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Abstract: Definitions of identifiability and methods for checking this property for linear and nonlinear
systems are now well established. Recently, some works (Jauberthie et al. [2011], Braems et al. [2001])
have provided identifiability definitions for set-membership models in a bounded-error context and
established links with classical identifiability definitions. These works are summarized in the first part of
the paper, recalling the two complementary definitions : set-membership identifiability that is conceptual
and µ-set-membership identifiability that can be put in correspondence with existing set-membership
parameter estimation methods (Jauberthie et al. [2011]). In the second part, two methods for checking
set-membership identifiability and µ-set-membership identifiability are proposed. The first one is an
extension of a method proposed by Pohjanpalo [1978] based on the power series expansion of the
solution that accounts for the initial conditions of the system. It generalizes to non-linear systems the
initial extension provided in (Jauberthie et al. [2011]). The second method is based on differential
algebra and makes use of relations linking the observations, the inputs and the unknown parameters
of the system. Classically, when using this method, initial conditions are not considered but it has been
shown recently (Saccomani et al. [2004]) that they can change the identifiability results. In this paper,
an extension using initial conditions is proposed. In the third part of the paper, a numerical parameter
estimation method is deduced from the differential algebra method and an example is presented.

Keywords: Identifiability; Uncertain dynamic systems; Nonlinear models; Bounded disturbances;
Parameters estimation

1. INTRODUCTION

In most models, some parameters characterizing the internal
behavior of the represented system are not directly accessi-
ble to measure. This is for example the case for biological
and physiological systems. These parameters are usually esti-
mated through an iterative learning algorithm. However, before
searching for their values, it is essential to study the model
structure identifiability to assess whether the set of unknown
parameters can be uniquely determined from the data assumed
to be generated by a model with the same structure. Indeed, if a
model is not identifiable, the numerical search procedures can
fail. In that case, some supplementary data have to be provided,
or the parameters admissibility domain has to be reduced.
In the literature, different approaches have been proposed for
studying the global identifiability of nonlinear systems. We can
mention for example, the Taylor Series approach of Pohjanpalo
[1978]. He proposed a method based on the analysis of a power
series expansion of the output which gives rise to an algebraic
system constituted of an infinite number of equations. A second
method is based on the local state isomorphism theorem (Walter
and Lecourtier [1982], Chappell and Godfrey [1992], Denis-
Vidal et al. [2001], Chapman et al. [2003]). It leads to study the
solution of a specific set of partial differential equations.
A third one is a method based on differential algebra that was

introduced in Diop and Fliess [1991], M. Fliess [1993], Ljung
and Glad [1994] and Ollivier [1997]. It allows one to obtain
relations linking the observations, the inputs and the unknown
parameters of the system. In the first works, the initial condi-
tions were ignored. However, without any assumptions on the
model, the identifiability of the model without any considera-
tion on initial conditions does not imply the identifiability of
the model with initial conditions (Audoly et al. [2001]). A few
developments were proposed to consider the initial conditions
(Saccomani et al. [2004], Denis-Vidal et al. [2001], Verdière
et al. [2005]). In the latter paper, some numerical algorithms
were developed, built on the identifiability study, to give a first
estimation of the parameters without any a priori knowledge
about them.
When modeling a system, several sources of uncertainty exist
due, for example, to the inaccuracies in the measurements.
For analyzing uncertain models, new identifiability definitions
applying to set-membership (SM) models in a bounded error
context have been proposed in (Jauberthie et al. [2011]) and
(Braems et al. [2001]). The pioneering paper by Braems et al.
[2001] outlines that interval based methods and interval con-
straint propagation can be used to test for a new definition of
global identifiability. In contract to structural global identifia-
bility, the new property no longer allows for the existence of
atypical regions in the domain of interest. This is actually a



byproduct of using interval methods for testing for it. But, what
is really an interpretation of identifiability in the SM context
is only presented as a practical condition. Indeed, instead of
imposing parameters corresponding to a given input-output tra-
jectory to be strictly different, they are allowed to be distant by
a given ε, which provides a stoping condition to the numerical
test. It is only recently that Jauberthie et al. [2011] formalized
the above property and numerical test as a whole by introducing
two complementary definitions for the identifiability of error-
bounded uncertain models, namely set-membership identifia-
bility (SM identifiability) and µ-set-membership identifiability
(µ-SM identifiability). The first one is conceptual whereas the
second one can be put in correspondence with interval based
methods and the specified precision threshold ε.

