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Fault Detection using Interval Kalman Filtering enhanced by Constraint
Propagation

Jun Xiong1,2, Carine Jauberthie1,3, Louise Travé-Massuyès1,4 and Françoise Le Gall1,4

Abstract— In this paper, we consider an extension of con-
ventional Kalman filtering to discrete time linear models with
bounded uncertainties on parameters and gaussian measure-
ment noise. To solve the interval matrix inversion problem
involved in the equations of the Kalman filter and the over-
bounding problem due to interval calculus, we propose an
original approach combining the set inversion algorithm SIVIA
and constraint propagation. The improved interval Kalman
filter is applied in a fault detection schema illustrated by a
simple case study.

I. INTRODUCTION

Set-membership (SM) methods have been the focus of
a growing interest and they have been applied to many
tasks ([1], [2], [3]). The litterature on this topic shows
interesting progress in the last years. SM estimation can be
based on interval analysis that was introduced by [4] and
several algorithms have been proposed (for more details, see
[1], [2], [5]). Other approaches dedicated to linear models
include ellipsoid shaped methods ([6], [7]), parallelotope and
zonotope based methods [8].

In contrast to stochastic estimation approaches, SM esti-
mation advantageously provides a guaranteed solution. How-
ever, it does not give any precision about the belief degree
and it is often criticized for the overestimation of its results.
Actually, the two approaches have specific advantages and
they may interact synergically. They complement more than
they compete. In an estimation framework, the experimental
conditions about noise and disturbances are usually prop-
erly modeled through appropriate probability distributions.
However, other sources of uncertainty are not well-suited to
stochastic modeling and are better represented with bounded
uncertainties. This is the case of parameter uncertainties
that generally arise from design tolerances and from aging.
Hence, combining stochastic and bounded uncertainties may
be an appropriate solution.
Motivated by the above observations, we consider the fil-
tering problem for discrete time linear models with bounded
uncertainties on parameters and gaussian measurement noise.
In [9], the classical Kalman filter [10] has been extended to
interval linear models. We build on this work and propose
several operations that improve the filtering. In particular,
the approach proposed in [9] does not provide guaranteed
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results because it avoids interval matrix inversion. Our main
contribution consist in proposing a method to solve the
interval matrix inversion problem without loss of solutions
while controlling the inherent pessimism of interval calculus.
In particular the gain of the filter is obtained by a calculus
based on the set inversion algorithm SIVIA (Set Inversion
via Interval analysis) [11] which is combined with constraint
propagation techniques.

The paper is organized as follows. Section II describes
the problem formulation and the considered system. In
Section III, some important concepts of interval analysis
are introduced. An overview of the revised interval Kalman
filtering algorithm is presented in Section IV, followed by the
set of operations developed to control overestimation. The
case study is then presented in section V with the results
obtained for fault detection. Conclusions and future works
are overviewed in Section VI.

II. PROBLEM FORMULATION

We consider linear dynamic systems described by a set of
state differences and observation equations (Kalman model
[10]): {

xk+1 = Axk +Buk + wk,
yk = Cxk +Duk + vk, k ∈ N (1)

where xk ∈ Rn, yk ∈ Rm and uk ∈ Rp denote state, obser-
vation and input vectors, respectively. The matrices A,B,C
and D are constant matrices such that A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rm×n and D ∈ Rm×p. δkl being the Kronecker
symbol, {wk} and {vk} are independent centered gaussian
white noise sequences, with covariance matrices Q and R
definite positive by definition, respectively:

E{wk, wl} = Qδkl, E{vk, vl} = Rδkl,
E{wk, vl} = E{wk, x0} = E{vk, x0} = 0,
∀(k, l) ∈ N2

Based on the motivations reported in the introduction, we
propose to combine two modeling paradigms : measurement
and system noises are modeled, as usual, in a stochastic
framework but parameter uncertainties are assumed to be
bounded. This is achieved by considering that the matrices
A, B, C and D of (1) become interval matrices, as defined
in the following section.

III. INTERVAL ANALYSIS

A. Preamble

The key idea of interval analysis is to reason about
intervals instead of real numbers [12] and [1]. The first
motivation was to obtain guaranteed results from floating
point algorithms and it was then extended to validated



numerics [4]. A guaranteed result first means that the result
set encloses the exact solution. Second, it also means that
the algorithm is able to conclude about the existence or not
of a solution in limited time or number of iterations.

