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) that they can change the identifiability results. In this paper, an extension using initial conditions is proposed. In the third part of the paper, a numerical parameter estimation method is deduced from the differential algebra method and an example is presented.

INTRODUCTION

In most models, some parameters characterizing the internal behavior of the represented system are not directly accessible to measure. This is for example the case for biological and physiological systems. These parameters are usually estimated through an iterative learning algorithm. However, before searching for their values, it is essential to study the model structure identifiability to assess whether the set of unknown parameters can be uniquely determined from the data assumed to be generated by a model with the same structure. Indeed, if a model is not identifiable, the numerical search procedures can fail. In that case, some supplementary data have to be provided, or the parameters admissibility domain has to be reduced. In the literature, different approaches have been proposed for studying the global identifiability of nonlinear systems. We can mention for example, the Taylor Series approach of [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF]. He proposed a method based on the analysis of a power series expansion of the output which gives rise to an algebraic system constituted of an infinite number of equations. A second method is based on the local state isomorphism theorem [START_REF] Walter | Global approaches to identifiability testing for linear and nonlinear state space models[END_REF], [START_REF] Chappell | Structural identifiability of the parameters of a nonlinear batch reactor model[END_REF], [START_REF] Denis-Vidal | Some effective approaches to check identifiability of uncontrolled nonlinear systems[END_REF], [START_REF] Chapman | Structural identifiability of nonlinear systems using linear/nonlinear splitting[END_REF]). It leads to study the solution of a specific set of partial differential equations. A third one is a method based on differential algebra that was introduced in [START_REF] Diop | Nonlinear observabiliy, identifiability and persistant trajectories[END_REF], M. [START_REF] Fliess | An algebraic approach to linear and nonlinear control[END_REF], [START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF] and [START_REF] Ollivier | Identifiabilité des systèmes[END_REF]. It allows one to obtain relations linking the observations, the inputs and the unknown parameters of the system. In the first works, the initial conditions were ignored. However, without any assumptions on the model, the identifiability of the model without any consideration on initial conditions does not imply the identifiability of the model with initial conditions [START_REF] Audoly | Global identifiability of nonlinear models of biological systems[END_REF]). A few developments were proposed to consider the initial conditions [START_REF] Saccomani | Parameter identifiability of nonlinear sustems: the role of initial conditions[END_REF], [START_REF] Denis-Vidal | Some effective approaches to check identifiability of uncontrolled nonlinear systems[END_REF], [START_REF] Verdière | Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor[END_REF]). In the latter paper, some numerical algorithms were developed, built on the identifiability study, to give a first estimation of the parameters without any a priori knowledge about them. When modeling a system, several sources of uncertainty exist due, for example, to the inaccuracies in the measurements. For analyzing uncertain models, new identifiability definitions applying to set-membership (SM) models in a bounded error context have been proposed in [START_REF] Jauberthie | Set-membership identifiability: definitions and analysis[END_REF]) and [START_REF] Braems | Guaranteed numerical alternatives to structural identiability testing[END_REF]). The pioneering paper by [START_REF] Braems | Guaranteed numerical alternatives to structural identiability testing[END_REF] outlines that interval based methods and interval constraint propagation can be used to test for a new definition of global identifiability. In contract to structural global identifiability, the new property no longer allows for the existence of atypical regions in the domain of interest. This is actually a byproduct of using interval methods for testing for it. But, what is really an interpretation of identifiability in the SM context is only presented as a practical condition. Indeed, instead of imposing parameters corresponding to a given input-output trajectory to be strictly different, they are allowed to be distant by a given ε, which provides a stoping condition to the numerical test. It is only recently that [START_REF] Jauberthie | Set-membership identifiability: definitions and analysis[END_REF] formalized the above property and numerical test as a whole by introducing two complementary definitions for the identifiability of errorbounded uncertain models, namely set-membership identifiability (SM identifiability) and µ-set-membership identifiability (µ-SM identifiability). The first one is conceptual whereas the second one can be put in correspondence with interval based methods and the specified precision threshold ε.