In this paper, two methods for checking SM identifiability and
µ-SM identifiability are proposed. They contrast the numerical
method of Braems et al. [2001] which is limited to linear mod-
els and models whose analytical solution is known. The first
method is an extension of a method proposed by Pohjanpalo
[1978] based on the power series expansion of the solution
that accounts for the initial conditions of the system. It gen-
eralizes to non-linear systems the extension already provided
in Jauberthie et al. [2011]. The second method is based on dif-
ferential algebra and makes use of relations linking the obser-
vations, the inputs and the unknown parameters of the system.
In the presented work, an extension using initial conditions is
proposed.
In the last part of the paper, a numerical parameter estimation
method is built on top of the differential algebra method. The
relations mentioned above are used to estimate the uncertain
parameters of the model in an analytical way. Linking identi-
fiability analysis and parameter estimation, we can guarantee
when the solution set for the system (1) reduces to one con-
nected set. An example in pharmacokinetic is presented.
The paper is organized as follows. Section 2 presents the con-
sidered model and section 3 the definitions of identifiability
in a bounded error context. In section 4, the two methods for
analysing SM identifiability are developped. The numerical
method to estimate the parameters building on the differential
algebra method is then presented in section 5 and illustrated
by an example. Section 6 concludes the paper and envisions
several perspectives.

2. PROBLEM FORMULATION

The problem considered in this paper is the identification rely-
ing on identifiability assessment of bounded uncertain param-
eter systems (controlled or uncontrolled) represented by SM
models of the following form:

ΓP
1 =


ẋ(t, p) = f(x(t, p), u(t), p),
y(t, p) = h(x(t, p), p),
x(t0, p) = x0 ∈ X0,
p ∈ P ⊂ UP ,
t0 ≤ t ≤ T,

(1)

where x(t, p) ∈ Rn and y(t, p) ∈ Rm denote the state variables
and the outputs at time t respectively, u(t) ∈ Rr is the input
vector at time t. The initial conditions x0, are supposed to
belong to a bounded set X0. The functions f and h are real
and analytic on M , where M is an open set of Rn such that
x(t, p) ∈ M for every t ∈ [t0, T ] and p ∈ P . T is a finite
or infinite time bound. The vector of parameters p belongs to a
connected set of parameters P . P is supposed to be a subset of

UP where UP is an a priori known set of admissible parameters.
UP is either included in Rp or equal to Rp. In the case of
uncontrolled models, u is equal to 0.

3. SET-MEMBERSHIP IDENTIFIABILITY

This section proposes a formulation of the SM identifiability
problem for the class of systems described in section 2 and
formalized by (1).

3.1 Definitions

Two definitions of global SM identifiability are provided, as
well as their local counterpart. The first one is a conceptual
definition, whereas the second one, relying on the definition of
a measure µ, can be put in correspondence with operational SM
estimation methods.

In these definitions, Y (P, u) (respectively Y (P )) denotes the
set of outputs, solution of ΓP

1 with the input u (resp. when u =
0). In the case of controlled systems (the case of uncontrolled
systems is considered subsequently), the following definitions
are given:
Definition 3.1. The model ΓP

1 given by (1) is globally SM
identifiable for P ∗ 6= ∅, P ∗ ⊂ UP if there exists an input u
such that Y (P ∗, u) 6= ∅ and
Y (P ∗, u) ∩ Y (P̄ , u) 6= ∅, P̄ ⊂ UP =⇒ P ∗ ∩ P̄ 6= ∅.

Let us now consider a bounded set Π of Rp and let us note
µ(Π) the diameter of Π. µ(Π) is given by the least upper bound
of {d(π1, π2), π1, π2 ∈ Π} and d is a classical metric on Rp

(Bourbaki [1989]). If Π is not bounded, we define µ(Π) = +∞.

In the following definition, the set P ∗ is supposed bounded
and µ(P ∗) is said as small as desired when it may be taken
as tending to zero.
Definition 3.2. The model ΓP

1 given by (1) is globally µ-SM
identifiable for P ∗ 6= ∅ with µ(P ∗) as small as desired, if there
exists an input u such that Y (P ∗, u) 6= ∅ and
Y (P ∗, u) ∩ Y (P̄ , u) 6= ∅, P̄ ⊂ UP =⇒ P ∗ ∩ P̄ 6= ∅.

