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State estimation by interval analysis for a nonlinear differential
aerospace model

Pauline Ribot, Carine Jauberthie and Louise Travé-Massuyès

Abstract— This paper deals with guaranteed state estimation
in a bounded-error context for an aerospace model. Perturba-
tions are assumed bounded but otherwise unknown. The main
tools to solve this problem are the guaranteed techniques for
ordinary differential equation integration and set inversion. The
obtained results show the efficiency of the method.

Keywords State estimation; Continuous-time systems;
Nonlinear systems; Bounded noise; Interval analysis

I. INTRODUCTION

Complex systems are often subjected to uncertainties that
make the modeling task awkward. These uncertainties can
be unstructured when the equations of the system are not
entirely known or structured when the equations are known
but not the values of their parameters. In both cases, it
is particularly difficult to get an accurate model of the
perturbations and noises acting on the system. This may turn
the usual stochastic framework inappropriate.
Guaranteed sate estimation methods are an interesting alter-
native to stochastic model based estimation when perturba-
tions and noises are assumed to be bounded but otherwise
unknown. These methods have received a lot of attention
in the last few years and the literature on this topic shows
interesting progress [4], [15] and [26].
This paper applies a recently proposed bounded error state
estimation method to a highly complex aerospace model.
This method follows a classical predictor-corrector approach
which makes use of an extended mean value algorithm [26]
and is this way, successful in controlling the well-known and
undesirable wrapping effect.
This paper is organized as follows. Section IV presents
the basic tools of interval analysis and the set inversion
problem. The notions of interval, ”box”, interval matrix and
inclusion function are given. To compute the set inversion,
an algorithm is provided. This algorithm is then used in state
estimation. Section V is concerned with the core problem,
which is state estimation and provides the algorithms. An
algorithm dedicated to solve ordinary differential equations is
given. It is based on a classical predictor-corrector approach.
Firstly, it verifies the existence and uniqueness of the solution
of ordinary differential equations when the initial conditions
belong to an interval vector. Secondly, it computes the
solution by using a Taylor expansion. Section VI presents the
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results obtained on an aerospace case study. Finally, section
VII discusses related work and some conclusions are outlined
in section VIII.

II. PROBLEM FORMULATION

This paper deals with estimating the unknown state x for
a nonlinear dynamic system of the following form:

{

ẋ(t) = f (x(t)),
y(t) = g(x(t)), x(0) ∈ [X0].

(1)

where x(t)∈Rn and y(t)∈Rm denote the state variables and
the measured outputs respectively. The initial conditions x(0)
are supposed to belong to an initial ”box” [X0], the notion
of ”box” being described in the following.
Time is assumed to belong to [0, tmax]. The functions f and
g are real and analytic on M, where M is an open set of
Rn such that x(t) ∈ M for every t ∈ [0, tmax]. Moreover the
function f is assumed to be at least k−times continuously
differentiable in the domain M.
The output error is assumed to be given by:

v(ti) = y(ti)− ym(ti), i = 1, ...,N. (2)

We assume that v(t) and v(t) are known lower and upper
bounds for the acceptable output errors. Such bounds may,
for instance, correspond to a bounded measurement noise.
The integer N is the total number of sample times.
Interval arithmetic is used to compute guaranteed bounds for
the solution of (1) at the sampling times {t1, t2, ..., tN}.

III. CASE STUDY

The case study that we consider is the longitudinal motion
of a glider. The projection of the general equations of motion
onto the aerodynamic reference frame of the aircraft and
the linearization of aerodynamic coefficients [31] give the



following system:
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θ̇ = q.

(3)

In these equations, the state vector x is given by (V,α ,q,θ)>,
the observation y is full (i.e., y = x), the input u is δm (δm0

represents the initial condition). The variable V denotes the
speed of the aircraft, α the angle of attack, α0 the trim
value of α , θ the pitch angle, q the pitch rate, δm the
elevator deflection angle, ρ the air density, g the acceleration
due to gravity, l a reference length and S the area of a
reference surface. B represents a moment of inertia. The other
coefficients correspond to the dynamic stability derivatives
and are supposed to be known.

IV. INTERVAL ANALYSIS FOR GUARANTEED SET
ESTIMATION

Interval analysis was initially developed to account for the
quantification errors introduced by the rational representation
of real numbers in computers and was extended to validated
numerics [20].

In the following section, we present some basic tools
of interval analysis and an algorithm to compute the outer
approximation of sets of arbitrary shape.

A. Basic tools

A real interval [u] = [u,u] is a closed and connected subset
of R where u represents the lower bound of [u] and u
represents the upper bound. The width of an interval [u]
is defined by w(u) = u− u, and its midpoint by m(u) =
(u+u)/2.