B. Main concepts
1) Interval: A real interval [p] = [p, p] is a closed and

connected subset of R where p and p represent the lower and
upper bound of [p], respectively. The width of an interval [p]
is defined by w(p) = p − p, and its midpoint by m(p) =
(p+ p)/2. If w(p) = 0, then [p] is degenerated and reduced
to a real number. [p] is defined as positive (resp. negative),
i.e. [p] ≥ 0 (resp. [p] ≤ 0), if p ≥ 0 (resp. p ≤ 0).

The set of all real intervals of R is denoted IR. Two
intervals [p1] and [p2] are equal if and only if p1 = p2 and
p1 = p2. Real arithmetic operations have been extended to
intervals [4]:

◦ ∈ {+,−, ∗, /}, [p1] ◦ [p2] = {x ◦ y | x ∈ [p1], y ∈ [p2]}.
An interval vector (or box) [α] is a vector with interval
components. It may equivently be seen as a cartesian product
of scalar intervals:

[α] = [α1]× [α2]× . . .× [αn].

An interval matrix is a matrix with interval components.
The set of n−dimensional real interval vectors is denoted by
IRn and the set of n ×m real interval matrices is denoted
by IRn×m. The width w(.) of an interval vector (or of an
interval matrix) is the maximum of the widths of its interval
components. The midpoint m(.) of an interval vector (resp.
an interval matrix) is a vector (resp. a matrix) composed of
the midpoints of its interval components.
Classical operations for interval vectors (resp. interval ma-
trices) are direct extensions of the same operations for real
vectors (resp. real matrices) [4].

2) Inclusion function: Given [X] a box of IRn and a
function f from IRn to IRm, an inclusion function of f
aims at getting a box containing the image of [X] by f . The
range of f over [X] is given by:

f([α]) = {f(x) | x ∈ [α]}.
Then, the interval function [f ] from IRn to IRm is an
inclusion function for f if:

∀[X] ∈ IRn, f([X]) ⊂ [f ]([X]).

An inclusion function of f can be obtained by replacing each
occurrence of a real variable by its corresponding interval and
by replacing each standard function by its interval evaluation.
Such a function is called the natural inclusion function. A
function f generally has several inclusion functions, which
depend on the syntax of f .

3) Inclusion tests: Given a subset S of Rn, two tests are
of particular interest: the test used to prove that all points in
a given box [α] satisfy a given property, i.e. [α] ⊂ S, and
the test that proves that none of them does, i.e. [α]∩S = ∅.

4) Contraction: Contraction is used to reduce a set [α] to
its intersection with respect to another set S. The contraction
of [α] with respect to S is a smaller set [γ] such that [α]∩S =
[γ]∩ S. If S is the feasibility set of a problem and [γ] turns
out to be empty, then the set [α] does not contain the solution
[11].

C. SIVIA: Set Inversion Via Interval Analysis
Consider the problem of determining a solution set S for

the unknown quantities p defined by:

S = {p ∈ P | Φ(p) ∈ [β]},
= Φ−1([β]) ∩ P,

(2)

where [β] is known a priori, P is an a priori search set
for p and Φ a nonlinear function not necessarily invertible
in the classical sense. (2) involves computing the reciprocal
image of Φ. This can be solved using the recursive algorithm
SIVIA, which explores all the search space without loosing
any solution. SIVIA provides a guaranteed enclosure of the
solution set S as follows:

S ⊆ S ⊆ S. (3)

The inner enclosure S is composed of the boxes that have
been proved feasible, i.e. such that Φ([p]) ⊆ [β]. Reversely,
if it can be proved that Φ([p]) ∩ [β] = ∅, then the box [p]
is unfeasible. Otherwise, no conclusion can be reached and
the box [p] is said undetermined. The latter is then bisected
in two sub-boxes that are tested until their size reaches a
user-specified precision threshold ε > 0. Such a termination
criterion ensures that SIVIA terminates after a finite number
of iterations.

The number of bisections to be performed is generally
prohibitive. Hence, recent algorithms take advantage of con-
straint propagation techniques to reduce the width of the
boxes to be tested by SIVIA [13], [14]. In this context, the
inclusion relations and the equations can be interpreted as
the constraints of a Constraint Satisfaction Problem (CSP )
H = (X ,D, C) defined by:
• a set of variables X = {x1, ..., xn},
• a set of nonempty domains D = {D1, ..., Dn} where
Di is the domain associated to the variable xi,

• a set of constraints C = {C1, ..., Cm}, so that the
variables involved in each constraint are defined in X .