The above definition differs from definition 3.1 in the sense
that the set P ∗ may be taken as small as desired, i.e. µ(P ∗)
may tend to zero. If the diameter of P ∗ remains higher than or
equal to a threshold ε, i.e. µ(P ∗) ≥ ε, then we refer to ε-SM
identifiability. This definition will be shown to have practical
importance in section 3.3.

To account for possible singularities in UP , µ-SM identifiability
can be generically extended into structural µ-SM identifiability,
which means that the model ΓP

1 is µ-SM identifiable for all
P ⊂ UP except for a subset of points of zero measure in UP .
Let us notice that defining the structural counterpart of SM
identifiability, as given by definition 3.2, is not relevant given
that in definition 3.1 P ∗ cannot be of zero measure.
Proposition 3.1. Global µ-SM identifiability for P ∗ implies
global SM identifiability for P ∗ but the inverse is not true.

Proof – The implication is obvious. The fact that the inverse
implication is not true is proved with a counter-example. Let
us consider the following uncertain model in which ω is an
unknown parameter belonging to an initial interval:
ẋ1 = x1 + t cos(ω),

x1(0) = cos

(
πθ

50

)
with θ ∈ [0, 75].



Its solution is x1(t) = cos (πθ/50) et + (−1− t+ et) cos(ω).
An admissible set for ω is taken as UP = [0, 2π]. For θ = 25
or 75, the solution is equal to x1(t) = (−1 − t + et) cos(ω).
In this case, if ω ∈ P ∗ = [π/2, 3π/2] then the model is
globally SM identifiable but not µ-SM identifiable. Indeed, for
the global SM identifiability, no trajectory arising from the
systems whose parameters are in P ∗ is identical to a trajectory
arising from the complementary of P ∗ in UP . However, if the
diameter of P ∗ is smaller, for the two disjoint subsets of P ∗,
P ∗1 = [π, 3π/2] and P ∗2 = [π/2, 3π/4], there exist common
trajectories. Consequently, µ(P ∗) cannot be taken as small as
desired. �

Local definitions of (µ-)SM identifiability can be given by
considering an open neighborhood W of P ∗ in which ΓP

1 is
globally (µ-)SM identifiable for P ∗ with UP restricted to W .

If the model (1) is neither globally (µ-)SM identifiable nor
locally (µ-)SM identifiable, it is said non (µ-)SM identifiable.

3.2 Case of uncontrolled models

In the case of uncontrolled systems, the following definitions
can be given.
Definition 3.3. The model ΓP

1 given by (1) is globally SM
identifiable for P ∗ 6= ∅, P ∗ ⊂ UP if Y (P ∗) 6= ∅ and Y (P ∗) ∩
Y (P̄ ) 6= ∅, P̄ ⊂ UP =⇒ P ∗ ∩ P̄ 6= ∅.
Definition 3.4. The model ΓP

1 given by (1) is globally µ-SM
identifiable for P ∗ 6= ∅, P ∗ ⊂ UP , µ(P ∗) as small as desired, if
Y (P ∗) 6= ∅ and Y (P ∗)∩Y (P̄ ) 6= ∅, P̄ ⊂ UP =⇒ P ∗∩P̄ 6= ∅.

As previously, local definitions can also be given.

3.3 Correspondence with operational interval based parameter
estimation

This section first provides some concepts related to the ma-
nipulation of sets, then discusses interval based set inversion,
exemplified by the algorithm SIVIA (Set Inversion Via Interval
Analysis), as a framework in which the parameter estimation
problem can be casted (Jaulin and Walter [1993]). An inter-
pretation of ε-SM identifiability is then exhibited and shown
to be a formalization of the interval based test proposed in
Braems et al. [2001] in the framework of Interval Constraint
Propagation (ICP). ε-SM identifiability is indeed shown to gen-
eralize classical identifiability to sets whose dimension can be
controlled.

When manipulating sets of values, it is important to be able to
check whether one set is included in another set or not. Given
two subsets S1 and S2 of Rn, one wants to test whether S1

is included in S2 or not. This test, known as the inclusion test
is used to prove that all points in a given set satisfy a given
property or to prove that none of them does.

