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Abstract—This paper deals with computational aspects of
interval kalman filtering of discrete time linear models with
bounded uncertainties on parameters and gaussian measurement
noise. In this work, we consider an extension of conventional
Kalman filtering to interval linear models [1]. As the expressions
for deriving the Kalman filter involve matrix inversion which is
known to be a difficult problem. One must hence find a way
to implement or avoid this tricky algebraic operation within an
interval framework. To solve the interval matrix inversion prob-
lem and other problems due to interval calculus, we propose an
original approach combining the set inversion algorithm SIVIA
and constraint satisfaction propagation. Several contractors are
proposed to limit overestimation effects propagating within the
interval Kalman filter recursive structure. Thus the description
of our approach is followed by an application and we compare
the proposed approach with interval kalman filtering developped
in [1].

I. INTRODUCTION

Set-membership (SM) methods have been the focus of a
growing interest and they have been applied to many tasks ([2],
[3], [4]). The litterature on this topic shows interesting progress
in the last years. SM estimation can be based on interval
analysis that was introduced by [5] and several algorithms
have been proposed (for more details, see [6], [7], [4]). Other
approaches dedicated to linear models include ellipsoid shaped
methods ([8], [9]), parallelotope and zonotope based methods
[10]. One of the main advantages of the SM estimation
approach is that it provides a guaranteed solution in contrast
to stochastic estimation approaches. However, it does not give
any precision about the belief degree. On the other hand, the
SM approach is often criticized for the overestimation of the
results. However, one should note that in a similar way, the
stochastic approach may estimate system states with a wide
confidence range, which may turn as difficult the interpretation
of the results. As a matter of fact, both techniques have specific
advantages and they may interact synergically. A stochastic
method can provide means for analyzing the properties of an
SM estimator, and conversely an SM technique can provide
the initial entry to a system without assuming the distribution
law in advance. They are hence more complementary than
competitive. Most importantly, in an estimation framework, the
experimental conditions about noise and disturbances are usu-
ally properly modeled through appropriate assumptions about
probability distributions. However, other sources of uncertainty
are not well-suited to the stochastic approach and are better

modeled as bounded uncertainty. This is the case of parameter
uncertainties that generally arise from design tolerances and
from aging. In such cases, combining stochastic and bounded
uncertainties may be an appropriate solution.
Motivated by the above observations, we consider the filter-
ing problem for discrete time linear models with bounded
uncertainties on parameters and gaussian measurement noise.
In [1], the classical Kalman filter [11] has been extended to
interval linear models. We consider this work and propose
several operations that improve the filtering. In particular,
the approach proposed in [1] does not provide guaranteed
results because it avoids especially interval matrix inversion by
using operations described below. Our contribution consist in
proposing an alternative approach to solve the interval matrix
inversion problem without loss of solutions while controlling
the inherent pessimism of interval calculus. Several technical
operations are proposed to limit the overestimation effects due
to interval propagation within the interval Kalman filter recur-
sive structure. In particular the gain of the filter is obtained
by a calculus based on the set inversion algorithm SIVIA (Set
Inversion via Interval analysis) [12] which is combined with
constraint propagation techniques.

This paper is organized as follows. Section II describes
the problem formulation and the system which is considered.
In Section III, a briefly introduction and some main concepts
on interval analysis are proposed. An overview of the revised
interval kalman filtering algorithm is presented in Section IV,
followed by the developed approach to control overestimation.
In Section V an example is given and used to compare different
approaches. Conclusions and future works are presented in
Section VI.

II. PROBLEM FORMULATION

In this paper, we consider the unknown state estimation of
interval discrete time linear models with gaussian measurement
noise. Classically, linear dynamic models are described by the
following form:{

xk+1 = Axk +Buk + wk,
yk = Cxk +Duk + vk, k = 0, 1, 2, ...

