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Abstract:
An optimal input design technique for aircraft uncertain parameter estimation is presented in
this paper. The original idea is the combining of a dynamic programming method and interval
analysis for the optimal input synthesis. This approach does not imply the estimation of a
nominal value for parameter and allows to include realistic practical constraints on the input
and output variables. The precise description of the approach is followed by an application in
aerospace sciences.

1. INTRODUCTION

Experimental design is important for identifying mathe-
matical models of modern aircraft dynamics from flight
test data. The flight test input has a major impact on
the quality of the data for modeling purposes. Good ex-
perimental design must account for practical constraints
during the test. The overall goal is to design an experiment
that produces data from which model parameters can be
estimated accurately. Most importantly, in an estimation
framework, the experimental conditions about noise and
disturbances are usually properly modeled through appro-
priate assumptions about probability distributions (Mehra
[1974], Walter et al. [1994], Kiefer [1974]). The conven-
tional approach for the experimental design is based on
stochastic models for uncertain parameters and measure-
ment errors (see for example Roja et al. [2006]). However,
other sources of uncertainty are not well-suited to the
stochastic approach and are better modeled as bounded
uncertainty. This is the case of parameter uncertainties
that generally arise from design tolerances and from ag-
ing. In such cases, combining stochastic and bounded
uncertainties may be an appropriate solution. Motivated
by the above observations, we consider the optimal in-
put design problem for nonlinear dynamical models with
bounded uncertainties on parameters and measurement
noise modeled by a gaussian distribution. Some works
consider that the parameters belong to some prior do-
main, on which no probability function has to be defined
(for example Pronzato et al. [1988], Belforte et al. [2004]).
They aim at optimizing the worst possible performance
of the experiment over the prior domain for the param-
eters (Pronzato et al. [1988]). In Pronzato et al. [1988],
this maximin approach to synthesis the optimal input is
described and the specific criterion are developped.

In this paper, it is supposed that the uncertainty on
parameters can be modelled by bounded intervals and we
use the concepts of interval analysis for the optimal input
synthesis. The original approach of optimal input design
for uncertain bounded parameter estimation described

here is an extension of the works of E.A. Morelli (Morelli
[1999]) using the dynamic programming. In the presented
approach, the concepts of dynamical programming are
combined with the maximin approach and with the tools
of interval analysis.

The nonlinear controlled dynamic models considered in
this paper can be written as:

{

ẋ(t, p) = f(x(t, p), p) + u(t)g(x(t, p), p),
y(t, p) = h(x(t, p), p),
x(0) = x0 ∈ X0, p ∈ P ⊂ UP .

(1)

In these equations, the initial conditions x0 are supposed
to belong to a bounded set X0. The input function u
is assumed to be piecewise continuous or differentiable.
x(t, p) ∈ IRn and y(t, p) ∈ IRm denote respectively the
state variables and the measured outputs. The vector
of parameters p belongs to a bounded connected set of
parameters P and P is supposed to belong to UP where
UP is an a priori known set of admissible parameters. UP

is either included in IRl or equal to IRl. The time interval is
[0, tmax]. The functions f(x, p), g(x, p) and h(x, p) are real
and analytic on M for every p ∈ P (M is a connected open
subset of IRn such that x(t, p) ∈ M for every p ∈ P and
every t ∈ [0, tmax]). The single-input case is considered
for notational simplicity; however, all the results can be
generalized.
The measurement data z are assumed to be given by:

z(ti) = y(ti, p) + ν(ti), i = 1, ..., N, (2)

where the measurement noise ν(ti) is assumed white
gaussian with zero mean and E[ν(ti)ν

⊤(tj)] = Rδij where
R is the measurement noise covariance matrix and i, j =
1, ..., N . We suppose the matrix R is known by physical
experiments and sensor knowledge. The test duration T is
assumed to be fixed and such that T ≤ tmax.