Conversely, if two sets intersect, their intersection inherits the
properties of the two sets. It is hence often desirable to reduce
a set to its intersection with respect to another set, which
is obtained through contraction. The contraction of S1 with
respect to S2 is a smaller set s such that S1 ∩ S2 = s ∩ S2.
If S2 is the feasibility set of a problem and s turns out to be
empty, then the set S1 does not contain the solution.

Interval analysis makes use of specific sets, also known as
boxes. A real interval is a closed and connected subset of

R denoted [x, x] = {x ∈ R, |x ≤ x ≤ x}. A box
[x] is an interval vector [x, x], that is a vector with interval
components 1 . In SIVIA, inclusion and contraction are used to
test if a box can or cannot be removed from the solution set.
When no conclusion can be drawn, the box is bisected and each
of the sub-boxes can be tested in turn (this corresponds to a
branch-and-bound algorithm). The same principles are used in
ICP.

Consider the problem of determining the solution set for the
unknown quantities p defined by

S = {p ∈ UP | Φ(p) ∈ [y]} = Φ−1([y]) ∩ UP , (2)
where [y] is known a priori, UP is an a priori search set for
p and Φ a nonlinear function not necessarily invertible in the
classical sense. (2) involves computing the reciprocal image
of Φ. This can be solved using the algorithm SIVIA, which
recursively explores all the search space without loosing any
solution. SIVIA delivers a guaranteed enclosure of the solution
set P such as P ⊆ P ⊆ P .

The inner enclosure P is composed of the boxes that have been
proved feasible. To prove that a box [p] is feasible it is sufficient
to prove that Φ([p]) ⊆ [y]. Reversely, if it can be proved that
Φ([p]) ∩ [y] = ∅, then the box [p] is unfeasible. Otherwise, no
conclusion can be reached and the box [p] is said undetermined.
The latter is then bisected in two sub-boxes that are tested until
their size reaches a user-specified precision threshold ε > 0.
Such a termination criterion ensures that SIVIA terminates after
a finite number of iterations.

SM identifiability does not provide the means to control the set
P ∗ that is tested for identifiability. This points out the practical
interest of µ-SM identifiability which is defined through a
measure µ(.). The measure µ(.) allows one to control the
diameter of P ∗. In particular, ε-SM identifiability is defined
for the diameter of P ∗ higher or equal to ε, i.e. µ(P ∗) ≥ ε.
The diameter of P ∗ can hence be put in correspondance with
the user-specified precision threshold of SIVIA. Consequently,
ε-SM identifiability provides the means to guarantee that the
estimate provided by SIVIA when the precision threshold is
taken equal to ε consists of a connected set.

ε-SM identifiability is actually a formalization of the ICP
numerical test proposed by Braems et al. [2001] to check global
identifiability in a domain. Instead of imposing parameters
corresponding to a given input-output trajectory to be strictly
different, they allow them to be distant by a given ε, which
provides a stoping condition to the ICP numerical method.

Ultimately, µ-SM identifiability subsumes classical identifia-
bility and SM identifiability as defined in definition 3.1 as it
provides the mean to control the set P ∗. This is possible thanks
to the measure µ(.). When µ(P ∗) tends to 0, µ-SM identifiabil-
ity comes back to classical identifiability. When µ(P ∗) is kept
higher or equal to ε, it results in ε-SM identifiability. ε is not
necessarily small, so the control of the dimension of the set P ∗.

4. ANALYSIS OF SM IDENTIFIABILITY

Two methods are proposed in this paper for analysing (µ-)
SM identifiability: the first one is based on the power series
expansion of the solution and the second one on differential
algebra. For these two methods, the notion of partial injectivity
1 Obviously, a box [x] of dimension n is a subset X of Rn. In the following,
the two notations are used equally.



using interval analysis is needed and is recalled in the first
subsection.

4.1 Partial injectivity

First of all, remember the definition of partial injectivity of a
function given in Lagrange et al. [2007].
Definition 4.1. Consider a function f : A → B and any set
A1 ⊆ A. The function f is said to be a partial injection of A1

over A, noted (A1,A)-injective, if ∀a1 ∈ A1, ∀a ∈ A,
a1 6= a⇒ f(a1) 6= f(a).

f is said to be A-injective if it is (A,A)-injective.