(1)

where xk ∈ Rn, yk ∈ Rm and uk ∈ Rp denote respectively
state, observation and input vectors. The matrices A,B,C and
D are constant matrices such that A ∈ Rn×n, B ∈ Rn×p, C ∈
Rm×n and D ∈ Rm×p. In the case of Kalman models ([11]),



{wk} and {vk} are independent centered gaussian white noises
sequences, with covariance matrices Q and R, respectively,
definite positive by definition:

E{wk, wl} = Qδkl, E{vk, vl} = Rδkl,
E{wk, vl} = E{wk, x0} = E{vk, x0} = 0,
∀k, l = 0, 1, 2, ...

where δkl is the Kronecker symbol.
To estimate the unknown states of (1) and based on the idea
motivated in the introduction, we propose to combine two
aspects of modeling: measurement and system noises are still
modeled in a stochastic framework and parameters are modeled
as bounded uncertainties. System (1) is then reformulated in
this double context where the matrices A, B, C and D are
bounded interval matrices. The core problem in this work is
the unknown state estimation of (1) rewritten in an interval
form.
The concept of interval matrices is explained in the following
section. In this section, some classical concepts of interval
analysis are reminded. These concepts are mainly taken from
[13] and [6].

III. INTERVAL ANALYSIS

A. Preamble

The key idea of interval analysis is to reason about intervals
instead of real numbers and boxes i.e. interval vectors instead
of real vectors. The first motivation was to obtain guaranteed
results from floating point algorithms and it was then extended
to validated numerics [5]. Let us recall that in computers,
real numbers can only be represented by a floating point
approximation, hence introducing a quantification error. A
guaranteed result means first that the result set encloses the
exact solution. The width of the set, i.e. the result precision,
may be chosen depending on various criteria among which
response time or computation costs. Secondly, it also means
that the algorithm is able to conclude on the existence or not
of a solution in limited time or number of iterations.

B. Main concepts

The problem is to wrap the sets of interest into boxes or
union of boxes. There are some fundamental operations on
intervals which are briefly explained after the definition of an
interval.

1) Interval: A real interval [p] = [p, p] is a closed and
connected subset of R where p represents the lower bound of
[p] and p represents the upper bound. The width of an interval
[p] is defined by w(p) = p − p, and its midpoint by m(p) =
(p+ p)/2.
The set of all real intervals of R is denoted IR.
Two intervals [p1] and [p2] are equal if and only if p1 = p2 and
p1 = p2. Real arithmetic operations are extended to intervals
[5].
Arithmetic operations on two intervals [p1] and [p2] can be
defined by:

◦ ∈ {+,−, ∗, /}, [p1] ◦ [p2] = {α ◦ β | α ∈ [p1], β ∈ [p2]}.
An interval vector (or box) [X] is a vector with interval
components and may equivently be seen as a cartesian product
of scalar intervals:

[X] = [α1]× [α2]× . . .× [αn].

The set of n−dimensional real interval vectors is denoted by
IRn.
An interval matrix is a matrix with interval components. The
set of n×m real interval matrices is denoted by IRn×m. The
width w(.) of an interval vector (or of an interval matrix) is
the maximum of the widths of its interval components. The
midpoint m(.) of an interval vector (resp. an interval matrix)
is a vector (resp. a matrix) composed of the midpoint of its
interval components.
Classical operations for interval vectors (resp. interval matri-
ces) are direct extensions of the same operations for punctual
vectors (resp. punctual matrices) [5].

2) Inclusion function: Given [p] a box of IRn and a
function f from IRn to IRm, the inclusion function of f aims
at getting an interval containing the image of [p] by f .
The range of the function f over [p] is given by:

f([p]) = {f(α) | α ∈ [p]}.

The interval function [f ] from IRn to IRm is an inclusion
function for f if:

∀[p] ∈ IRn, f([p]) ⊂ [f ]([p]).

An inclusion function of f can be obtained by replacing each
occurrence of a real variable by its corresponding interval and
by replacing each standard function by its interval evaluation.
Such a function is called the natural inclusion function. In
practice the inclusion function is not unique, it depends on the
syntax of f .

3) Inclusion test: Given a subset S of Rn, we test if [α]
belongs to S, more precisely if [α] ⊂ S or [α]∩S = ∅. These
tests are used to prove that all points in a given box satisfy a
given property or to prove that none of them does.

4) Contractor: The last operation is the contraction of [α]
with respect to S. This means that we search a smaller box
[γ] such that [α] ∩ S = [γ] ∩ S. If S is the feasibility set of
a problem and [γ] turns out empty, then the box [α] may not
contain the solution [12]. These operations are used to test if
a box can or cannot be removed from the solution set. When
no conclusion can be drawn, the box may be bisected and
each of the sub-boxes can be tested in turn (this corresponds
to branch-and-bound algorithms).

