which the order of
derivatives of the model outputs are smaller. This method is
applied on the water tank example and the results are compared
with the classical method based on the simple use of input-
output polynomials. As it will be seen, this method significantly
improves the parameter estimation results.

I. INTRODUCTION

In this paper, an original approach to estimate parameters
in the set-membership framework is presented. It is based on
the use of integro-differential relations linking inputs, outputs
and parameters of the model. They are obtained thanks to
algebra elimination theory combined with distribution theory.
From a model and an elimination order, the algebra elim-
ination theory permits to eliminate specific variables as
unknown ones in favor of inputs and outputs leading to
differential polynomials called input-output polynomials ([2],
[5]). The way to exploit them has resulted in several papers
([1], [3], [6], [14], [19], [22], [20]). Their use goes from
identifiability analysis of the model to parameter estimation.
However, in the last case, it is now well established that such
relations may require to estimate high derivatives of outputs,
which is an ill-posed problem. Even if some progresses have
be done ([8], [7], [16], [15], [21], [18]), high derivative
estimates generate important errors in inverse problems. A
new approach has been recently explored based on a dis-
tribution approach [23]. It allows to obtain new relations in
which the orders of derivatives are lower than those involved
in the initial input-output polynomials. Indeed, multiplying
these polynomials by a test function, i.e. a smooth function,
and integrating permits to decrease, sometimes significantly,
the order of derivatives of the model outputs. Interestingly,
this method permits to annihilate part of the noise. As far
as we know, this method has never been tested in the set-
membership (SM) framework although it seems appropriate
when complex systems are subject to unknown bounded
uncertainties that make the parameter estimation task difficult
([12], [18]). Let us notice that the notion of identifiability,
which is a pre-condition for safely running a parameter
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estimation algorithm, has been extended to SM models and
is now well-established [9]. SM-identifiability insures that
two disjoint sets of trajectories generated by the model
correspond to two disjoint value sets for the parameter vector.

The paper is organized as follows. In section II, the prob-
lem is presented and the different forms of SM-identifiability
are recalled. In section III, the numerical estimation proce-
dures based on the classical input-output polynomials and
then on the integro-differential polynomials are described.
They are applied and compared on the water-tank example
given in section IV. Finally section V concludes the paper.

II. PROBLEM FORMULATION

The models considered in this paper are uncertain nonlin-
ear models with bounded errors, controlled or uncontrolled,
of the following form:

Γ


ẋ(t, p) = f(x(t, p), u(t), p),
y(t, p) = h(x(t, p), p),
x(t0, p) = x0 ∈ X0,
p ∈ P ⊂ UP , t0 ≤ t ≤ T,

(1)

where :
• x(t, p) ∈ Rn and y(t, p) ∈ Rm denote the state

variables and the outputs at time t respectively,
• u(t) ∈ Rnu is the input vector at time t; in the case of

uncontrolled models, u(t) is equal to 0,
• the initial conditions x0, if any, are assumed to belong

to a bounded set X0 and one assumes that X0 does not
contain equilibrium points of the system,

• the parameter vector p belongs to a connected set P
assumed to be included in UP , where UP ⊆ Rnp is
an a priori known set of admissible parameters; the
components of p are denoted pi.

• the functions f and h are real and analytic on M , where
M is an open set of Rn such that x(t, p) ∈M for every
t ∈ [t0, T ] and p ∈ P , T is a finite or infinite time
bound.

In the following, Y (P ) denotes the set of output trajec-
tories, solution of Γ for any p ∈ P and is also called the
output of Γ arising from P .