In Lagrange et al. [2007], an algorithm based on interval
analysis for testing the injectivity of a given differentiable
function is presented and a solver called ITVIA (Injectivity Test
Via Interval Analysis) implemented in C++ is mentioned.

4.2 Power Series Expansion Method (PSE Method)

The PSEM method is inspired of Pohjanpalo [1978], which
studies identifiability in using the Taylor series expansion of
the solution.

Consider P ∗ a connected set and Y (P ∗, u) a set of model out-
puts, a0(.) ∈ Y (P ∗, u) (resp. ak(.)) a particular output (resp.
the kth time derivative of a0(.)). Then, consider the following
assumptions which are referred to as H in the following:

• Denote the set of feasible states by S,
• Let u(.) and x(0) be such that x(t) ∈ S for all t ∈ [0, T ]
• For all possible trajectories x(.), the function f(x(.), u(.), p)

admits a Taylor series expansion on [0, T ] or the function
f(x, u(.), p) is lipschitzian on [0, T ] for all states x ∈ S.

The following theorem gives a necessary condition for having
global (µ-)SM identifiability. It can be used for proving non (µ-
)SM identifiability for controlled models.
Theorem 1. Under the assumptions H , if ΓP

1 is globally SM
identifiable (resp. globally µ-SM identifiable) for P ∗ 6= ∅ for
an input u and a0(.) ∈ Y (P ∗, u), then the system:

dk

dtk
[h(x(0, p), p)] = ak(0), k = 0, 1, . . . ,+∞, (3)

where h is the observation function of system (1) admits at least
one solution in the connected set P ∗ (resp. a unique solution).

Proof – By assumption, h is analytic and (3) admits solutions
in P ∗.
If ΓP

1 is globally µ-SM identifiable, there is a one-to-one
correspondence between a trajectory and a parameter vector
thus the unicity of the solution.�

The following theorem gives a sufficient condition for proving
that ΓP

1 is globally SM identifiable for P ∗.
Theorem 2. If there exists u such that Y (P ∗, u) 6= ∅ and for all
a0(.) ∈ Y (P ∗, u), the solutions of (3) are in P ∗ 6= ∅ then ΓP

1
is globally SM identifiable for P ∗ for this input u.

Proof – Suppose that Y (P ∗, u) ∩ Y (P̄ , u) 6= ∅ for P̄ ⊂ UP .
Thus there exists a trajectory y∗ ∈ Y (P ∗, u) ∩ Y (P̄ , u). In
particular, there exist p∗ ∈ P ∗, p̄ ∈ P̄ solutions of (3) for
which the right member ak(.) corresponds to y∗(k)(.). Hence,
p̄ ∈ P ∗ and P ∗ ∩ P̄ 6= ∅.�

Remark– For uncontrolled systems, we have equivalent condi-
tions to be satisfied autonomously.

An additional condition is required for the system ΓP
1 to be

globally µ-SM identifiable or ε-SM identifiable for P ∗, ε > 0.
Indeed, since P ∗ can be as small as possible, the parameter p̄
may not be included in P ∗. However, an injectivity hypothesis
allow one to obtain µ-SM identifiability or ε-SM identifiability
for P ∗ as it is seen in the following theorem.
Theorem 3. Suppose there exists u such that for any a0(.) ∈
Y (P ∗, u), the solutions of (3), for a finite number d of equations
are in a connected set P ∗ 6= ∅. If the function φ : p ∈ P ∗ 7→

(h(x(0, p), p), . . . ,
dd−1

dtd−1
[h(x(0, p), p]) ∈ (Rm)d is (P ∗,Rp)-

injective (resp. except on a subset of P ∗ whose diameter is
less than ε), then ΓP

1 is µ-SM identifiable for P ∗ (resp. ε-SM
identifiable for P ∗).

Remark – d − 1 is the number of times that y(t, p) =
h(x(t, p), p) must be derived for the resulting system taken at
t = 0 admits solutions.

Proof – The injectivity hypothesis assures that the trajectories
evaluated with parameters in P ∗ are all distinct.�

For obtaining the system (3), complex math developments are
generally required. However, some classes of systems have nice
properties and are easily solved, for example linear systems
(Pohjanpalo [1978]).