C. SIVIA: Set Inversion Via Interval Analysis

Consider the problem of determining a solution set for the
unknown quantities u defined by

S = {p ∈ P | Φ(p) ∈ [β]},
= Φ−1([β]) ∩ P,

(2)

where [β] is known a priori, P is an a priori search set for
p and Φ a nonlinear function not necessarily invertible in the
classical sense. (2) involves computing the reciprocal image of
Φ. This can be solved using the algorithm SIVIA, which is a
recursive algorithm that explores all the search space without
loosing any solution. This algorithm makes it possible to derive
a guaranteed enclosure of the solution set S as follows:

S ⊆ S ⊆ S. (3)

The inner enclosure S is composed of the boxes that have
been proved feasible. To prove that a box [p] is feasible it is



sufficient to prove that Φ([p]) ⊆ [beta]. Reversely, if it can be
proved that Φ([p]) ∩ [β] = ∅, then the box [p] is unfeasible.
Otherwise, no conclusion can be reached and the box [p] is
said undetermined. The latter is then bisected in two sub-
boxes that are tested until their size reaches a user-specified
precision threshold ε > 0. Such a termination criterion ensures
that SIVIA terminates after a finite number of iterations.

However, the number of bisections to be performed is
generally prohibitive. Hence, recent algorithms take advantage
of constraint propagation techniques to reduce the width of the
boxes to be tested by the algorithm SIVIA [14], [15], [16]. In
this context, the inclusion relations and the equations can be
interpreted as constraints. The solution of such system can then
be obtained by formulating a Constraint Satisfaction Problem
(CSP ) as defined below.
A Constraint Satisfaction Problem H = (X ,D, C) is defined
by:

• a set of variables X = {x1, ..., xn},

• a set of nonempty domains D = {D1, ..., Dn} where
Di is the domain associated to the variable xi,

• a set of constraints C = {C1, ..., Cm}, so that the
associated variables to each constraint are defined in
X .

For solving a CSP , different types of so-called contractors
can be used [6], [17]. Among the most well-known is the
forward-backward contractor [18] which is based on constraint
propagation and consists in contracting the domain of the CSP
by taking into account any one of the {C1, ..., Cm} constraints
in isolation.

IV. INTERVAL KALMAN FILTERING

In this section, we consider models described by the form
(1) in which the matrices A, B, C, D are interval matrices
noted [A], [B], [C] and [D].
In [1], as in the conventional filter, the Kalman Filter Equa-
tions provide a minimum variance estimator over all unbiased
estimators. Thus an interval Kalman filtering algorithm is
proposed. This algorithm is based on interval conditional
expectation for interval linear systems. It has the same structure
as the conventional Kalman filter algorithm while preserv-
ing the statistical optimality and the recursive computational
scheme in the SM context. The drawback of this algorithm
comes from the fact that it is suggested to use the upper
bound of interval matrices to avoid the singularity problems
in interval matrix inversion. This point of view leads to a
sub-optimal solution that does not preserve guaranteed results,
some solutions being lost. We note sIKF this algorithm (sub-
optimal interval Kalman filtering). It can be noticed that sIKF
does not include recent advances in interval analysis and
constraint propagation techniques. This is why we propose a
new recursive estimator including these recent advances. For
simplicity, we consider that the matrix D in (1) is equal to
zero.

A. Conventional Kalman filtering

There are several ways to deduce Kalman equations [11].
One can use mathematical curve-fitting function of data points

from a least-squares approximation [19] or also use probabilist
methods such as the Likelihood function to maximize the
conditional probability of the state estimate from measurement
incomes [20]. We consider in the following:

1) x̂k+1|k ∈ Rn the a priori state estimate vector at
time k + 1 given state estimate at time k,

2) x̂k|k ∈ Rn the a posteriori state estimate vector at
time k given observations at time k,

3) Pk+1|k ∈ Rn×n the a priori error covariance
matrix,

4) Pk|k ∈ Rn×n the a posteriori error covariance
matrix.

P.|. is a key indicator that defines the estimated accuracy of
the state estimate, it is characterized as:

Pl|k = E
(
(xl − x̂l|k)(xl − x̂l|k)T

)
, (4)

with l = k or k + 1.
It is known that the Kalman filtering algorithm contains two
steps for each iteration: a prediction phase and a correction
phase (see for example in [19]).