For solving a CSP , different types of so-called contractors
can be used [1], [15]. Among the most well-known is
the forward-backward contractor [16], which contracts the
solution of the CSP by taking into account any one of the
{C1, ..., Cm} constraint in isolation.

IV. INTERVAL KALMAN FILTERING

Given the system (1), the conventional Kalman filter
provides the minimum variance estimate x̂k of xk and
the associated covariance matrix Pk and we can write
(x̂k, Pk) = K(A,B,C,D, x0, P0, ul, yl)l<k. When matrices
A, B, C, and D are only known to belong to interval
matrices [A], [B], [C] and [D], respectively, both x̂k and Pk

are tainted by bounded uncertainty. The interval Kalman filter
aims at computing (an enclosure of) the set of all possible
(x̂k, Pk), i.e.:

X = ([x̂k], [Pk]) = {(x̂k, Pk)|∃A ∈ [A], B ∈ [B], C ∈ [C],

D ∈ [D], (x̂k, Pk) = K(A,B,C,D, x0, P0, ul, yl)l<k.

The algorithm proposed by [9] is based on interval con-
ditional expectation for interval linear systems and has the
same structure as the conventional Kalman filter algorithm.



Its drawback is that it does not guaranty to provide an
enclosure of X . In other words, some solutions are lost
and the results are not guaranteed. This occurs because
singularity problems in interval matrix inversion are avoided
by taking the upper bound of the interval matrix to be
inverted. We note this algorithm sIKF (sub-optimal interval
Kalman filtering). In this paper, we propose the improved
recursive estimator iIKF that includes recent advances in
interval analysis and constraint propagation techniques.

A. Conventional Kalman filtering

There are several ways to deduce Kalman equations [10].
One can use mathematical curve-fitting function of data
points from a least-squares approximation [17] or also use
probabilist methods such as the Likelihood function to max-
imize the conditional probability of the state estimate from
measurement incomes [18]. We consider the following:

1) x̂k+1|k ∈ Rn the a priori state estimate vector at
time k + 1 given state estimate at time k,
2) x̂k|k ∈ Rn the a posteriori state estimate vector at
time k given observations at time k,
3) Pk+1|k ∈ Rn×n the a priori error covariance matrix,
4) Pk|k ∈ Rn×n the a posteriori error covariance
matrix.

P.|. is a key indicator that defines the accuracy of the state
estimate :

Pl|k = E
(
(xl − x̂l|k)(xl − x̂l|k)T

)
, l = k/k + 1. (4)

It is known that the Kalman filtering algorithm contains two
steps for each iteration: a prediction step and a correction
step [10].

B. Interval Kalman filtering: the iIKF algorithm

In addition to considering parameter bounded uncertainties
through the interval matrices [A], [B], [C] and [D], notice
that x0|0, P0|0, uk, yk could be boxes due to deterministic
measurement errors and instrument precision. In the follow-
ing, we evaluate the changes impacted by these assumptions
on the different steps of the Kalman filtering algorithm.

1) Estimation error covariance: in the interval context,
the estimation error covariance matrix is an interval matrix
which can be rewritten as:

[Pl|k] , E
(
([xl]− [x̂l|k])([xl]− [x̂l|k])T

)
, (5)

where l = k or k+1. [Pk|k] is the estimation error covariance
and [Pk+1|k] is the prediction error covariance. All elements
on the diagonal of P.|. are positive as they represent the
variance of each state, thus the trace of P.|. is positive. In
the case of an interval matrix [P.|.], this constraint must also
hold. If interval calculus pessimistically generates intervals
containing non positive values, these are spurious and can
be removed. Thus a first constraint is introduced :

[P.|.](i,i) ≥ 0, i = 1, 2..., n. (6)

2) Prediction step: The calculus of the a priori state
estimate vector is directly inherited from the determinate
model, while real variables are replaced by boxes :

[x̂k+1|k] = [A][x̂k|k] + [B][uk]. (7)

At the previous time k, the estimation error is character-
ized by [Pk|k]. The prediction model does not include noise
so the estimation error should also be updated:

[P̂k+1|k] = [A][P̂k|k][A]T +Q. (8)