In the case of aerospace models, constraints arising from
practical flight test considerations were imposed on all
input amplitudes and selected output amplitudes. Control
surface amplitudes are limited by mechanical stops, flight



control software limiters, or linear control effectiveness.
Selected output amplitudes must be limited to avoid
departure from the desired flight test condition and to
ensure validity of the model. In addition, constraints may
be required on aircraft attitude angles for flight test
operational considerations, such as flight safety. In our
case, the constraints are specified by:

|u(t)− u0| ≤ µ , ∀t ∈ [0, tmax] , (3)

|yk(t, p)− yk0
| ≤ ηk, ∀t, k = 1, 2, ...,m, (4)

where µ and ηk are positive constants, u0 and yk0
are the

trim values of u and yk.

In this paper, only the case of an aerospace model with
a piecewise constant input is considered. Nevertheless
the proposed approach can be easily applied to most
of the dynamical models with constraints on inputs and
eventually outputs.

This paper is organized as follows. In Section 2, the de-
velopped approach based on principles of dynamic pro-
gramming and interval analysis is detailed. Optimal input
functions are then computed. In Section 3, this approach
is applied to the input design for the identification of
an aircraft model. In this section, numerical results are
proposed to compare the estimation results obtained with
an optimal input and a classical admissible input. Some
concluding remarks and future works are proposed in Sec-
tion 4.

2. EXPERIMENTAL DESIGN

In order to obtain optimal input and consequently the
most accurate estimates of model parameters, the infor-
mation content in the system output response during the
test must be maximized.
The information contained in the response is embodied
in the Fisher information matrix. As the measurement
noise ν(ti) is assumed white gaussian with zero mean
and known covariance matrix (2), the Fisher information
matrix elements are combinations of partial derivatives of
the system response variables with respect to the model
parameters (Fourgeaud et al. [1967], Sorenson [1980]). The
Fisher information matrix elements and sensitivities are
obtained by solving the so-called sensitivity equations.
Input designs for parameter estimation experiments are
evaluated by examining a scalar function of the Fisher
information matrix, denoted F (p,Ξ) where Ξ corresponds
to the experimental conditions. In our case Ξ represents
parameters which characterize the input. F (p,Ξ) is given
by, ∀p ∈ P :

F (p,Ξ) =
N
∑

i=1

(

∂y(ti, p)

∂p

)⊤

R−1

(

∂y(ti, p)

∂p

)

, (5)

where the sensitivities
∂y(ti, p)

∂p
are solutions of:

d

dt

(

∂x

∂pj

)

=

n
∑

k=1

[

∂f

∂xk

∂xk

∂pj

]

+
∂f

∂pj

+u(t)

( n
∑

k=1

[

∂g

∂xk

∂xk

∂pj

]

+
∂g

∂pj

)

,

(6)

∂y

∂pj
=

n
∑

k=1

[

∂h

∂xk

∂xk

∂pj

]

+
∂h

∂pj
, j = 1, ..., l. (7)

In the problem of optimal input design for a nonlinear
system, the optimal experiment as classically defined via
the Fisher information matrix depends on the parameter
estimate (Walter et al. [1994]) which is unknown before
estimation. A classical approach consists in giving a nomi-
nal parameter value and finding the optimal experimental
conditions for this value. Another approach takes into
account the uncertainty on the nominal value (for more
information, see Walter et al. [1994] or Jauberthie [2002]
chapter four).
The optimal input design methodology that we have devel-
oped takes into account some bounded intervals for each
parameter to be estimated. These intervals can model for
example the uncertainty on the nominal value. Further-
more, the Fisher information matrix will be numerically
computed for all p in the bounded connected set P . In
fact, by using the tools of interval analysis, the Fisher
information matrix will be computed for the bounded
connected set P . Thus, if we suppose that the bounded
connected set P is given by a cartesian product of intervals,
the Fisher information matrix is an interval matrix and
the obtained cost function to be optimised is given by an
interval.
In this section, we first recall some classical concepts of
interval analysis, mainly taken from Moore [1959] and
Jaulin et al. [2001]. Then the adopted approach for the
input design synthesis is presented. The third subsec-
tion gives our method for parameter estimation by using
weighted least squares.