B. Interval Kalman filtering

In the SM context, we remind that the matrices A, B, C
and D are considered as interval matrices, noted [A], [B], [C]
and [D]. Notice that x0|0, P0|0, uk, yk could be boxes due to
the measurement errors or instrument precision. Since punctual
values can be considered as interval values for which width
is equal to zero, the system framework can be unified for
both interval values and punctual values. In the following, we
evaluate the impact of changes between the conventional and
the interval Kalman filter.

1) Estimation error covariance: in the SM context, the
estimation error covariance matrix is an interval matrix which
can be rewritten as:

[Pl|k] = E
(
([xl]− [x̂l|k])([xl]− [x̂l|k])T

)
, (5)

where l = k or k+ 1. [Pk|k] is the estimation error covariance
and [Pk+1|k] is the prediction error covariance. All elements on
the diagonal of P.|. are positive as they represent the variance
of each state, thus the trace of P.|. is positive. In the case of
an interval matrix, this constraint must also hold. If interval
calculus generates intervals containing non positive values,
these are spurious and may be removed. Thus a first constraint
is introduced which respect to the variance definition: each
component of the diagonal of [P.|.] noted [P.|.](i,i) is positive,
i = 1, 2..., n.

2) Prediction step: After defining error covariance in the
SM context, the prediction step is investigated. Calculus for
the a priori state estimate vector is inherited directly from the
determinate model, while corresponding variables are replaced
by boxes:

[x̂k+1|k] = [A][x̂k|k] + [B][uk]. (6)

The possible a priori state estimate based on the previous state
estimate and current system input is obtained by this equation.
At the previous time k, the estimation error is characterized



by [Pk|k]. The prediction model does not include noise so the
estimation error should also be updated:

[P̂k+1|k] = [A][P̂k|k][AT ] +Q. (7)

This equation can be interpreted as the obtention of all possible
a priori estimation error covariances between real state and a
priori state estimate at time k + 1. But as seen previously,
the prediction error covariance should respect the fact that
[P̂k+1|k](i,i) > 0, i = 1, 2..., n, which is not guaranteed in
interval arithmetic. A CSP is therefore introduced:{

[P̂k+1|k] = [A][P̂k|k][AT ] +Q,

C : [P̂k+1|k](i,i) > 0, i = 1, 2..., n.
(8)

3) Correction step: from [1], the correction equation holds
in the SM context:

[x̂k+1|k+1] = [x̂k+1|k] +Kk+1

(
[yk+1]− [ŷk+1|k]

)
. (9)

Intuitively, Kk+1 aims to bring back the estimate enclosure
around the real state while still retaining all the possible values
corresponding to uncertainty. In (9), Kk+1 is considered as
a symbolic varibale, which is shown to be an interval matrix
later. Equations (5) and (9) give the estimation error covariance
expression. This manipulation is only valid when E{vk} = 0:

[P̂k+1|k+1] = [P̂k+1|k]−Kk+1[C][P̂k+1|k]

−[P̂k+1|k]([CT ]KT
k+1

+Kk+1

(
[C][P̂k+1|k]([CT ] +R

)
KT
k+1.

(10)
We find Kk+1 that minimizes trace([P̂k+1|k+1)]. The reason
why using trace(·) is that state variance given by the matrix
diagonal elements is in fact the value that indicates the
estimation error:
∂trace([P̂k+1|k+1])

∂Kk+1
= −2[P̂k+1|k][CT ]

+2Kk+1

(
[C][P̂k+1|k][CT ] +R

)
.

∂2trace([P̂k+1|k+1])

∂Kk+1∂KT
k+1

= 2
(

[C][P̂k+1|k][CT ] +R
)
.

The second derivative is always positive in the conventional
kalman filter, which guarantees the existence of a minimization
solution. In the SM context, this condition must be forced by
a constraint of the same type as (8).

From the first order derivative, we have:

Kk+1 = [P̂k+1|k][CT ]
(

[C][P̂k+1|k][CT ] +R
)−1

. (11)

In this case, Kk+1 turns out to be an interval matrix, which
we can note as [Kk+1] ∈ IRn×m. Thus equations (10) and
(11) give the estimation error covariance expression:

[P̂k+1|k+1] = (In − [Kk+1][C])[P̂k+1|k]. (12)

Notice that equation (11) involves a matrix inversion, which
means the following should be fulfilled:

0 /∈ det
(

[C][P̂k+1|k][CT ] +R
)
.

By using the updated state estimate and estimation error
covariance, we can proceed to the next iteration.