Before establishing a parameter estimation procedure, it is
recommended to perform an identifiability analysis. Indeed,
an identifiable model insures that the parameter values can
be uniquely inferred from output trajectories. This notion
was extended in [11], [9] to the set-membership framework
in which one must deal with bounded error models like
Γ. Since model Γ generates a set of trajectories, global
SM-identifiability was proposed to compare two sets of



trajectories, each one arising from a different connected set
value for the parameter vector. The definition of global SM-
identifiability states that a connected set P ∗ is globally SM-
identifiable if the output of Γ arising from P ∗ does not share
any trajectory with the output of Γ arising from any set
P̄ ⊆ P ∗c, P ∗c being the complementary of P ∗ in P .
A stronger definition, called global µ-SM-identifiable was
proposed to ensure that the connected set P ∗ can be con-
tracted as small as desired while still retaining the SM-
identifiability property. If the nonempty connected set P ∗ ⊆
UP is globally µ-SM-identifiable then it is globally SM-
identifiable. However, the reciprocal is not true.
Verifying such properties on sets of trajectories is not obvious
and in [9], a method based on differential relations was
developed. These relations are obtained from the Rosenfeld-
Groebner algorithm implemented in the package Differen-
tialAlgebra of Maple [2]. It is an elimination algorithm
permitting to eliminate the unobservable variables and to
obtain differential polynomials linking the inputs, the outputs
and the parameters of the model.

These polynomials can be expressed as:

Ri(y, u, p) = mi,0(y, u) +

qi∑
j=1

θi,j(p)mi,j(y, u) = 0 (2)

with i = 1, . . .m and where (θi,j(p))1≤j≤qi are rational in
p, θi,a 6= θi,b (a 6= b), and (mi,j(y, u))1≤j≤qi are differential
polynomials with respect to y and u and mi,0 6= 0.
Let φ the real-valued function defined from the coefficients
of the polynomials Ri by :

φ : p = (p1, . . . , pp) 7→ (θi,j(p))1≤i≤m,1≤j≤qi .

In the case of a not bounded error model, φ is required
to be injective for the model to be identifiable. In [10],
[9], the authors adapted the classical injectivity definition
in the framework of interval analysis to study finely
global and µ SM-identifiabilities. However, in the example
presented in this paper, only classical injectivity is necessary
and the theorem given below has been rewritten in that sense.

To lighten the notations, we assume that i = 1, i.e. there is
only one input-output polynomial R(y, u, p), and the index
i is omitted:

R(y, u, p) = m0(y, u) +

q∑
j=1

θj(p)mj(y, u) = 0. (3)

Consider l the higher order derivative of y in (2).
∆R(y, u) denotes the functional determinant composed of
the {mk(y, u)}1≤k≤q and given by the Wronskian [4]

∆R(y, u) =

∣∣∣∣∣∣∣∣∣


m1(y, u) . . . mq(y, u)
m1(y, u)(1) . . . mq(y, u)(1)

. . .
m1(y, u)(l−1) . . . mq(y, u)(l−1)


∣∣∣∣∣∣∣∣∣ .
(4)

The following theorem links injectivity to µ-SM-
identifiability.

Theorem 1: Assume that the functional determinant
∆R(y, u) is not identically equal to zero1. Consider P ∗

a connected subset of UP . If the function φ is injective
then P ∗ is globally µ-SM-identifiable and consequently SM-
identifiable.

In the following section, the classical parameter estima-
tion method based on the polynomial R(y, u, p) is first
recalled. Then, the integro-differential polynomial obtained
from R(y, u, p) is explained and the estimation procedure is
presented.

III. ESTIMATION PROCEDURES

A. Principles of the two methods

We denote yk = y(tk) the measures done at the discrete
times (tk)1≤k≤M , and the associated outputs uk = u(tk).
From these measures, the input-output method consists in
estimating the vector composed of the so-called parameter
blocks (θj(p))j=1,...,q using the polynomial R(y, u, p)
given by (3) [22]. Under the assumption of a well-defined
identifiable model, the values of the unknown parameters pi,
i = 1, . . . , np can be deduced. Therefore, in what follows,
system Γ is assumed to be identifiable.