Example 1: Consider as ΓP
1 the following uncertain system

taken from Vajda et al. [1989]:
ẋ1 = −(k21 + k31)x1 + u, x1(0) = x10,
ẋ2 = k21x1 − x2, x2(0) = 0,
ẋ3 = k31x1 − c13x3, x3(0) = x30,
y = x2 + c13x3,

(4)

where the unknown parameters are k21, c13, Up = R2. Suppose
that xi0 ∈ [xi0, xi0], i = 1, 3 2 and a0(.) ∈ Ym. Suppose too
that 0 6∈ [x30, x30].

In this example, the set of parameters P ∗ containing (k21, c13)
is searched so that ΓP

1 is globally µ-SM identifiable for P ∗.
For this, the PSE Method relies on studying the solutions of the
following system.{

c13x30 = a0(0),
(k21 + c13k31)x10 − c213x30 = a1(0),

(5)

According to Theorem 2, it is sufficient to find the solutions of
(5). From the first equation, one gets c13 = a0(0)/x30. Then, if
0 ∈ [x10, x10], the model is not globally SM identifiable since
the particular case x10 = 0 induces the following equations
ak(0) = (−1)kck+1

13 x30 for all k ≥ 0. Otherwise, if 0 6∈
[x10, x10], the second equation gives:

k21 =
a1(0)− c13k31x10 + c213x30

x10
. (6)

Denote by γ the right member of (6). Solutions of (5) are
in P ∗ = [γ, γ] × [a0(0), a0(0)]/[x30, x30] and according to
Theorem 2, the system (4) is globally SM identifiable for P ∗.
Furthermore, the function φ : (k21, c13) 7→ c13x30, (k21 +
c13k31)x10 − c213x30) is (P ∗,R2)-injective. Thus, the system
(4) is µ-set membership identifiable for P ∗.

Obviously, this method can be used for the construction of P ∗
as it can be seen easily in example 1 but a better estimate can be
2 Recall that intervals are denoted [x, x] = {x ∈ R, |x ≤ x ≤ x}.



obtained by using indirect methods and the whole measurement
trajectory. However, it permits to know (in certain cases easily)
if the model can be or not µ-set- membership identifiable and if
some points in the interval parameters have to be excluded.

4.3 Differential Algebra based Method (DA Method)

In this subsection, the method proposed by Denis-Vidal et al.
[2001] based on differential algebra and taking into account the
initial conditions is adapted for studying the (µ-)SM identifia-
bility.
This method consists in eliminating unobservable state vari-
ables in choosing the appropriate elimination order {p} <
{y, u} < {x}. Then, the differential algebra approach Kolchin
[1973] allows one to obtain relations between outputs, inputs
and parameters. These relations can be expressed as:

Ri(y, u, p) = m0(y)

+

ni∑
k=1

θik(p)mk(y, u), i = 1, . . . ,m, (7)

where (θik)1≤k≤ni
are rational in p, θiu 6= θiv (u 6= v),

(mk)1≤k≤ni
are differential polynomials with respect to y, u

and θ0 6= 0.

The size of the system is the number of observations. For
simplicity, we suppose that i = 1, that is there is one output
and n1 = n.

The following theorem permits to obtain necessary and suffi-
cient conditions for having global SM identifiability or µ-SM
identifiability.
Consider l the higher order derivative of y in (7).
Theorem 4. Assume that the functional determinant 4R(y) =
det(mk(y, u), k = 1, . . . , n) is not in the ideal I0p obtained
after eliminating state variables.
Consider P ∗ a subset of UP for which the function φ : p =
(p1, . . . , pp) 7→ (θ1(p), . . . , θn(p), y(t+0 , p), . . . , y

(l−1)(t+0 , p))
verifies:

∀p∗ ∈ P ∗, ∀p̄ 6∈ P ∗, φ(p∗) 6= φ(p̄). (8)

Then the model ΓP
1 is globally SM identifiable for P ∗.

If the model ΓP
1 is globally SM identifiable for P ∗ and φ is

(P ∗,Rp)-injective then the model is µ-SM identifiable for P ∗.
In the two cases, if the coefficient of y(l) in (7) is not equal to 0
at t0, then the reciprocal is valid.