4) Algorithm loop: Equations (6), (7), (11), (12) and (9)
constitute a discrete interval Kalman filter algorithm.

Initialization:
P0|0 = Cov{x0}, m0 = E(x0)
[x0] ∼ N(m0, P0|0),

Prediction:
[x̂k+1|k] = [A][x̂k|k] + [B][uk],

[P̂k+1|k] = [A][P̂k|k][AT ] +Q, k = 0, 1, 2, ...

Correction:
[Kk+1] = [P̂k+1|k][CT ]

(
[C][P̂k+1|k][CT ] +R

)−1
,

[P̂k+1|k+1] = (In − [Kk+1][C])[P̂k+1|k],
[x̂k+1|k+1] = [x̂k+1|k] + Kk+1

(
[yk+1]− [ŷk+1|k]

)
, k =

0, 1, 2, ...

A major issue in the SM context is the pessimism intro-
duced by interval arithmetic. Uncertainty is cumulated at each
iteration and the interval matrix inversion is time consuming,
sometimes divergent. To reduce this pessimism, the techniques
developped in the following subsection are used in our ap-
proach.

C. Over estimation control

1) Gain value propagation: The interval matrix
([C][Pk+1|k][CT ]+R) in equation (11) may have a singularity
and inversion algebraic operation is difficult. Besides, the
interval matrix inverse is obtained by approximation
algorithms, like in [21] and is generally over estimated.

We suggest an approach which uses the algorithm SIVIA.
The idea is to solve the interval matrix inversion problem
by a list of constraint propagation problems. Equation (11)
is rewritten as:

[Kk+1]
(

[C][P̂k+1|k][CT ] +R
)

= [P̂k+1|k][CT ].

We define [Sk+1] = [C][P̂k+1|k][CT ] + R, [Tk+1] =

[P̂k+1|k][CT ] and:

[Kk+1][Sk+1] = [Tk+1], (13)

where [Kk+1] ∈ IRn×m, [Sk+1] ∈ IRm×m, [Tk+1] ∈
IRn×m.

Each component in matrix [Kk+1] is considered separately
and the search space is the cartesian product of each compo-
nent:

[Kk+1]1,1 × [Kk+1]1,2 × ...× [Kk+1]n,m.

This search space is bisected and tested under SIVIA
properly adapted to matrix operation. The result is a set of
small boxes that satisfy Equation (15).

Each box provides a ”small acceptable gain”, the set of
boxes is then injected into the correction step to update the
covariance matrix and the state estimate vector. The final result
is the hull of all covariance matrices and state estimate vectors
corrected by each small gain.



2) Constraint Propagation: In [17], some traditional algo-
rithms for CSP are described.
In the presented work, we use the forward-backward algo-
rithm. The principle is to decompose the constraint equation
f([x1], ..., [xn]) = 0 in a sequence of elementary operations of
primitive functions like {+,−, ∗, /} and obtain a list of prim-
itive constraints ([22]). For example, consider the following
equation:

[x̂k+1|k+1] = [x̂k+1|k] + [Kk+1]([yk+1]− [C][x̂k+1|k]).

This equation can be decomposed into the set of following
primitive constraints:

a1 = [C][x̂k+1|k],

a2 = [yk+1]− a1,
a3 = [Kk+1]a2,

[x̂k+1|k+1] = [x̂k+1|k] + a3.

We want to contract {[x̂k+1|k+1], [x̂k+1|k], [Kk+1]} by the
propagation of constraints without changing {[C], [yk+1]} be-
cause they are considered as inputs.

3) Interval intersection rule: As the associative law is
no longer valid in interval arithmetic, we must redefine the
product of three and four interval matrices [23]. This is the
principle of the interval intersection rule.

n∏
i=1

[Mi] ,

[
(

n−1∏
i=1

[Mi]) · [Mn]

]
∩

[
[M1] · (

n−1∏
i=1

[Mi+1])

]
. (14)

wher [M1], ..., [Mn] are interval matrices.

4) Adaptative calibration: Again, by the nature of interval
arithmetic, the width of the resulting interval always tends
to increase. Thus, the state estimate is getting wider and
wider. A calibration can be implemented to reset the iteration
for limiting divergence [23]. When the interval matrix to be
inverted is not regular, the calibration takes place:

[x̂k] , x̂k + [ζk], [Pk] = [P0]. (15)

where x̂k is the conventional Kalman state estimate from the
nominal system and [ζk] is set from the state variance

In next section, we implement these techniques on a simple
example and we compare with the state estimation obtained by
using the original interval Kalman filtering proposed in [1].