In this paper, two methods for checking SM identifiability and µ-SM identifiability are proposed. They contrast the numerical method of [START_REF] Braems | Guaranteed numerical alternatives to structural identiability testing[END_REF] which is limited to linear models and models whose analytical solution is known. The first method is an extension of a method proposed by [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF] based on the power series expansion of the solution that accounts for the initial conditions of the system. It generalizes to non-linear systems the extension already provided in [START_REF] Jauberthie | Set-membership identifiability: definitions and analysis[END_REF]. The second method is based on differential algebra and makes use of relations linking the observations, the inputs and the unknown parameters of the system. In the presented work, an extension using initial conditions is proposed. In the last part of the paper, a numerical parameter estimation method is built on top of the differential algebra method. The relations mentioned above are used to estimate the uncertain parameters of the model in an analytical way. Linking identifiability analysis and parameter estimation, we can guarantee when the solution set for the system (1) reduces to one connected set. An example in pharmacokinetic is presented. The paper is organized as follows. Section 2 presents the considered model and section 3 the definitions of identifiability in a bounded error context. In section 4, the two methods for analysing SM identifiability are developped. The numerical method to estimate the parameters building on the differential algebra method is then presented in section 5 and illustrated by an example. Section 6 concludes the paper and envisions several perspectives.

PROBLEM FORMULATION

The problem considered in this paper is the identification relying on identifiability assessment of bounded uncertain parameter systems (controlled or uncontrolled) represented by SM models of the following form:

Γ P 1 =          ẋ(t, p) = f (x(t, p), u(t), p), y(t, p) = h(x(t, p), p), x(t 0 , p) = x 0 ∈ X 0 , p ∈ P ⊂ U P , t 0 ≤ t ≤ T, (1) 
where x(t, p) ∈ R n and y(t, p) ∈ R m denote the state variables and the outputs at time t respectively, u(t) ∈ R r is the input vector at time t. The initial conditions x 0 , are supposed to belong to a bounded set X 0 . The functions f and h are real and analytic on M , where M is an open set of R n such that x(t, p) ∈ M for every t ∈ [t 0 , T ] and p ∈ P . T is a finite or infinite time bound. The vector of parameters p belongs to a connected set of parameters P . P is supposed to be a subset of U P where U P is an a priori known set of admissible parameters. U P is either included in R p or equal to R p . In the case of uncontrolled models, u is equal to 0.

SET-MEMBERSHIP IDENTIFIABILITY

This section proposes a formulation of the SM identifiability problem for the class of systems described in section 2 and formalized by (1).

Definitions

Two definitions of global SM identifiability are provided, as well as their local counterpart. The first one is a conceptual definition, whereas the second one, relying on the definition of a measure µ, can be put in correspondence with operational SM estimation methods.

In these definitions, Y (P, u) (respectively Y (P )) denotes the set of outputs, solution of Γ P 1 with the input u (resp. when u = 0). In the case of controlled systems (the case of uncontrolled systems is considered subsequently), the following definitions are given: Definition 3.1. The model Γ P 1 given by ( 1) is globally SM identifiable for P * = ∅, P * ⊂ U P if there exists an input u such that Y (P * , u) = ∅ and

Y (P * , u) ∩ Y ( P , u) = ∅, P ⊂ U P =⇒ P * ∩ P = ∅.
Let us now consider a bounded set Π of R p and let us note µ(Π) the diameter of Π. µ(Π) is given by the least upper bound of {d(π 1 , π 2 ), π 1 , π 2 ∈ Π} and d is a classical metric on R p [START_REF] Bourbaki | Elements of Mathematics[END_REF]). If Π is not bounded, we define µ(Π) = +∞.

In the following definition, the set P * is supposed bounded and µ(P * ) is said as small as desired when it may be taken as tending to zero. Definition 3.2. The model Γ P 1 given by ( 1) is globally µ-SM identifiable for P * = ∅ with µ(P * ) as small as desired, if there exists an input u such that Y (P * , u) = ∅ and Y (P * , u) ∩ Y ( P , u) = ∅, P ⊂ U P =⇒ P * ∩ P = ∅.

The above definition differs from definition 3.1 in the sense that the set P * may be taken as small as desired, i.e. µ(P * ) may tend to zero. If the diameter of P * remains higher than or equal to a threshold ε, i.e. µ(P * ) ≥ ε, then we refer to ε-SM identifiability. This definition will be shown to have practical importance in section 3.3.