The measurement noise and uncertainties on parameters
are taken into account by assuming that the output y is
disturbed by a bounded additive noise η(t) ∈ [η(t)] and the
parameter vector p belongs to P where P is an interval
vector. Given the polynomial R(y, u, p), consider Θj(P )
obtained from θj(p) by substituting p by the set P . Θj(P )
is a connected set for all connected sets P since it only
involves sum, difference and product of connected sets. For
any matrix A, we denote (A)k (resp. [A]k) the kth line
of the matrix A (resp. the kth line of the interval matrix [A]).

Let us now present first the classical numerical method
based on the direct use of the input-output polynomials, then
the method using the distribution approach, i.e. based on
integro-differential polynomials.

1) Method based on input-output polynomials (refer
to [18] for details): Since (3) is linear with re-
spect to the parameter blocks θ1(p), . . . , θq(p), if
we denote the vector of parameter blocks by θ =
(θ1(p), . . . , θq(p))

T , the following system can be de-
duced

Aθ = b (5)

where (A)k = (mj(yk, uk))j=1,...,q and bk =
−m0(yk, uk). Considering a bounded error disturbed
output, this system can be interpreted in the set-
membership framework and used to estimate the un-
known interval vector (Θj(P ))1≤j≤q . It consists in

1This assumption consists in verifying the linear independence of the
mk(y, u), k = 1, . . . , q. For doing this, it is sufficient to find a time point
at which the Wronskian is non-zero. In the framework of differential algebra,
this condition consists in verifying that this functional determinant is not in
the ideal obtained after eliminating state variables.



solving the following system

[A][θ] = [b] (6)

where [A]k = ([mj(yk, uk)])j=1,...,q and [bk] =
−[m0(yk, uk)]. Solutions of System (6) can be found
in solving the following system

0 ∈ [A][θ]− [b]. (7)

2) Method based on integro-differential polynomials: This
method, also called the distribution approach, is based
on test functions ψi which are smooth functions with
compact support supp(ψi) = [ti−ε, ti+ε], ε > 0. More
precisely, in R, the ψi’s are infinitely differentiable
functions equal to zero outside a compact interval.
Assume that the component functions of u, y, and x
verify the following assumption:
(H): they are C∞ in ]0, T [ and are equal to zero
on ] − ∞, 0[, ]T,+∞[. They coincide in ]0, T [ with
functions which are C∞ in [0, T [.
After multiplying the input-output polynomial by the
test function ψi and by integration by parts on [ti −
ε, ti + ε], we obtain for all i ∈ [1,M ]:∫ ti+ε

ti−ε
R(y, u, p)(s)ψi(s)ds

=

∫ ti+ε

ti−ε
m1,0(y, u)(s)ψi(s)ds

+

q∑
j=1

θj(p)

∫ ti+ε

ti−ε
mj(y, u)(s)ψi(s)ds = 0.

(8)

M relations corresponding to the number of discrete
times can be deduced leading to solve the following
rectangular linear system:

Aψθ = bψ (9)

where (Aψ)i =

(∫ ti+ε

ti−ε
mj(y, u)(s)ψi(s)ds

)
j=1,...,q

and bψi = −
∫ ti+ε

ti−ε
m0(y, u)(s)ψi(s)ds.

As previously, the unknown interval vector of param-
eter blocks (Θk(P ))1≤k≤q is solution of

[Aψ][θ] = [bψ] (10)

where [Aψ]i =

(
[

∫ ti+ε

ti−ε
mj(y, u)(s)ψi(s)ds]

)
j=1,...,q

and [b]ψi = −[

∫ ti+ε

ti−ε
m0(y, u)(s)ψi(s)ds]. Solutions

of System (10) can be obtained in solving the
following system

0 ∈ [Aψ][θ]− [bψ]. (11)

B. An enclosure of the initial solution

The question that arises is: does the solution set of
system [Aψ][θ] = [bψ] contain the solution set of
system [A][θ] = [b], otherwise what is the condition?
This section answers this question by showing first,
that system (9) can be seen as a perturbed system of
(5) and then by giving a condition for the solution
sets of systems (11) to enclose the solution sets of
(7).