The set of all real intervals of R is denoted IR.
Two intervals [u] and [v] are equal if and only if u = v and
u = v. Real arithmetic operations are extended to intervals
[21].

Arithmetic operations on two intervals [u] and [v] can be
defined by:

◦ ∈ {+,−,∗,/}, [u] ◦ [v] = {x◦ y | x ∈ [u], y ∈ [v]}.

An interval vector (or box) [X ] is a vector with interval
components and may equivalently be seen as a cartesian
product of scalar intervals:

[X ] = [x1]× [x2]...× [xn].

The set of n−dimensional real interval vectors is denoted by
IRn.

An interval matrix is a matrix with interval components.
The set of n×m real interval matrices is denoted by IRn×m.
The width w(.) of an interval vector (or of an interval matrix)
is the maximum of the widths of its interval components. The
midpoint m(.) of an interval vector (resp. an interval matrix)
is a vector (resp. a matrix) composed of the midpoint of its
interval components.

Classical operations for interval vectors (resp. interval
matrices) are direct extensions of the same operations for
punctual vectors (resp. punctual matrices) [21].

Let f : Rn → Rm, the range of the function f over an
interval vector [u] is given by:

f ([u]) = { f (x)|x ∈ [u]}.

The interval function [ f ] from IRn to IRm is an inclusion
function for f if:

∀[u] ∈ IRn, f ([u])⊆ [ f ]([u]).

An inclusion function of f can be obtained by replacing
each occurrence of a real variable by its corresponding
interval and by replacing each standard function by its
interval evaluation. Such a function is called the natural
inclusion function. In practice the inclusion function is not
unique, it depends on the syntax of f .

B. Set inversion

Consider the problem of determining a solution set for the
unknown quantities u defined by:

S = {u ∈ U|Φ(u) ∈ [y]}= Φ−1([y])∩U, (4)

where [y] is known a priori, U is an a priori search set for
u and Φ a nonlinear function not necessarily invertible in
the classical sense. (4) involves computing the reciprocal
image of Φ and is known as a set inversion problem which
can be solved using the algorithm Set Inverter Via Interval
Analysis (denoted SIVIA). The algorithm SIVIA proposed in
[11] is a recursive algorithm which explores all the search
space without loosing any solution. This algorithm makes it
possible to derive a guaranteed enclosure of the solution set
S as follows:

S⊆ S⊆ S.

The inner enclosure S is composed of the boxes that have
been proved feasible. To prove that a box [u] is feasible
it is sufficient to prove that Φ([u]) ⊆ [y]. Reversely, if it
can be proved that Φ([u]) ∩ [y] = /0, then the box [u] is
unfeasible. Otherwise, no conclusion can be reached and the
box [u] is said undetermined. The latter is then bissected and
tested again until its size reaches a user-specified precision



threshold ε > 0. Such a termination criterion ensures that
SIVIA terminates after a finite number of iterations.

The following section concerns the integration of (1).
Thus, the aim of this section is to estimate the state vector
x at the sampling times {t1, t2, ..., tN} corresponding to the
measurement times of the outputs. We note [x j] the box
[x(t j)] where t j represents the sampling time, j = 1, ...,N
and x j represents the solution of (1) at t j.

V. STATE ESTIMATION

When the model is nonlinear like (1), the sets to be char-
acterized may be nonconvex and may even consist of several
disconnected components. The interval analysis consists of
enclosing such sets in unions of nonoverlapping interval
vectors and the usual drawback is to obtain wider and wider
interval solution vectors. This is known as the wrapping
effect. Thus the wrapping effect leads to very pessimistic
results.
The pessimism introduced by the large width of the set can
be reduced by using a high-order k for the Taylor expansion
and by using mean value forms [24], [27] and matrices
preconditioning.

The method proposed recently in [26] is able to control
the non desirable wrapping effect. It is based on a classical
predictor-corrector approach.

A. Prediction-correction step

The prediction step aims at computing the attainability set
for the state vector whereas the correction step retains only
those parts of the attainability set which are consistent with
measurements and prior error bounds as explained in the
following figure.
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Fig. 1. Prediction-correction step at t j+1.

In this figure, we assume that [X j] is a box which is
guaranteed to contain x j at t j. Define the outer approximation
of the predicted set [X+

j+1] as the validated solution of the
differential equation at t j+1. The set [X+

j+1] is computed using
the extended mean value algorithm (abbreviated EMV) given
in the next subsection. This set is guaranteed to contain the
state at t j+1.