To account for possible singularities in U P , µ-SM identifiability can be generically extended into structural µ-SM identifiability, which means that the model Γ P 1 is µ-SM identifiable for all P ⊂ U P except for a subset of points of zero measure in U P . Let us notice that defining the structural counterpart of SM identifiability, as given by definition 3.2, is not relevant given that in definition 3.1 P * cannot be of zero measure. Proposition 3.1. Global µ-SM identifiability for P * implies global SM identifiability for P * but the inverse is not true.

Proof -The implication is obvious. The fact that the inverse implication is not true is proved with a counter-example. Let us consider the following uncertain model in which ω is an unknown parameter belonging to an initial interval:

   ẋ1 = x 1 + t cos(ω), x 1 (0) = cos πθ 50 with θ ∈ [0, 75].
Its solution is x 1 (t) = cos (πθ/50) e t + (-1 -t + e t ) cos(ω).

An admissible set for ω is taken as U P = [0, 2π]. For θ = 25 or 75, the solution is equal to x 1 (t) = (-1 -t + e t ) cos(ω).

In this case, if ω ∈ P * = [π/2, 3π/2] then the model is globally SM identifiable but not µ-SM identifiable. Indeed, for the global SM identifiability, no trajectory arising from the systems whose parameters are in P * is identical to a trajectory arising from the complementary of P * in U P . However, if the diameter of P * is smaller, for the two disjoint subsets of P * , P * 1 = [π, 3π/2] and P * 2 = [π/2, 3π/4], there exist common trajectories. Consequently, µ(P * ) cannot be taken as small as desired.

Local definitions of (µ-)SM identifiability can be given by considering an open neighborhood W of P * in which Γ P 1 is globally (µ-)SM identifiable for P * with U P restricted to W .

If the model ( 1) is neither globally (µ-)SM identifiable nor locally (µ-)SM identifiable, it is said non (µ-)SM identifiable.

Case of uncontrolled models

In the case of uncontrolled systems, the following definitions can be given. Definition 3.3. The model Γ P 1 given by ( 1) is globally SM identifiable for P * = ∅, P * ⊂ U P if Y (P * ) = ∅ and Y (P * ) ∩ Y ( P ) = ∅, P ⊂ U P =⇒ P * ∩ P = ∅. Definition 3.4. The model Γ P 1 given by ( 1) is globally µ-SM identifiable for P * = ∅, P * ⊂ U P , µ(P * ) as small as desired, if Y (P * ) = ∅ and Y (P * )∩Y ( P ) = ∅, P ⊂ U P =⇒ P * ∩ P = ∅.

As previously, local definitions can also be given.

Correspondence with operational interval based parameter estimation

This section first provides some concepts related to the manipulation of sets, then discusses interval based set inversion, exemplified by the algorithm SIVIA (Set Inversion Via Interval Analysis), as a framework in which the parameter estimation problem can be casted [START_REF] Jaulin | Set inversion via interval analysis for nonlinear bounded-error estimation[END_REF]). An interpretation of ε-SM identifiability is then exhibited and shown to be a formalization of the interval based test proposed in [START_REF] Braems | Guaranteed numerical alternatives to structural identiability testing[END_REF] in the framework of Interval Constraint Propagation (ICP). ε-SM identifiability is indeed shown to generalize classical identifiability to sets whose dimension can be controlled.

When manipulating sets of values, it is important to be able to check whether one set is included in another set or not. Given two subsets S 1 and S 2 of R n , one wants to test whether S 1 is included in S 2 or not. This test, known as the inclusion test is used to prove that all points in a given set satisfy a given property or to prove that none of them does.

Conversely, if two sets intersect, their intersection inherits the properties of the two sets. It is hence often desirable to reduce a set to its intersection with respect to another set, which is obtained through contraction. The contraction of S 1 with respect to S 2 is a smaller set s such that S 1 ∩ S 2 = s ∩ S 2 . If S 2 is the feasibility set of a problem and s turns out to be empty, then the set S 1 does not contain the solution.

Interval analysis makes use of specific sets, also known as boxes. A real interval is a closed and connected subset of

R denoted [x, x] = {x ∈ R, | x ≤ x ≤ x}. A box [x] is an interval vector [x, x]
, that is a vector with interval components1 . In SIVIA, inclusion and contraction are used to test if a box can or cannot be removed from the solution set. When no conclusion can be drawn, the box is bisected and each of the sub-boxes can be tested in turn (this corresponds to a branch-and-bound algorithm). The same principles are used in ICP.