V. NUMERICAL SIMULATION

In this section, we apply previously presented filters on an
example proposed in [1], originally proposed in [24] and given
by the following form:{

xk+1 = [A]xk + wk,

yk = [C]xk + vk, k = 0, 1, 2, ...

where wk and vk are gaussian noises, with zero means and
covariance matrices [Q] and [R] given by [Q] = Q + 4Q
and [R] = R +4R. Moreover, we have [A] = A +4A and
[C] = C +4C where:

A =

[
0.4 0.1
−0.1 0.2

]
, C = [0 1] , Q =

[
10 0
0 10

]
, R = 1.

The bounded perturbations and initial conditions are:

4A =

[
[−0.1, 0.1] [−0.15, 0.15]

0 [−0.25, 0.25]

]
,4C = [0 [−0.1, 0.1]] ,

4Q =

[
[−2, 2] 0

0 [−2, 2]

]
,4R = [−0.9, 1.1],

E{x0} =

[
1
1

]
, Cov{x0} =

[
0.5 0.0
0.0 0.5

]
.

In the following, we want to compare the results provided by
three filters: the original interval Kalman filter (noted IKF),
its sub-optimal version (sIKF), and our improved approach
(iIKF). Let us introduce the variables N , O and D where
N is the number of calibration times, O is the number of
times for which the interval state estimate does not contain the
real state, and D is the norm describing the distance between
interval estimate bounds and the true value. D is obtained by:

D =

√∑K
k=1 d([x̂k], xk)T d([x̂k], xk)√∑K

k=1 x
T
k xk

,

d([x̂k], xk) = (|[x̂k]− xk|+ |[x̂k]− xk|,

(16)

where K represents the maximal iteration number. D and O
indicate the efficiency of algorithm. Besides, the algorithm
SIVIA requires a user-specified precision threshold ε, which is
the bisection factor. This adjustable parameter is also analysed.
ε = 1 means that there is no gain value propagation taking
place. t is the execution time. By using the toolbox Intlab of
Matlab ([25]), the results are given in Table I: The results of

Filter ε N O D t
IKF - 20 14 575.38 0.83s
sIKF - 0 56 0.85 0.75s
iIKF 1 0 0 3.07 0.91s

0.2 0 0 2.60 46s
0.05 0 0 2.56 784s

TABLE I. RESULTS FOR N, O AND D USING IKF AND IIKF WITH
DIFFERENT BISECTION FACTORS ε.

Table I are consistent with those shown in Figures 1 and 2.
We can see that the original IKF has the largest D while sub-
optimal IKF has the minimum D value, which is explained
by the narrow bounds for the interval estimates. But since
it replaces the uncertainty matrix to be inverted by its upper
bound, some solutions are lost, which leads to the largest value
of O: the real state is outside the estimated interval state half
of the time.

By using iIKF, D is larger than with sIKF, because it retains
all solutions. We notice that the real state and the optimal
estimate provided by the conventional Kalman filter are both
always contained in boundaries of the iIKF state estimate.
The gain value propagated from SIVIA actually refines the
interval estimation value, but it is more time consuming as
the predefined precision increases. Compared to the original
IKF, the iIKF prevents unnecessary recalibration due to the
divergent interval operations; compared to sIKF, iIKF retains
all the solutions consistent with the bounded error uncertainty.
The iIKF hence represents a good compromise.

VI. CONCLUSIONS

In this contribution, an efficient approach to solve the
interval matrix inversion problem is proposed, taking part
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Fig. 1. Simulation results from original sub-optimal IKF
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Fig. 2. Simulation results from improved IKF with ε = 0.05

in an improved version of the interval Kalman filter. This
approach leads to matrix inversion without loss of solutions
while controlling the inherent pessimism of interval calculus.
Several other techniques have also been implemented to limit
the overestimation effect due to interval propagation within
the interval Kalman filter recursive structure, in particular
constraints on the interval covariance matrix have been added.
Moreover, the gain of the filter is obtained by a calculus
based on the set inversion algorithm SIVIA complemented
by constraint propagation. The results have shown that the
improved interval Kalman filter (iIKF) includes all the so-
lutions consistent with bounded errors and achieves good
overestimation control. Further improvements should target to
improve the algorithm efficiency and speed.
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