Proof – Sufficiency Let P ∗ verifythe hypothesis of the theorem.
Suppose there exists an input u∗ such that Y (P ∗, u∗) 6= ∅
and y∗ ∈ Y (P ∗, u∗) ∩ Y (P̄ , u∗) for a cartesian product of
intervals P̄ ∈ UP . Thus, there exists p∗ ∈ P ∗, p̄ ∈ P̄ such that
y∗(.) = y(., p∗) = y(., p̄) and R(y∗, u∗, p∗) = R(y∗, u∗, p̄).
Denote Q(y∗, u∗) = R(y∗, u∗, p∗)−R(y∗, u∗, p̄). Since
det(Q)(y∗, u∗) = det(mk(y∗, u∗), k = 0, . . . , n) =
4(R)(y∗, u∗) is not equal to zero, θk(p∗) = θk(p̄) for k =
1, . . . , n. Besides, we have y(., p∗) = y(., p̄) in particular
y(k)(t0, p

∗) = y(k)(t0, p̄) for 0 ≤ k ≤ l− 1. Since the function
φ is supposed to verify the condition (8), one gets p̄ ∈ P ∗ and
P ∗ ∩ P̄ 6= ∅.
If φ is (P ∗,Rp)-injective, P ∗ can be as small as possible and
we always have p∗ = p̄ that is P ∗ ∩ P̄ 6= ∅.
Necessity Let’s prove the contrapositive. Suppose there exists
P̄ , such that P ∗ ∩ P̄ = ∅ and φ(p∗) = φ(p̄) for a certain
p∗ ∈ P ∗ and a p̄ ∈ P̄ . Since the coefficient of y(l) in (7) is not

equal to 0 at t0 and the differential polynomials (mk)k=1,...,n

have a degree 1 in y(l) (Denis-Vidal et al. [2001]), any time
derivative y(r)(t+0 , p

∗), r ≥ l can be rewritten in function
of y(l−1)(t+0 , p

∗), . . . , y(t+0 , p
∗), θ1(p∗), θn(p∗). According to

the hypothesis on φ, the (l − 1) first coefficients of y(t, p∗)
in the Taylor expansion are the same as those of y(t, p̄), thus
y∗ := y(t, p∗) = y(t, p̄) and y∗ ∈ Y (P ∗, u) ∩ Y (P̄ , u). Thus,
the model is not globally-SM identifiable for P ∗. �

Example 2: Consider the uncertain model: ẋ1 = p1x
2
1 + sin(p2)x1x2, x1(0) = 1

ẋ2 = p3x
2
1 + x1x2, x2(0) = x20

y = x1.
(9)

where (p1, p2, p3) ∈ UP = R × [0, 2π[×R+ are the unknown
parameters. Let p4 = sin(p2). In using the Rosenfeld-Groebner
algorithm in Maple, the three following cases are given: the
impossible one y = 0 since y(0) = 1, the particular case p4 = 0
(thus p2 = 0, π) and the general characteristic presentation:

C = {ẏ2 − yÿ + ẏy2 + p1(ẏy2 − y4) + p4p3y
4}.

The functional determinant of {ẏy2 − y4, y4} is equal to
2y5ẏ2 − y6ÿ. With the function belong_to of the package
Maple, we verify that the functional determinant is not in I0p .
Thus, we have to study the following function φ : (p1, p2, p3)→
(p1, sin(p2)p3, p1 + sin(p2)b).

The model is globally SM identifiable for P ∗1 = R×]0, π[×R+

and P ∗2 = R×]π, 2π[×R+. Indeed, it is sufficient to remark
that ∀p∗2 ∈]0, π[, ∀p̄2 ∈]π, 2π[, sin(p∗2) > 0 and sin(p̄2) < 0.
However, the model is clearly not µ-SM identifiable for P ∗1 and
P ∗2 since the function sin is not injective on these two subsets.

5. PARAMETER ESTIMATION

In this section, a numerical method deduced from section 4.3 is
proposed to estimate the unknown constant parameters of a non
linear system like (1). We consider the case i = 1, that is there
is only one output variable.
The output is supposed to be disturbed by a bounded additive
noise η, η(t) ∈ [η(t)] and the parameter vector p belongs to P
where P is an interval vector. The polynom (7) can be used to
estimate the interval vector P . Consider Θk(P ) the associated
expression of θk(p) defined in the polynom (7), where p is
substituted by P . Θk(P ) is a connected set for all connected
P since it involves sum, difference and product of connected
sets.