Consider the problem of determining the solution set for the unknown quantities p defined by

S = {p ∈ U P | Φ(p) ∈ [y]} = Φ -1 ([y]) ∩ U P ,
(2) where [y] is known a priori, U P is an a priori search set for p and Φ a nonlinear function not necessarily invertible in the classical sense. ( 2) involves computing the reciprocal image of Φ. This can be solved using the algorithm SIVIA, which recursively explores all the search space without loosing any solution. SIVIA delivers a guaranteed enclosure of the solution set P such as P ⊆ P ⊆ P .

The inner enclosure P is composed of the boxes that have been proved feasible. To prove that a box

[p] is feasible it is sufficient to prove that Φ([p]) ⊆ [y]. Reversely, if it can be proved that Φ([p]) ∩ [y] = ∅, then the box [p] is unfeasible.
Otherwise, no conclusion can be reached and the box [p] is said undetermined. The latter is then bisected in two sub-boxes that are tested until their size reaches a user-specified precision threshold ε > 0. Such a termination criterion ensures that SIVIA terminates after a finite number of iterations. SM identifiability does not provide the means to control the set P * that is tested for identifiability. This points out the practical interest of µ-SM identifiability which is defined through a measure µ(.). The measure µ(.) allows one to control the diameter of P * . In particular, ε-SM identifiability is defined for the diameter of P * higher or equal to ε, i.e. µ(P * ) ≥ ε. The diameter of P * can hence be put in correspondance with the user-specified precision threshold of SIVIA. Consequently, ε-SM identifiability provides the means to guarantee that the estimate provided by SIVIA when the precision threshold is taken equal to ε consists of a connected set.

ε-SM identifiability is actually a formalization of the ICP numerical test proposed by [START_REF] Braems | Guaranteed numerical alternatives to structural identiability testing[END_REF] to check global identifiability in a domain. Instead of imposing parameters corresponding to a given input-output trajectory to be strictly different, they allow them to be distant by a given ε, which provides a stoping condition to the ICP numerical method.

Ultimately, µ-SM identifiability subsumes classical identifiability and SM identifiability as defined in definition 3.1 as it provides the mean to control the set P * . This is possible thanks to the measure µ(.). When µ(P * ) tends to 0, µ-SM identifiability comes back to classical identifiability. When µ(P * ) is kept higher or equal to ε, it results in ε-SM identifiability. ε is not necessarily small, so the control of the dimension of the set P * .

ANALYSIS OF SM IDENTIFIABILITY

Two methods are proposed in this paper for analysing (µ-) SM identifiability: the first one is based on the power series expansion of the solution and the second one on differential algebra. For these two methods, the notion of partial injectivity using interval analysis is needed and is recalled in the first subsection.

Partial injectivity

First of all, remember the definition of partial injectivity of a function given in [START_REF] Lagrange | On sufficient conditions of injectivity, development of a numerical test via interval analysis[END_REF]. Definition 4.1. Consider a function f : A → B and any set A 1 ⊆ A. The function f is said to be a partial injection of

A 1 over A, noted (A 1 , A)-injective, if ∀a 1 ∈ A 1 , ∀a ∈ A, a 1 = a ⇒ f (a 1 ) = f (a). f is said to be A-injective if it is (A, A)-injective.
In [START_REF] Lagrange | On sufficient conditions of injectivity, development of a numerical test via interval analysis[END_REF], an algorithm based on interval analysis for testing the injectivity of a given differentiable function is presented and a solver called ITVIA (Injectivity Test Via Interval Analysis) implemented in C++ is mentioned.

Power Series Expansion Method (PSE Method)

The PSEM method is inspired of [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF], which studies identifiability in using the Taylor series expansion of the solution.

Consider P * a connected set and Y (P * , u) a set of model outputs, a 0 (.) ∈ Y (P * , u) (resp. a k (.)) a particular output (resp. the kth time derivative of a 0 (.)). Then, consider the following assumptions which are referred to as H in the following:

• Denote the set of feasible states by S, • Let u(.) and x(0) be such that x(t) ∈ S for all t ∈ [0, T ] • For all possible trajectories x(.), the function f (x(.), u(.), p) admits a Taylor series expansion on [0, T ] or the function f (x, u(.), p) is lipschitzian on [0, T ] for all states x ∈ S.