2.1 Some concepts of interval analysis

Interval analysis was initially developed to account for the
quantification errors introduced by the rational represen-
tation of real numbers in computers and was extended to
validated numerics (Moore [1959]).

2.1.1 Basic definitions and notations

Definition 2.1. (Interval, width, midpoint). A real inter-
val [u] = [u, u] is a closed and connected subset of IR where
u represents the lower bound of [u] and u represents the
upper bound. The width of an interval [u] is defined by
w(u) = u− u, and its midpoint by m(u) = (u+ u)/2.

The set of all real intervals of IR is denoted IR.

Definition 2.2. (Interval equality). Two intervals [u] and
[v] are equal if and only if u = v and u = v.

Real arithmetic operations are extended to intervals
(Moore [1966]).

Arithmetic operations on two intervals [u] and [v] can be
defined by:

◦ ∈ {+,−, ∗, /}, [u] ◦ [v] = {x ◦ y | x ∈ [u], y ∈ [v]}.

Definition 2.3. (Interval vector). An interval vector (or
box) [X ] is a vector with interval components and may
equivalently be seen as a cartesian product of scalar inter-
vals:

[X ] = [x1]× [x2]× ...× [xn],



with [xi] in IR, i = 1, ..., n. The set of n−dimensional real
interval vectors is denoted by IRn.

Definition 2.4. (Interval matrix). An interval matrix is a
matrix with interval components.

The set of n × m real interval matrices is denoted by
IRn×m.

Definition 2.5. (width, midpoint). The width w(.) of an
interval vector (or of an interval matrix) is the maximum
of the widths of its interval components. The midpoint
m(.) of an interval vector (resp. an interval matrix) is a
vector (resp. a matrix) composed of the midpoint of its
interval components.

Classical operations for interval vectors (resp. interval
matrices) are direct extensions of the same operations for
real vectors (resp. real matrices) (Moore [1966]).

Definition 2.6. (range). Let f : IRn → IRm, the range of
the function f over an interval vector [u] is given by:

f([u]) = {f(x)|x ∈ [u]}.

The interval function [f ] from IRn to IRm is an inclusion
function for f if:

∀[u] ∈ IRn, f([u]) ⊆ [f ]([u]).

Property 2.1. An inclusion function of f can be obtained
by replacing each occurrence of a real variable by its
corresponding interval and by replacing each standard
function by its interval evaluation.

Such a function is called the natural inclusion function. In
practice the inclusion function is not unique, it depends
on the syntax of f .

The following subsection concerns the integration of or-
dinary differential equations with bounded uncertainties
(like for example the first equation of (1) or (6)). Thus,
the aim of this subsection is to estimate the sensitivities
∂x
∂p

at the sampling times {t1, t2, ..., tN} corresponding to

the measurement times of the outputs.

2.1.2 Integration of ordinary differential equations with
bounded uncertainties When the differential equation is
nonlinear like (1) or (6), the sets to be characterized may
be nonconvex and may even consist of several disconnected
components. The interval analysis consists in enclosing
such sets in unions of nonoverlapping interval vectors and
the usual drawback is to obtain wider and wider interval
solution vectors. This is known as the wrapping effect. The
wrapping effect leads to very pessimistic results.

The most effective methods to solve the state estima-
tion for dynamical nonlinear systems are based on Tay-
lor expansions (Berz et al. [1998], Moore [1959], Lohner
[1987], Nedialkov et al. [2001b], Nedialkov et al. [2001a]
or Rihm [1994], Räıssi et al. [2004]), Räıssi et al. [2006].
These methods consist in two parts. The first one verifies
the existence and uniqueness of the solution by using the
fixed point theorem and the Picard-Lindelof operator. An
a priori box solution is computed. The second step con-
sists in reducing the pessimism introduced in this a priori
solution by using a high-order k for the Taylor expansion
and by using mean value forms (Neumaier [1990], Rihm
[1994]) and matrices preconditioning.