At t j+1, a ”measurement vector” [y j+1] is obtained, corre-
sponding to:

[y j+1] = [y j+1− v j+1, y j+1− v j+1], (5)

where v j+1 and v j+1 are given in (2) and represent respec-
tively the lower bound and upper bound for measurement
noise.
Then, we compute the set [g]−1([y j+1]). This evaluation
is obtained by the algorithm SIVIA. The solution set
at the sampling time t j+1 is finally given by [x j+1] =
[X+

j+1]
⋂

[g]−1([y j+1]).
The procedure for state estimation is summarized in the

following algorithm:

for j = 0 to N−1 do
• Prediction step: compute [X+

j+1] by using
algorithm EMV,

• Correction step: compute [x j+1] such that

[x j+1] = [X+
j+1]

⋂

[g]−1([y j+1]),

where [y j+1] = [y j+1− v j+1, y j+1− v j+1] is given in (5).

B. Extended mean value algorithm

The most effective methods to solve the state estimation
for dynamical nonlinear systems are based on Taylor ex-
pansions [5], [20], [22] or [27]. These methods consist in
two parts: the first one verifies the existence and uniqueness
of the solution by using the fixed point theorem and the
Picard-Lindelf operator. At a time t j+1, an a priori box
[x̃ j] containing all solutions corresponding to all possible
trajectories between t j and t j+1 is computed. In the second
part, the solution at t j+1 is computed by using a Taylor
expansion, where the remainder term is [x̃ j].

However, in practice, the set [x̃ j] often fails to contain the
true solution [22]. Thus, the classical technique used consists
in inflating this set until it verifies the following inclusion
[23]:

[x j]+h f ([x̃ j])⊆ [x̃ j], (6)

where h denotes the integration step and [x j] the first solution.
This method is summarized in the following algorithm,

called Enclosure algorithm and developed in [17]. The inputs
are [x j] and α > 0 and the output is [x̃ j]:

[x̃ j] = [x j],

while ( [x j]+h f ([x̃ j]) 6⊆ [x̃ j] do )

[x̃ j] = inflate([x̃j],α).

The inflate function for an interval vector [u] =
([u1,u1], ..., [un,un]) consists in inflating all its components,
as follows: ([(1−α)u1,(1+α)u1], ..., [(1−α)un,(1+α)un]).

The accuracy of the computed set [x̃ j] depends on the
coefficient α .
If the set [x̃ j] satisfies inclusion (6) then inclusion x(t) ∈ [x̃ j]



holds for all t ∈ [t j, t j+1] and the true solution x j+1 of the
ordinary differential equation (1) at t j+1 is contained, in a
guaranteed way, in the interval vector [x j+1] given by the
following Taylor expansion [20]:

[x j+1] = [x j]+
k−1

∑
i=1

hi f [i]([x j])+hk f [k]([x̃ j]), (7)

where k denotes the order of the Taylor expansion and the
coefficients f [i] are the Taylor coefficients of the solution x(t)
which are recursively obtained by:

f [1] = f , f [i] =
1
i

∂ f [i−1]

∂x
f , i≥ 2. (8)

The inflation of the set [x̃ j] leads to the increase of its
width. The pessimism thus introduced by the large width
of the set can be reduced by using a high-order k for the
Taylor expansion in expression (7). But the width of the
solution always increases even for high orders. To solve
this drawback, R. Rihm proposes to evaluate (7) through the
extended mean value algorithm based on mean value forms
[24], [27] and matrices preconditioning. This algorithm is
used to solve the differential equation given by (1).

The inputs of this algorithm are [x̃ j], [x j], x̂ j, [v j], p j, A j,
h and the outputs are [x j+1], x̂ j+1, [v j+1], [p j+1], A j+1. The
variable x̂ j is a midpoint of a certain interval v j. The initial
conditions can be given by p0 = 0 and v0 = x0. A0 can be
chosen equal to the identity matrix, denoted I (with the same
dimensions as the state vector).

1 [v j+1] = x̂ j +∑k−1
i=1 hi f [i](x̂ j)+hk f [k]([x̃ j]),

2 [S j] = I +∑k−1
i=1 J( f [i]; [x j])hi,

3 [q j+1] = ([S j]A j)[p j]+ [S j]([v j]− x̂ j),

4 [x j+1] = [v j+1]+ [q j+1],

5 A j+1 = m([S j]A j),

6 [p j+1] = A−1
j+1([S j]A j)[p j]+ (A−1

j+1[S j])([v j]− x̂ j),

7 x̂ j+1 = m([v j+1]).

In the previous algorithm, J( f [i]; [x j]) is the Jacobian
matrix of the ith Taylor coefficient f [i] evaluated on [x j].
The variables x̂ j and [v j] are computed in the previous step
(t j−1).

The following section presents the application to our case
study for which the observation y is full. If the state is
partially observed, the same method can be applied but
the non-observed states are not corrected, which generates
pessimism.