Let us make the following assumptions:

a) The test functions ψi, i = 1, . . . ,M are supposed
to have the same maximal value denoted ψmax

and each of them reaches it at ti,
b) for all j = 1, . . . , q, mjψi ∈ C2([ti − ε, ti + ε]).

Let ε > 0. By the midpoint method, each coefficient
Aψi,j and bψi of matrix A and vector b is equal to:∫ ti+ε

ti−ε
mj(s)ψi(s)ds = 2εmj(ti)ψi(ti)

+ ε3

3 (mjψi)
′′(ζi), ζi ∈]ti − ε, ti + ε[.

(12)

Let Eij = (mj ·ψi)′′(ζi), j = 1, . . . , q and Fi = (m0 ·
ψi)
′′(ζi). According to Assumption (a), ψi(ti) = ψmax

for all i = 1, . . . ,M and the following relations are
deduced:

Aψ

2ε
= ψmaxA +ψmax δA,

bψ

2ε
= ψmax b+ψmax δb,

(13)
with

δA =
ε2

6ψmax
E, δb =

ε2

6ψmax
F, (14)

where E = (Ei,j)i=1,...,q
j=1,...,q

and F = (Fi)
T
i=1,...,q .

Substituting equation (13) into equation (9) gives

(A+ δA)θ = b+ δb. (15)

Thus, system (9) is a perturbed system (5) if ‖δA‖∞
and ‖δb‖∞ are sufficiently small, where ‖.‖∞ denotes
the infinite induced matrix norm [17].
Let [γ] (resp. [γψ]) the solution of (7) (resp. (11)). If
[γ] ⊆ [γψ], [γψ] encloses the solution of (7), otherwise
part of the solution can be lost. The following propo-
sition gives a condition for ensuring that [γψ] encloses
the solution of (7).
Proposition 3.1: [γψ] is the solution set of (7) if and
only if 0 ∈ [δA][γψ]− [δb].

Proof: The sets of solutions of (9) and (15) being
equal, [γψ] is the solution set of (7) if and only if
0 is contained in the connected set composed of the
residual [δA][γψ]− [δb].

C. Set Inversion Via Interval Analysis

Solving systems (7) and (11) can be done using the
SIVIA algorithm (Set Inversion Via Interval Analysis) [13]
for which it is necessary to give initial intervals. The problem



that is solved here is to find [θ] such that 0 ∈ [A][θ]− [b]. We
use the forward-backward propagation to contract the initial
parameter box.

Consider the problem of determining a solution set S for
the unknown quantities λ, belonging to an a priori search
set ∆, defined by:

S = {λ ∈ U|f(λ) ∈ [β]} = f−1([β]) ∩∆, (16)

where [β] is a priori known and f is a nonlinear function
not necessarily invertible in the classical sense. (16) involves
computing the reciprocal image of f and is known as a set
inversion problem which can be solved using the algorithm
Set Inverter Via Interval Analysis (denoted SIVIA). The
algorithm SIVIA is a recursive algorithm which explores all
the search space without loosing any solution. This algorithm
makes it possible to derive a guaranteed enclosure of the
solution set S as follows:

S ⊆ S ⊆ S. (17)

The inner enclosure S is composed of the boxes that have
been proved feasible. To prove that a box [λ] is feasible,
it is sufficient to prove that f([λ]) ⊆ [β]. Reversely, if it
can be proved that f([λ]) ∩ [β] = ∅, then the box [λ] is
unfeasible. Otherwise, no conclusion can be reached and the
box [λ] is said undetermined. The latter is then bisected and
tested again until its size reaches a user-specified precision
threshold ε > 0. Such a termination criterion ensures that
SIVIA terminates after a finite number of iterations.