This equation can be interpreted as providing all possible a
priori estimation error covariances between real state and a
priori state estimate at time k + 1. Accounting for (6), this
leads to the following CSP :{

[P̂k+1|k] = [A][P̂k|k][A]T +Q,

C : [P̂k+1|k](i,i) > 0, i = 1, 2..., n.
(9)

3) Correction step: from [9], the correction equation
holds in the interval context:

[x̂k+1|k+1] = [x̂k+1|k] + [Kk+1]
(
[yk+1]− [ŷk+1|k]

)
. (10)

Intuitively, [Kk+1] aims to bring back the estimate enclosure
around the real state while still retaining all the possible val-
ues corresponding to uncertainty. Equations (5) and (10) give
the estimation error covariance expression. This manipulation
is only valid when E{vk} = 0:

[P̂k+1|k+1] = [P̂k+1|k]− [Kk+1][C][P̂k+1|k]

−[P̂k+1|k]([CT ][Kk+1]T

+[Kk+1]
(

[C][P̂k+1|k]([CT ] +R
)

[Kk+1]T .

(11)
We want to find [Kk+1] such that it minimizes
trace([P̂k+1|k+1]). Indeed, state variance, given by
this matrix diagonal elements, is the value that indicates the
estimation error:

∂trace([P̂k+1|k+1])

∂[Kk+1]
= −2[P̂k+1|k][C]T

+2[Kk+1]
(

[C][P̂k+1|k][C]T +R
)
,

∂2trace([P̂k+1|k+1])

∂[Kk+1]∂[Kk+1]T
= 2

(
[C][P̂k+1|k][C]T +R

)
.

The second derivative is always positive in the conventional
Kalman filter, which guarantees the existence of a solution
to the minimization problem. In the interval context, this
condition must be forced by a constraint of the same type as
(6). From the first order derivative, we have:

[Kk+1] = [P̂k+1|k][C]T
(

[C][P̂k+1|k][C]T +R
)−1

. (12)

Thus equations (11) and (12) give the estimation error
covariance expression:

[P̂k+1|k+1] = (In − [Kk+1][C])[P̂k+1|k]. (13)



4) Algorithm loop: Equations (7), (8), (12), (13) and
(10) constitute a discrete interval Kalman filter algorithm.

Initialization: k=0 P0|0 = Cov{x0}, m0 = E(x0)
[x0] ∼ N(m0, P0|0),

Prediction: [x̂k+1|k] = [A][x̂k|k] + [B][uk],

[P̂k+1|k] = [A][P̂k|k][A]T +Q,

Correction:
[Kk+1] = [P̂k+1|k][C]T

(
[C][P̂k+1|k][C]T +R

)−1
,

[P̂k+1|k+1] = (In − [Kk+1][C])[P̂k+1|k],
[x̂k+1|k+1] = [x̂k+1|k] + [Kk+1]

(
[yk+1]− [ŷk+1|k]

)
,

k = k + 1.

C. Interval matrix inversion and overestimation control

A major issue is the pessimism introduced by interval
arithmetic. Uncertainty is cumulated at each iteration and
the interval matrix inversion involved in equation (12) is time
consuming, sometimes divergent.

1) Interval matrix inversion for gain value propagation:
Equation (12) involves the inversion of the interval matrix
([C][Pk+1|k][C]T + R). The first problem refers to singu-
larities, which means that the following condition should be
fulfilled:

0 /∈ det
(

[C][P̂k+1|k][C]T +R
)
.

Besides, the interval matrix inverse is obtained by ap-
proximation algorithms, like in [19], and is generally over
estimated.

We propose an approach which uses the algorithm SIVIA.
The idea is to solve the interval matrix inversion problem by
a set of constraint propagation problems. Equation (12) is
rewritten as:

[Kk+1]
(

[C][P̂k+1|k][C]T +R
)

= [P̂k+1|k][C]T .

Each component in matrix [Kk+1] is considered separately
and the search space is the following cartesian product :

[Kk+1]1,1 × [Kk+1]1,2 × ...× [Kk+1]n,m.

This search space is bisected and tested under SIVIA
properly adapted to matrix operation. The result is a set of
small boxes that satisfy Equation (14), each box providing
a ”small acceptable gain”. The set of boxes is then injected
at the correction step to update the covariance matrix and
the state estimate vector. The final result is the hull of all
covariance matrices and state estimate vectors corrected by
each small gain.