VI. APPLICATION

The state estimation algorithm presented in section V is
now applied to the aerospace case system given by (3).
The study has been conducted in simulation. The simulated

outputs are perturbed by heavy noise and the noise is
bounded by:

E =









−0.1 0.1
−0.4 0.4
−0.4 0.4
−0.4 0.4









. (9)

The initial conditions are supposed to belong to:

X0 =









28.45 28.5
6.3025 6.3730
0.1719 0.2292
2.2918 2.4064









. (10)

The test duration is set to one second.

The order of the Taylor expansion is two. The resulting
output trajectories are given in figures 2, 3, 4 and 5. In these
figures, the full lines represent the measures and the dotted
lines represent the reconstruction of the model.
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Fig. 2. Speed reconstruction
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Fig. 5. Pitch angle reconstruction

In these figures, the obtained enveloppes for state variables
show that uncertainty is appropriately controlled by the
estimation algorithm in spite of heavy noise. The estimated
enveloppes are smooth in the case of the pitch rate recon-
struction, and the fact that they are somehow perturbated
for the other three variables indicates that the estimation is
quite tight. This points out the efficiency of the proposed
method based on high-order Taylor expansion to solve the
state equations allied with centred forms and matrices pre-
conditioning. This method really leads to good predictions.

Although our simulation tests were not made in a real-time
context, the computational requirement seems compatible
with real-time constraints for this case study. The same
algorithms were successful employed for example in robotics
[30] or more recently in [6].

VII. RELATED WORK IN STATE ESTIMATION

Processes modelling can be tricky due to the presence of
noises and perturbations. State estimation problems from ex-
perimental data are usually solved by probabilistic methods
[29] when these noises and perturbations can be reasonably
assumed to be random variables. In this statistical context,
state estimation problems are solved through optimization
after the choice of an appropriate criterion.

However, in practice, it is often the case that an explicit
characterization of noise and perturbation variables is not

available, making difficult to assess proper stochastic hy-
potheses.

An alternative approach consists in assuming that uncer-
tain variable values belong to sets, hence modeling bounded
uncertainty. Thus, state estimation problems are now placed
into a bounded-error context. Bounded-error approaches
permit the characterization of the set of all values of the
state vector that are consistent with the measured data, the
model structure and the prior known error bounds. Available
methods based on set-membership approaches exist for linear
and non linear models.

Numerous approaches have been investigated for the case
of linear models. We can characterize the solution set by a
convex polyhedron. But in practice, this set is very difficult to
obtain. Thus it may be preferable to compute other geometric
shapes, such as ellipsoids [8], [16], [18], parallelotopes,
polytopes or zonotopes [10] guaranteed to contain the exact
solution set. The computation of ellipsoids alternates predic-
tion and correction phases, like the algorithm used in this
paper to solve the state estimation problem.

When the model is nonlinear, the set of values of the state
vector to be characterized is usually non convex and may
consist of several disconnected components. Few results are
available in this field. The previous methods are no longer
relevant and other algorithms based on interval analysis have
been developed [12]. Interval analysis provides tools for
guaranteed non linear state estimation in a bounded error
context [15]. An example is handled with the application for
the localization of a mobile robot in [14]. Moreover, a state
estimator based on zonotopes was presented in [2].

Actual systems are often described by ordinary differential
equations. Interval analysis and a first-order enclosure of
the solution of the ordinary differential equation allow one
to compute guaranteed solutions to the state estimation
problem. Then, validated numerical methods for solving the
ordinary differential equation are applied. These methods use
high-order interval Taylor models [7], [22], [26] to compute
intervals which are guaranteed to contain the solution of the
ordinary differential equation. This paper has used a method
of this type and shown their efficiency on the a complex
aerospace case study.

VIII. CONCLUSION

In this contribution, a procedure for state estimation in
a bounded-error context is pointed out. This method com-
bines high-Taylor models and interval analysis. It has been
applied to study the guaranteed state estimation for the
longitudinal motion of a glider successfully and this paper
reports about this experiment. We plan to apply this method
to the complete aircraft model in the near future. It was
shown that using high-order Taylor expansion to solve the
state equations allied with centred forms and matrices pre-
conditioning makes the use of bissections unnecessary to
obtain a good prediction.
This makes it possible to study state estimation for systems
with high dimensions.



The method has potential for being used for fault detection
and diagnosis problems in continuous-time systems or hybrid
systems. Fault detection mechanisms using bounded uncer-
tainty models present the advantage to guarantee absence
of false alarms [3]. They have been investigated in the last
few years and some comparative analysis works exist [4],
[28]. The drawback of this methods is the missing alarms
problem, which is due to overestimated results. However,
recent methods such as the one used in this paper or [1], [25]
should provide significant improvement in this direction.

Another direction of future work consists in extending
state estimation in a bounded-error context to parameter
estimation for nonlinear systems. It can be shown that set
inversion combined with validated integration of ordinary
differential equations is able to solve the parameter es-
timation problem. This opens new perspectives for fault
diagnosis, for instance using faults models [9].
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