Thus the algorithm SIVIA allows to obtain these two
subpavings with a required precision ε, based on an inclu-
sion test. The relation between the two subpavings can be
characterized as:

∆S = S\S, (18)

where ∆S is called the inclusion test uncertainty, in which
no decision can be made during the test. The properties of
the solution sets are:
• if S = ∅ the problem (16) has no solution,
• if S 6= ∅, there exists at least one verified solution for

(16).

IV. APPLICATION

The test functions ψi, i = 1, . . . ,M are bell-shaped
functions centered at ti. They are constructed from the test

function: ψ(t) =

{
e

ε2

t2−ε2 if | t |< ε
0 if | t |≥ ε

whose support is

equal to [−ε, ε] and for which translations and dilatations
permit to define test functions on any interval. In the numer-
ical application, we take test functions whose supports are
strictly included in the time interval [0, T ]. This assumption
implies, in particular, simplifications when we use integration
by parts.

In what follows, an enclosure of
∫ b

a

f(s)ds in the set-

membership framework is obtained by the interval extension
of the trapezoidal classic method and it is denoted I[a,b](f) in

the following. The enclosures of the derivatives are obtained
by using HOSM differentiators [15], [18]. The parameters
of the HOSM differentiators are given by λ0 = 3, λ1 = 0.2
and λ2 = 0.1.

A. Case study
This example concerns two coupled water tanks one above

the other and modeled by:
ẋ1(t, p) = a1 u(t)− a2

√
x1(t, p),

ẋ2(t, p) = a3
√
x1(t, p)− a4

√
x2(t, p),

y1(t, p) =
√
x1(t, p),

y2(t, p) =
√
x2(t, p),

(19)

where p = (ai)i=1,...,4, ai 6= 0, is the model parameter
vector. x = (x1, x2)T represents the state vector and cor-
responds to the level in each tank, and u 6≡ 0 is the input
vector. The water level in the tanks can vary between 0 and
10.

In order to use the Rosenfeld-Groebner algorithm imple-
mented in Maple 16, auxiliary variables z1(t, p) =

√
x1(t, p)

and z2(t, p) =
√
x2(t, p) are introduced and the model,

including the representation of the four faults, is rewritten
as: 

ẋ1(t, p) = a1 u(t)− a2 z1(t, p),
ẋ2(t, p) = a3 z1(t)− a4 z2(t, p),
z1(t, p)2 = x1(t, p), z2(t, p)2 = x2(t, p),
y1(t, p) = z1(t, p), y2(t, p) = z2(t, p),

(20)

According to the Rosenfeld-Groebner algorithm, we obtain
two input-output relations:

R1(y, u, p) = −a1 u+ a2 y1 + 2 y1 ẏ1,
R2(y, u, p) = a4 y2 − a3 y1 + 2 y2 ẏ2

(21)

The functional determinant ∆R1 = uẏ1 − u̇y1 is not
identically equal to zero provided that u 6= 0. ∆R2 =
y2ẏ1− ẏ2y1 is not identically equal to zero and the function
φ : (a1, a2, a3, a4) 7→ (a1, a2, a4, a3) is obviously injective.
Thus, any connected subset P ∗ is µ-SM-identifiable.

B. Method based on input-output polynomials

If we denote y
(1)
1,p(tk) (resp. y(1)2,p(tk)) the estimate of

ẏ1(tk) (resp. ẏ2(tk)), the first system which has to be solved
is [A1][θ] = [b1] where [A1]k = ([−u(tk)], [ y1(tk)]) and
[b1]k = [−2 y1(tk) y

(1)
1,p(tk)].

The second system is composed of the matrix inter-
val [A2] and the vector interval [b2] such that [A2]i =
([−y1(ti)], [y2(ti)]) and [b2]i = [−y2(ti) y2,p(ti)].