The following theorem gives a necessary condition for having global (µ-)SM identifiability. It can be used for proving non (µ-)SM identifiability for controlled models. Theorem 1. Under the assumptions H, if Γ P 1 is globally SM identifiable (resp. globally µ-SM identifiable) for P * = ∅ for an input u and a 0 (.) ∈ Y (P * , u), then the system:

d k dt k [h(x(0, p), p)] = a k (0), k = 0, 1, . . . , +∞, (3) 
where h is the observation function of system (1) admits at least one solution in the connected set P * (resp. a unique solution).

Proof -By assumption, h is analytic and (3) admits solutions in P * . If Γ P 1 is globally µ-SM identifiable, there is a one-to-one correspondence between a trajectory and a parameter vector thus the unicity of the solution.

The following theorem gives a sufficient condition for proving that Γ P 1 is globally SM identifiable for P * . Theorem 2. If there exists u such that Y (P * , u) = ∅ and for all a 0 (.) ∈ Y (P * , u), the solutions of (3) are in P * = ∅ then Γ P 1 is globally SM identifiable for P * for this input u.

Proof -Suppose that Y (P * , u) ∩ Y ( P , u) = ∅ for P ⊂ U P . Thus there exists a trajectory y * ∈ Y (P * , u) ∩ Y ( P , u). In particular, there exist p * ∈ P * , p ∈ P solutions of (3) for which the right member a k (.) corresponds to y * (k) (.). Hence, p ∈ P * and P * ∩ P = ∅.

Remark-For uncontrolled systems, we have equivalent conditions to be satisfied autonomously.

An additional condition is required for the system Γ P 1 to be globally µ-SM identifiable or ε-SM identifiable for P * , ε > 0. Indeed, since P * can be as small as possible, the parameter p may not be included in P * . However, an injectivity hypothesis allow one to obtain µ-SM identifiability or ε-SM identifiability for P * as it is seen in the following theorem. Theorem 3. Suppose there exists u such that for any a 0 (.) ∈ Y (P * , u), the solutions of (3), for a finite number d of equations are in a connected set P * = ∅. If the function φ : p ∈ P * → (h(x(0, p), p), . . . , d d-1 dt d-1 [h(x(0, p), p]) ∈ (R m ) d is (P * , R p )injective (resp. except on a subset of P * whose diameter is less than ), then Γ P 1 is µ-SM identifiable for P * (resp. -SM identifiable for P * ).

Remarkd -1 is the number of times that y(t, p) = h(x(t, p), p) must be derived for the resulting system taken at t = 0 admits solutions.

Proof -The injectivity hypothesis assures that the trajectories evaluated with parameters in P * are all distinct. For obtaining the system (3), complex math developments are generally required. However, some classes of systems have nice properties and are easily solved, for example linear systems [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF]).

Example 1: Consider as Γ P 1 the following uncertain system taken from [START_REF] Vajda | Similarity transformation approach to structural identifiability of nonlinear models[END_REF]:

     ẋ1 = -(k 21 + k 31 )x 1 + u, x 1 (0) = x 10 , ẋ2 = k 21 x 1 -x 2 ,
x 2 (0) = 0, ẋ3 = k 31 x 1 -c 13 x 3 , x 3 (0) = x 30 , y = x 2 + c 13 x 3 ,

where the unknown parameters are k 21 , c 13 , U p = R2 . Suppose that x i0 ∈ [x i0 , x i0 ], i = 1, 3 2 and a 0 (.) ∈ Y m . Suppose too that 0 ∈ [x 30 , x 30 ].

In this example, the set of parameters P * containing (k 21 , c 13 ) is searched so that Γ P 1 is globally µ-SM identifiable for P * . For this, the PSE Method relies on studying the solutions of the following system. c 13 x 30 = a 0 (0), (k 21 + c 13 k 31 )x 10 -c 2 13 x 30 = a 1 (0),

According to Theorem 2, it is sufficient to find the solutions of (5). From the first equation, one gets c 13 = a 0 (0)/x 30 . Then, if 0 ∈ [x 10 , x 10 ], the model is not globally SM identifiable since the particular case x 10 = 0 induces the following equations a k (0) = (-1) k c k+1 13 x 30 for all k ≥ 0. Otherwise, if 0 ∈ [x 10 , x 10 ], the second equation gives:

k 21 =
a 1 (0) -c 13 k 31 x 10 + c 2 13 x 30 x 10

.