2) Constraint Propagation: Constraint propagation is
very useful to reduce the width of the boxes involved in a
set of constraints [15]. In this work, we use the well-known
forward-backward algorithm. The principle is to decompose
the constraint equation f([x1], ..., [xn]) = 0 in a sequence of
elementary operations of primitive functions like {+,−, ∗, /}
and obtain a list of primitive constraints [20]. For example,
consider the following equation:

[x̂k+1|k+1] = [x̂k+1|k] + [Kk+1]([yk+1]− [C][x̂k+1|k]).

This equation can be decomposed, following the computation
tree, into the following set of primitive constraints:

[a1] = [C][x̂k+1|k],

[a2] = [yk+1]− [a1],

[a3] = [Kk+1][a2],

[x̂k+1|k+1] = [x̂k+1|k] + [a3].

In our problem, we want to contract
{[x̂k+1|k+1], [x̂k+1|k], [Kk+1]} without changing
{[C], [yk+1]}, which are considered as inputs.

3) Interval intersection rule: As the associative law is
no longer valid in interval arithmetic, we must redefine the
product of three and four interval matrices [21]. This is the
principle of the interval intersection rule.

n∏
i=1

[Mi] ,

[
(

n−1∏
i=1

[Mi]) · [Mn]

]
∩

[
[M1] · (

n−1∏
i=1

[Mi+1])

]
. (14)

where [M1], ..., [Mn] are interval matrices.
4) Adaptative calibration: When the interval matrix to

be inverted is not regular, we must find a way to cut down
the uncertainty accumulated by interval arithmetic. In this
case, a calibration can be implemented to reset the iteration
for limiting divergence [21]. We propose the following
calibration mechanism:

[x̂k] , x̂k + [ζk], [Pk] = [P0]. (15)

where x̂k is the conventional Kalman state estimate from the
nominal system and [ζk] is set from the state variances.

V. FAULT DETECTION

Let us consider that the system (1) can suffer additive
faults on sensors and let us adopt the single fault assumption.
With the conventional Kalman filter, the principe of fault
detection is to detect an abnormal change in the residual
vector :

rk+1 = yk+1 − ŷk+1|k, (16)

where yk+1 represents the measured output at time k + 1.
When yk+1 is not faulty and without measurement noise, the
residual is statistically reduced to zero. When a fault occurs,
the residual vector is expected to become non null and at
least one of its components indicates the fault.

Like for the conventional Kalman filter, we can define a
confidence interval Ii[ŷk+1|k]

at 99.7% for each ith component
[ŷik+1|k], i = 1, ...,m, of [ŷk+1|k] used for fault detection
thresholding:

[(
[ŷk+1|k]i − q ∗ [σk+1]i

)
,
(
[ŷk+1|k]i + q ∗ [σk+1]i

)]
,

(17)
where [σk+1]i represents the standard deviation of [ŷk+1|k]i.
The confidence interval Ii[ŷk+1|k]

is guaranteed in the sense
that it includes all the confidence intervals of the candidate
values belonging to the interval output estimate. In this
respect, it is quite conservative.

Fault detection is achieved, at time k + 1, by checking
for consistency the confidence interval (at 99,7%) Iiyk+1

of



yik+1 against the confidence interval Ii[ŷk+1|k]
of [ŷk+1|k], for

i = 1, . . . ,m [22]. Thus, we consider a binary variable τk
indexed by the time instant which infers:

τk =

{
1 if ∃i s.t., Iiyk+1

∩ Ii[ŷk+1|k]
6= ∅

0 otherwise.
(18)

When a fault occurs, it corrupts the output measures,
which is reinjected in the iIKF at the correction step. Hence,
the output estimate is not reliable for representing the healthy
system. Thus as soon as the fault is detected, the innovation
step in the interval Kalman filter is halted until the system
is restored healthy. A similar approach can be found in [23],
[24], known as the Semi-Closed Loop (SCL) strategy.

VI. EVALUATION

Let us consider an uncertain system described by the
following equations:{

[xk+1] = [A][xk] + wk,

[yk] = [C][xk] + vk, k ∈ N
(19)

{wk} and {vk} are independent centered gaussian white
noise sequences, whose covariance matrices, time-invariant
and considered without uncertainty, are denoted Q and R.
We suppose [A] = A+4A, [C] = C +4C and:

A =

[
0.4 0.1
−0.1 0.2

]
, C =

[
0 1

]
, Q =

[
10 0
0 10

]
, R = 1.