C. Method based on integro-differential polynomials
For the second method, the first system to be solved is

[Aψ1 ][θ] = [bψ1 ] where

[Aψ1 ]i = ([−I[ti−ε,ti+ε](uψi)], [I[ti−ε,ti+ε](y1 ψi)]),

[bψ1 ]i = [I[ti−ε,ti+ε](y
2
1ψ̇i)].

(22)
The second one is composed of [Aψ] and [bψ] such that:

[Aψ2 ]i = ([−I[ti−ε,ti+ε](y1 ψi)], [I[ti−ε,ti+ε](y2 ψi)]),

[bψ2 ]i = [I[ti−ε,ti+ε](y
2
2ψ̇i)].

(23)



D. Numerical results

For the simulation tests, we choose a1 = 0.2, a2 =
0.05, a3 = 0.1 and a4 = 0.1. The interval bounds for η(t)
are given by [−0.1 0.1]. The initial intervals for the param-
eters are all given by p0 = [0 5] and the bisection threshold
for the algorithm SIVIA is 0.025 for each parameter. Figures
1 and 2 show the water level in the upper and lower tanks
respectively. The estimation methods were applied on the
time interval [0,20] with the discrete times (ti)i=1,...,M such
that the sampling period is equal to 0.1.

Fig. 1. Water level in the upper tank

Fig. 2. Water level in the lower tank

Using the first method, the estimation results are provided
by figures 3 and 4 and the computational time is 24.0036
seconds. Using the second method, we obtain figures 5
and 6 and the computational time is 16.41 seconds. In
these figures, red boxes have been rejected, yellow ones
(undetermined boxes) contain solutions and have a length
lower than the stoping condition parameter. The green boxes
(solution boxes) contain only solutions.

We see that the green boxes contain the exact values of
the parameters using either the first or the second method.
However, the second method provides much less conservative
solutions, i.e. the green and yellow regions are much smaller.

In Tables I and II, we give the percentage of eliminated
initial parameter box compared to the domains S (solution

Fig. 3. Admissible parameters a1, a2 for method 1 (a1 on the x-axis, a2
on the y-axis).

Fig. 4. Admissible parameters a3, a4 for method 1 (a3 on the x-axis, a4
on the y-axis).

Fig. 5. Admissible parameters a1, a2 for method 2 (a1 on the x-axis, a2
on the y-axis).

and undetermined boxes) and S (solution boxes only) defined
in Equation (17), respectively. The eliminated percentage %p

is calculated by %p = 1− w([p])

w([p0])
where w([α]) means the

width of the interval [α].



Fig. 6. Admissible parameters a3, a4 for method 2 (a3 on the x-axis, a4
on the y-axis).

Parameter %pmethod1 %pmethod2

a1 86.00 95.00
a2 90.00 97.00
a3 82.00 89.00
a4 70.00 91.00

TABLE I
ELIMINATED PERCENTAGE OF INITIAL PARAMETER BOX FOR THE TWO

METHODS (UNDETERMINED AND SOLUTION BOXES).

In both Tables I and II, we can appreciate how much the
eliminated percentage of initial parameter box is higher using
the second method. Interestingly, the computational time is
also smaller using the second method (divided by 1.5).

Parameter %pmethod1 %pmethod2

a1 93 95.80
a2 93 97.60
a3 92.20 93.00
a4 88.00 93.60

TABLE II
ELIMINATED PERCENTAGE OF INITIAL PARAMETER BOX FOR THE TWO

METHODS (SOLUTION BOXES).

V. CONCLUSION

This paper proposes an estimation method based on differ-
ential polynomials and the use of the distribution theory. It
is based on integro-differential polynomials that are used to
estimate the parameters of the system. This method provides
very good results for the parameter estimation in the water-
tank problem contrary to the classical input-output polynomi-
als based method. The explanation for the improved results is
that the integro-differential polynomials contain derivatives
of smaller order and integrating permits to annihilate part of
the noise.
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