Denote by γ the right member of (6). Solutions of (5) are in P * = [γ, γ] × [a 0 (0), a 0 (0)]/[x 30 , x 30 ] and according to Theorem 2, the system (4) is globally SM identifiable for P * . Furthermore, the function φ : (k 21 , c 13 ) → c 13 x 30 , (k 21 + c 13 k 31 )x 10 -c 2 13 x 30 ) is (P * , R 2 )-injective. Thus, the system (4) is µ-set membership identifiable for P * .

Obviously, this method can be used for the construction of P * as it can be seen easily in example 1 but a better estimate can be

Obviously, a box [x] of dimension n is a subset X of R n . In the following, the two notations are used equally.

Recall that intervals are denoted [x, x] = {x ∈ R, | x ≤ x ≤ x}.
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obtained by using indirect methods and the whole measurement trajectory. However, it permits to know (in certain cases easily) if the model can be or not µ-setmembership identifiable and if some points in the interval parameters have to be excluded.

Differential Algebra based Method (DA Method)

In this subsection, the method proposed by [START_REF] Denis-Vidal | Some effective approaches to check identifiability of uncontrolled nonlinear systems[END_REF] based on differential algebra and taking into account the initial conditions is adapted for studying the (µ-)SM identifiability. This method consists in eliminating unobservable state variables in choosing the appropriate elimination order {p} < {y, u} < {x}. Then, the differential algebra approach [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF] allows one to obtain relations between outputs, inputs and parameters. These relations can be expressed as: R i (y, u, p) = m 0 (y)

where

are differential polynomials with respect to y, u and θ 0 = 0.

The size of the system is the number of observations. For simplicity, we suppose that i = 1, that is there is one output and n 1 = n.

The following theorem permits to obtain necessary and sufficient conditions for having global SM identifiability or µ-SM identifiability. Consider l the higher order derivative of y in (7). Theorem 4. Assume that the functional determinant R(y) = det(m k (y, u), k = 1, . . . , n) is not in the ideal I 0 p obtained after eliminating state variables. Consider P * a subset of U P for which the function φ : p = (p 1 , . . . , p p ) → (θ 1 (p), . . . , θ n (p), y(t + 0 , p), . . . , y (l-1) (t + 0 , p)) verifies:

Then the model Γ P 1 is globally SM identifiable for P * . If the model Γ P 1 is globally SM identifiable for P * and φ is (P * , R p )-injective then the model is µ-SM identifiable for P * . In the two cases, if the coefficient of y (l) in ( 7) is not equal to 0 at t 0 , then the reciprocal is valid.

Proof -Sufficiency Let P * verifythe hypothesis of the theorem. Suppose there exists an input u * such that Y (P * , u * ) = ∅ and y * ∈ Y (P * , u * ) ∩ Y ( P , u * ) for a cartesian product of intervals P ∈ U P . Thus, there exists p * ∈ P * , p ∈ P such that y * (.) = y(., p * ) = y(., p) and R(y

Since the function φ is supposed to verify the condition (8), one gets p ∈ P * and P * ∩ P = ∅. If φ is (P * , R p )-injective, P * can be as small as possible and we always have p * = p that is P * ∩ P = ∅. Necessity Let's prove the contrapositive. Suppose there exists P , such that P * ∩ P = ∅ and φ(p * ) = φ(p) for a certain p * ∈ P * and a p ∈ P . Since the coefficient of y (l) in ( 7) is not equal to 0 at t 0 and the differential polynomials (m k ) k=1,...,n have a degree 1 in y (l) (Denis-Vidal et al. [2001]), any time derivative y (r) (t + 0 , p * ), r ≥ l can be rewritten in function of y (l-1) (t + 0 , p * ), . . . , y(t + 0 , p * ), θ 1 (p * ), θ n (p * ). According to the hypothesis on φ, the (l -1) first coefficients of y(t, p * ) in the Taylor expansion are the same as those of y(t, p), thus y * := y(t, p * ) = y(t, p) and y * ∈ Y (P * , u) ∩ Y ( P , u). Thus, the model is not globally-SM identifiable for P * .