2.2 Optimal input design

Our approach is based on dynamic programming princi-
ples. Dynamic programming allows practical constraints
on the input and output variables to be included. Further-
more it is a very efficient method for performing a global
exhaustive search.
The following cost function has been chosen:

j(Ξ) = det(F (p,Ξ)) ∀ p ∈ P. (8)

This criterion must be maximised (Walter et al. [1994]) by
optimizing the input of the system.
Note that F (p,Ξ) is positive definite thus all elements on
the diagonal of F (p,Ξ) are positive and the determinant of
F (p,Ξ) is positive. In the case of an interval matrix, this
constraint must also hold. If interval calculus generates
intervals containing non positive values, these are spurious
and may be removed. Thus a constraint is introduced
which respects the properties of F (p,Ξ): each component
of the diagonal of F (p,Ξ) is positive. More information
about satisfaction constraints can be found in Chabert
[09].

In the following, the set E corresponds to the admissible
experimental conditions. Thus the set E gives an admissi-
ble input set.

By using the concepts of interval analysis, it is possible
to compute j(Ξ) in P . Consequently, j(Ξ) becomes an
interval. Our goal is thus to found the value of Ξ ∈ E
maximizing the upper bound of the criterion j(Ξ).

In order to apply our method, the admissible input has
been limited to full amplitude square waves only. In fact,
analytic works for similar problems demonstrate that in-
puts similar to square waves were superior to sinusoidal in-
puts for parameter estimation (Chen [1975]). The method
of dynamic programming leads to test splitting into stages:
time is divided into discrete steps called stages. At each
stage, the associated criterion and outputs are computed
(for more details see Dreyfus [1965] or Morelli [1999]). This
technique has the advantage to discard any input among
square wave sequence whose output trajectory exceeds
constraint limits.

For example, if we suppose three positions (−a, 0, a), a
being a positive constant for a single-input on each stage
and two stages, the inputs tested by this procedure are
given by:

u(t) =

1
∑

i=0

(aεi − aεi−1)H(t− τi), ε−1 = 0, (9)

where H is the Heaviside function. The variables τi are
the switching times with τ0 the initial test time and
εi ∈ {−1, 0,+1} (i = 0, 1).

More generally, the inputs tested by our procedure are
given by:

u(t) = u0 +

r
∑

i=0

(aiεi − ai−1εi−1)H(t− τi), ε−1 = 0 , (10)

where u0 is an input trim value. Indeed, the variables ai
are chosen to be equal to the square wave full positive



amplitude (Morelli [1999]). The given variables τi satisfy
τ0 < τ1 < ... < τr.

This step gives the optimal number of square waves
(with fixed time and fixed amplitude) to be realized.
The corresponding signal is an optimal square wave input
obtained in a single-pass solution:

û(t) = u0 +

r
∑

i=0

(aε̂i − aε̂i−1)H(t− τi), ε̂−1 = 0 . (11)

An example of (11) is given on Figure 1.
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Fig. 1. Obtained input for six stages and P5.

2.3 Parameter estimation by weighted least squares

The aim in this section is to propose a parameter estima-
tion by using a classical least squares objective function
based on the residuals at times ti and by exciting the
system with the optimal input. This procedure uses the
inverse of the measurement noise covariance matrix and
gives an estimation of the parameter vector.

Let us consider a quadratic cost function J(p) given by:

J(p) =

N
∑

i=1

(z(ti)− y(ti, p))
⊤R−1(z(ti)− y(ti, p)). (12)

The cost function is minimized with respect to the un-
known parameter vector p and leads to an estimated
parameter vector denoted by p̂ls.