Suppose that the observations are done at discrete times tj , 0 ≤
j ≤ M and they are noted yj = y(tj). Then, the following
system whose interval vector (Θk(P ))1≤k≤n is unknown can
be deduced:

∀j = 0, . . . ,M, 0 ∈ m0(yj , uj) +

n∑
k=1

Θk(P )mk(yj , uj).

(10)
Notice that (10) is linear with respect to {Θ1(P ), . . . ,Θn(P )}.
Parameter estimation consists in solving the previous sytem
which comes back to solving 0 ∈ [A][x] − [b] or [A][x] = [b]
where [A]j = ([m1(yj , uj)], . . . , [mn(yj , uj)]) is the jth line
of [A] and [b]j = [−m0(yj , uj)] is the jth line of [b].

Example 3: The following example taken from (Verdière et al.
[2005]) is considered. It allows one to explore the capacity



of the macrophage mannose receptor to endocytose soluble
macromolecule and to quantify the different aspects of such a
process. The model is the following:

ẋ1 = α1(x2 − x1)− Vmx1
1 + x1

,

ẋ2 = α2(x1 − x2),
x1(0) ∈ [0.62, 0.63], x2(0) = 0,
y = x1,

(11)

where x1 (resp. x2) is the enzyme concentration outside (resp.
inside) the macrophage and p = (α1, Vm, α2) are the unknown
parameters which have to be identified. The parameter α1 is the
rate constant of the transfer from Compartment 1 (or the central
compartment), practically plasma, to Compartment 2 (or the pe-
ripheral compartment), which represents in the model the part
of the extravascular extracellular fluid accessible. Furthermore,
α2 is the rate constant of the transfer from Compartment 2 to
Compartment 1.

The study has been conducted in simulation in Matlab by
using Intlab. The simulated outputs are disturbed by a truncated
gaussian noise η such that η(t) ∈ [−0.001, 0.001]. Thus,
y(t) = ȳ(t) + η(t) where ȳ is the exact output corresponding
to the exact value of parameters: α1 = 0.011, α2 = 0.02
and Vm = 0.1. The observations are supposed to be done
at discrete times (tj)j=1,...,N on the interval [0, 117] with a
sampling period equal to 1

2 . The polynom R(y, u) is given by:

R(y, u) = ÿ(1 + y)2 + γ1ẏ(1 + y)2 + γ2y(1 + y) + γ3ẏ,

with γ1 = α1 + α2, γ2 = α2.Vm and γ3 = Vm.
If we denote yp(tj) (resp. ypp(tj)) the estimate of ẏ(tj) (resp.
ÿ(tj)). These estimates are obtained by finite differences and
the obtained sytem which has to be solved is [A][γ] = [b] where
[A]j = ([yp(tj)(1+y(tj))

2], [y(tj)(1+y(tj))], [yp(tj)]) and
[b]j = [−ypp(tj)(1 + y(tj))

2].

Solving this system can be casted into the set inversion frame-
work for which we used the SIVIA algorithm. To use SIVIA, it
is necessary to give initial intervals for γ1, γ2 and γ3. The prob-
lem solved here is to find [γ] such that 0 ∈ [A][γ]−[b]. By using
initial intervals given by [γ1] = [0, 0.04], [γ2] = [0, 0.003],
[γ3] = [0, 0.2] and the bisection precision ε = 0.001, we obtain
in 14.18 seconds: [α1] = [0, 0.0401], [α2] = [0, 0.0437],
[Vm] = [0.06875, 0.13203]. All these intervals contain the
normal values.
Then, by using [γ1] = [0, 0.04], [γ2] = [0, 0.003], [γ3] =
[0, 0.2] and the bisection precision ε = 0.0001, we obtain in
177.55 seconds: [α1] = [0, 0.0329], [α2] = [0.0071, 0.0317]
and [Vm] = [0.094824, 0.10527]. All these intervals contain
the normal values.

6. CONCLUSION

This paper summarizes the quite scarce works for analysing
the identifiability of SM models and presents the definitions
of SM identifiability and µ-SM identifiability. Checking these
properties for the general case of non linear systems is the main
focus of the paper. Interestingly, a parameter esimation method
is derived from one of the identifiability checking methods. By
building the parameter estimation scheme on the analysis of
identifiability, we can guarantee that the solution set reduces
to one connected set. Future work will consider to apply the
parameter estimation method in various application domains.
Fault detection and identification will be our preferred line of
work and the prognosis problem will also be considered.
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