Example 2: Consider the uncertain model:

where (p 1 , p 2 , p 3 ) ∈ U P = R × [0, 2π[×R + are the unknown parameters. Let p 4 = sin(p 2 ). In using the Rosenfeld-Groebner algorithm in Maple, the three following cases are given: the impossible one y = 0 since y(0) = 1, the particular case p 4 = 0 (thus p 2 = 0, π) and the general characteristic presentation: C = { ẏ2 -y ÿ + ẏy 2 + p 1 ( ẏy 2 -y 4 ) + p 4 p 3 y 4 }. The functional determinant of { ẏy 2 -y 4 , y 4 } is equal to 2y 5 ẏ2 -y 6 ÿ. With the function belong_to of the package Maple, we verify that the functional determinant is not in I 0 p . Thus, we have to study the following function φ

The model is globally SM identifiable for

2 ) > 0 and sin(p 2 ) < 0. However, the model is clearly not µ-SM identifiable for P * 1 and P * 2 since the function sin is not injective on these two subsets.

PARAMETER ESTIMATION

In this section, a numerical method deduced from section 4.3 is proposed to estimate the unknown constant parameters of a non linear system like (1). We consider the case i = 1, that is there is only one output variable. The output is supposed to be disturbed by a bounded additive noise η, η(t) ∈ [η(t)] and the parameter vector p belongs to P where P is an interval vector. The polynom (7) can be used to estimate the interval vector P . Consider Θ k (P ) the associated expression of θ k (p) defined in the polynom (7), where p is substituted by P . Θ k (P ) is a connected set for all connected P since it involves sum, difference and product of connected sets.

Suppose that the observations are done at discrete times t j , 0 ≤ j ≤ M and they are noted y j = y(t j ). Then, the following system whose interval vector (Θ k (P )) 1≤k≤n is unknown can be deduced:

Θ k (P )m k (y j , u j ).

(10) Notice that ( 10) is linear with respect to {Θ 1 (P ), . . . , Θ n (P )}. Parameter estimation consists in solving the previous sytem which comes back to solving 0 ∈

Example 3: The following example taken from [START_REF] Verdière | Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor[END_REF]) is considered. It allows one to explore the capacity of the macrophage mannose receptor to endocytose soluble macromolecule and to quantify the different aspects of such a process. The model is the following:

where x 1 (resp. x 2 ) is the enzyme concentration outside (resp. inside) the macrophage and p = (α 1 , V m , α 2 ) are the unknown parameters which have to be identified. The parameter α 1 is the rate constant of the transfer from Compartment 1 (or the central compartment), practically plasma, to Compartment 2 (or the peripheral compartment), which represents in the model the part of the extravascular extracellular fluid accessible. Furthermore, α 2 is the rate constant of the transfer from Compartment 2 to Compartment 1.

The study has been conducted in simulation in Matlab by using Intlab. The simulated outputs are disturbed by a truncated gaussian noise η such that η(t) ∈ [-0.001, 0.001]. Thus, y(t) = ȳ(t) + η(t) where ȳ is the exact output corresponding to the exact value of parameters: α 1 = 0.011, α 2 = 0.02 and V m = 0.1. The observations are supposed to be done at discrete times (t j ) j=1,...,N on the interval [0, 117] with a sampling period equal to 1 2 . The polynom R(y, u) is given by: R(y, u

If we denote y p (t j ) (resp. y pp (t j )) the estimate of ẏ(t j ) (resp. ÿ(t j )). These estimates are obtained by finite differences and the obtained sytem which has to be solved is

Solving this system can be casted into the set inversion framework for which we used the SIVIA algorithm. To use SIVIA, it is necessary to give initial intervals for γ 1 , γ 2 and γ 3 . The problem solved here is to find 

CONCLUSION

This paper summarizes the quite scarce works for analysing the identifiability of SM models and presents the definitions of SM identifiability and µ-SM identifiability. Checking these properties for the general case of non linear systems is the main focus of the paper. Interestingly, a parameter esimation method is derived from one of the identifiability checking methods. By building the parameter estimation scheme on the analysis of identifiability, we can guarantee that the solution set reduces to one connected set. Future work will consider to apply the parameter estimation method in various application domains. Fault detection and identification will be our preferred line of work and the prognosis problem will also be considered.