3. EXAMPLE

3.1 The glider longitudinal motion

The experimental design method is illustrated by an
example concerning the glider longitudinal motion:



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
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

















mV̇ = −mg sin(θ − α)−
1

2
ρSV 2(C0

x

+Cxα(α− α0) + Cxδm(δm − δm0
)),

mV (α̇ − θ̇) = mg cos(θ − α)−
1

2
ρSV 2(C0

z

+Czα(α − α0) + Czq

ql

V

+Czα̇

α̇l

V
+ Czδm(δm − δm0

)),

Bq̇ =
1

2
ρSlV 2

(

C0
m + Cmα(α− α0)

+Cmq

ql

V
+ Cmα̇

α̇l

V
+Cmδm(δm − δm0

)
)

,

θ̇ = q.

(13)

In these equations, the state variables are given by
(V, α, q, θ)⊤, the observations are (V, α, q, θ)⊤, the input u
to be designed is δm (u0 = δm0

) and (Czα̇, Czq, Cmα̇, Cmq)
are the parameters to be identified.

The approach has been implemented in Matlab, using the
toolbox Intlab (Rump [1999]). The initial conditions x0

are supposed given by (28.5, 6.5, 0, 2.43)T .

The laboratory geometry and aircraft scale model lead to
constraints on inputs and outputs:

|u(t) + 2.6| ≤ 1.6 deg, (δm0
= −2.6 degrees),

2 m ≤ z (tf ) ≤ 3 m,
(14)

where z(tf) represents the model altitude in the last
seconds of flight (in meters). The flight test duration
is fixed at one second (approximatively five seconds at
full scale). Experimental conditions are given by Ξ1 =
(ε0, ..., εr) and

E = {Ξ1 ∈ IRr+1|εi ∈ {−1, 0,+1}, i = 0, ..., r}. (15)

3.2 Optimal input design

To make dynamic programming applicable, the flight test
is split into stages. In order to avoid a long computational
time, the flight test is split into respectively two, three,
four, five and six stages. Consequently the input 3211
(Mulder et al. [1994]) cannot be obtained by the devel-
opped software.
For each stage, the Fisher information matrix (5) is com-
puted with R given by a diagonal matrix:

R =









25.10−4 0 0 0
0 4.10−2 0 0
0 0 4.10−2 0
0 0 0 4.10−2









.

The initial parameter box contains a nominal value com-
puted by wind tunnel experiments: p0 = (1.8, 5, −5, −22)
(Jauberthie [2002]).
In this work, we introduce an uncertainty around this
nominal value from 1 % , 5 % or 10 % thus the boxes
of parameter will be:

P1 =







1.782 1.818
4.950 5.050
−5.050 −4.950
−22.220 −21.780






, P5 =







1.710 1.890
4.750 5.250
−5.250 −4.750
−23.100 −20.900






,

and P10 =







1.620 1.980
4.500 5.500
−5.500 −4.500
−24.200 −19.800






.

The obtained results will be compared with those obtained
without uncertainty around p0.

To compute the solutions of (13), we use the method
presented in subsection 2.1.2.
The obtained input (for six stages) and P5 is the following:

û6(t) = δm0 + a60H(t− τ06)− 2a61H(t− τ16)
+2a62H(t− τ26)− 2a63H(t− τ36)
+2a64H(t− τ46)− 2a65H(t− τ56),

(16)

with: a6i = 1.6 (i = 1, ..., 5) degrees, τ06 = 0 s, τ16 =
0.1667 s, τ26 = 0.3334 s, τ36 = 0.5001 s, τ46 = 0.6668 s,



τ56 = 0.8335 s. The input trajectory corresponding to (16)
is given on the Figure 1.
The obtained input for six stages and P10 is the same as
previous one.

Tables 1 and 2 show the criterion values obtained after
running the software for two, three, four, five and six
stages.