4A =

[
[−0.1, 0.1] [−0.15, 0.15]

0 [−0.25, 0.25]

]
,4C =

[
0 [−0.1, 0.1]

]
,

E{x0} =

[
x01
x02

]
=

[
1
1

]
,

First, we compare the results provided by three filters:
the original interval Kalman filter (noted IKF) that does not
include any overestimation control and makes use of Rohn’s
interval matrix inversion method[19], its sub-optimal version
(sIKF) proposed by [9], and our improved filter (iIKF). Let
us define N the number of calibration times, O the number
of times for which the interval state estimate does not contain
the real state, and D the norm giving the distance between
interval estimate bounds and the true value:

D =

√∑K
k=1 d([x̂k], xk)T d([x̂k], xk)√∑K

k=1 x
T
k xk

,

d([x̂k], xk) = |[x̂k]− xk|+ |[x̂k]− xk|,

(20)

where K represents the maximal iteration number. D and
O indicate the efficiency of the algorithm. The precision
threshold ε used by SIVIA (expressed as a proportion of
the original box size) is also analysed.

The simulations are run on the time stage [0,100] with
the toolbox Intlab of Matlab [25]. The results of Table I
are consistent with those shown in Figure 1 top and bottom.
We can see that the original IKF has the largest D while
the sub-optimal sIKF has the minimum D value, which is
explained by the narrow bounds for the interval estimates.
Nevertheless, since some solutions are lost, sIKF also obtains

Filter ε N O D t
IKF - 20 14 575.38 0.83s
sIKF - 0 56 0.85 0.75s
iIKF 1 0 0 3.07 0.91s

0.2 0 0 2.60 46s
0.05 0 0 2.56 784s

TABLE I
RESULTS FOR N , O AND D USING IKF AND IIKF WITH DIFFERENT

BISECTION FACTORS ε AND EXECUTION TIME t.
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Fig. 1. Simulation results with the sub-optimal sIKF (top) and with iIKF
(ε = 0.05) (bottom).

the largest value of O: the real state is outside the estimated
interval state half of the time.

By using iIKF, D is larger than with sIKF, because it
retains all solutions. We notice that the real state and the
optimal estimate provided by the conventional Kalman filter
are both always within the bounds of the iIKF state estimate.
The gain value propagated from SIVIA actually refines the
interval estimation value, but the higher the precision ε, the
higher the computation time. Compared to the original IKF,
the iIKF prevents unnecessary recalibration due to divergent
interval operations; compared to sIKF, iIKF retains all the
solutions consistent with the bounded error uncertainty. iIKF
hence represents a good compromise.

To test the efficiency of the proposed iIKF based fault
detection approach, a sensor fault affecting the system is
introduced at time k = 50. This fault is persistent until time



k = 80. The fault value is set to approximatively 4 standard
deviations. We use confidence intervals at 99, 7% (q = 3).

Figure 2 (top) provides the output prediction and the real
measured output together with the fault indicator τk. τk
rightly concludes to the occurrence of a fault at time k = 50
and this fault is persistant until k = 80.

Fig. 2. Fault detection by using the iIKF and the SCL strategy (top) – iIKF
output estimate in the faulty situation without the SCL strategy (bottom).

Figure 2 (bottom) clearly shows that the iIKF output estimate
produced without the SCL strategy ”follows” the faulty
measured output, preventing efficient fault detection. This
is due to the correction in the innovation step of iIKF. The
a posteriori state estimate is indeed compensated according
to the measurement, independently on whether it is faulty or
not.

We should point out that in our scenario, no calibration
takes place. But in more complex systems, it is likely to have
singular interval matrices triggering the calibration.

VII. CONCLUSIONS

The improved interval Kalman filter iIKF proposed in
this paper provides all the optimal estimates consistent with
bounded errors and achieves good control of the pessimism
inherent to interval analysis. Through a set of simulations,
the advantages of the iIKF with respect to previous versions
are exhibited and the efficiency of the iIKF based Semi-
Closed Loop fault detection algorithm that we propose is
clearly demonstrated. This work shows that the integration
of statistical and bounded uncertainties in the same model

can be successfully achieved, which opens wide perspectives
from a practical point of view. On the theoretical ground, this
work calls for a unifying well-posed integrative theory.
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