Number of stages p0 P1

two 3.3792×10−8 0.2302
three 4.5902×10−7 8.3146×103

four 6.2648×10−6 1.8851×103

five 1.5011× 10−4 3.8774×106

six 7.1596×10−2 1.7746×1010

Table 1. Values of the cost function
det(F (P,Ξ)) for optimal experiment design.

Number of stages P5 P10

two 2.7052 15.0854
three 3.2382×105 7.6249×106

four 2.2809×108 1.0890×1011

five 3.8515×1012 3.4819×1015

six 2.4661×1016 3.0662×1019

Table 2. Values of the cost function
det(F (P,Ξ)) for optimal experiment design.

It is shown that the width of the obtained intervals
increases with the parameter uncertainty and the obtained
results given with P10 are high. The width of intervals
increases also with the number of stages which is inherent
to the interval calculation (Jaulin et al. [2001]).

To clearly present the benefits of this approach for param-
eter estimation, we use the method descibed in section 2.2
with two admissible inputs: a non-optimized input and an
optimal input.

3.3 Parameter estimation

The following study was conducted as a simulation with
the input u = û6. The simulated and measured output
vector is given on Figures 2 and 3.
Columns in Table 3 successively give the true parameter
vector p̄ which is p0 and the estimated parameter vector
p̂ls as proposed in Section 2.3. The last column contains
the relative errors as indicated.

Parameter p̄ p̂ls
|p̂ls−p̄|

|p̄|

Czα̇ 1.8 1.9435 0.0797
Czq 5 5.3157 0.0631
Cmα̇ -5 -5.3961 0.0792
Cmq -22 -24.0142 0.0915

Table 3. Estimates obtained with an optimized
input.

Now, it is interesting to compare these results with those
obtained from the following classical non-optimal input:

u(t) =

{

−2.6 degrees 0 s ≤ t ≤ 0.25 s ,
−1 degrees 0.25 s ≤ t ≤ 0.5 s ,
−2.6 degrees 0.5 s ≤ t ≤ 1 s .

In Table 4, p̂ represents the estimated parameter vector
obtained with the estimation procedure given in Section
2.3, by exciting the system with the previous input. The
last column gives the relative errors as indicated.

Parameter p̂ |p̂−p̄|
p̄

Czα̇ 0.4178 0.7678
Czq 8.1201 0.6240
Cmα̇ -6.2918 0.2584
Cmq -24.8112 0.1278

Table 4. Estimates obtained with a non-
optimized input.

The optimal input improves the parameter estimation sig-
nificantly. Clearly, the fourfth column of Table 3 and third
column of Table 4 show an improvement in estimation
results.
The trajectories presented in Figure 4 are obtained by
solving (13) with u = û6, p = p̄ (full line) and p =
p̂ls (dotted line). We can compare the reconstructions of
the angle of attack and pitch rate. These reconstructions
point out the efficiency of the proposed method.
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Fig. 2. Speed (left) / Angle of attack (right).
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4. CONCLUSION

In this contribution, an efficient methodology for design-
ing input for parameter estimation in aircraft systems is
given. The developped method has potential for producing
practical, suitable solutions for input design problems of
current interest in aircraft parameter estimation flight
experiments. It is suitable for multiple input design prob-
lems with output amplitude constraints, input design for
control augmented aircraft for example. A comparison of
the results between optimized tests and conventional tests
highlights the advantages of the method proposed. The
optimized test leads to better accuracy in estimation of
coefficients. The proposed approach can be easily applied
to most of the dynamical models with constraints on
inputs and outputs.

Our future works concern an improvement in the estima-
tion parameter problem for these models and the potential
application of this method to the active diagnosis. In fact,
this last objective will be to use these tools to achieve an
active diagnostic methodology that is to find a sequence of
actions to refine the diagnosis. Additional criteria based on
the Fisher information matrix could be interesting (more
information could be found in Kiefer [1974] or Jauberthie
[2002] chapter four).
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