
HAL Id: hal-01967640
https://laas.hal.science/hal-01967640v1

Submitted on 1 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A language-based intrusion detection approach for
automotive embedded networks

Ivan Studnia, Eric Alata, Vincent Nicomette, Mohamed Kaâniche, Youssef
Laarouchi

To cite this version:
Ivan Studnia, Eric Alata, Vincent Nicomette, Mohamed Kaâniche, Youssef Laarouchi. A language-
based intrusion detection approach for automotive embedded networks. IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC), Nov 2015, Zhangjiajie, China. �hal-01967640�

https://laas.hal.science/hal-01967640v1
https://hal.archives-ouvertes.fr

A language-based intrusion detection approach for
automotive embedded networks

Ivan Studnia1,2,3, Eric Alata2,3, Vincent Nicomette2,3,
Mohamed Kaâniche2,4, Youssef Laarouchi1

1Renault S.A.S., 1 Avenue du Golf, F-78288 Guyancourt, France
2CNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France

3Univ. Toulouse, INSA, LAAS, F-31400 Toulouse, France
4Univ. Toulouse, LAAS, F-31400 Toulouse, France

Email: {ivan.studnia, youssef.laarouchi}@renault.com, {ealata,nicomett,kaaniche}@laas.fr

Paper category: Regular paper
Abstract—The increase in connectivity and com-

plexity of modern automotive networks presents new
opportunities for potential hackers trying to take over
a vehicle. To protect the automotive networks from
such attacks, security mechanisms, such as firewalls
or secure authentication protocols may be included.
However, should an attacker succeed in bypassing such
measures and gain access to the internal network, these
security mechanisms become unable to report about the
attacks ensuing such a breach, occurring from the inter-
nal network. To complement these preventive security
mechanisms, we present a non intrusive network-based
intrusion detection approach fit for vehicular networks,
such as the widely used CAN. Leveraging the high
predictability of embedded automotive systems, we use
language theory to elaborate a set of attack signatures
derived from behavioural models of the automotive
calculators in order to detect a malicious sequence of
messages transiting through the internal network.

Keywords—automotive networks, security, intrusion
detection, CAN, finite state automata

I. Introduction
The embedding of electronic components into cars is

now a well established fact: modern vehicles include up to
100 ECUs [16] (Electronic Control Units, the embedded
computers controlling one or more functions of a vehicle).
As more and more functions are being managed by ECUs
— trending towards fully autonomous cars — the size
and complexity of embedded automotive software keep
growing [4]. Moreover, a car is now interfaced with other
external networks and devices via wired (USB) or wireless
(Bluetooth, WiFi, 3G, LTE. . .) communication. Therefore,
the various computing systems embedded in modern cars
can no longer be considered as a closed network, increasing
the risks of cyber attacks.

Indeed, like any other computing system, an automo-
tive network can be plagued by vulnerabilities, which can
be exploited by an attacker connected to it. Such attacks
could lead to a privacy breach (for example if the attacker
has access to the navigation systems history) or some
comfort disturbances (an equipment no longer working
properly). More importantly they could also threaten the
life of the passengers if safety systems are impacted [15].

While the risks of a cyber attack were previously dis-
regarded by the industry as the ECUs could not easily be
accessed from outside a "disconnected" car, the increased
risks coming with communication-enabled vehicles [5] have
made the implementation of security mechanisms into
automotive networks a major topic for manufacturers.
This can for example be illustrated by the numerous
European projects such as SEVECOM [9], PRESERVE [1],
EVITA [7] or OVERSEE [6].

As the typical lifetime of an automobile is about 20
years, the use of purely preventive measures such as fire-
walls or misuse-based IDS may not be sufficient since the
initial rules may become outdated. In this context, we be-
lieve that such security measures should be complemented
by anomaly detection techniques that provide the ability
to address previously unknown attack scenarios that could
target modern vehicles. Compared to traditional computer
networks, the interactions between ECUs are strictly de-
fined, the protocols are currently more simple, and the
possible user inputs (at least concerning the safety-critical
aspects) are limited. This results in a relatively high pre-
dictability of the network reaction given its current state.
Thus, by defining a language characterizing the messages
exchanged through the network, one could detect if a
message sent on the network is legitimate or inappropriate.

In this paper, we introduce a network-based intrusion
detection system (IDS) fit for a typical embedded vehicular
network. More specifically, we present a method leveraging
the specificities of the automotive network in order to
generate a set of forbidden message sequences which can
be used to perform intrusion detection. This paper is
organised as follows. We first give an overview of the
related work addressing automotive security in section II.
In Section III we present our proposed IDS for in-vehicle
networks, its design and formalisation. We illustrate it
with an example in Section IV and present a possible
optimization to reduce the spatial complexity in Section V.
The performances of our approach are then assessed in
Section VI. Section VII is devoted to discussions about the
limitations of our approach. Finally, Section VIII concludes
this paper.

II. Related Work

Automotive networks consist of several domains and
securing such networks requires a holistic approach, where
security is enforced in every domain. While solutions for
securing the infrastructure and the communication inter-
faces between the vehicle and the outside world exist,
they are beyond the scope of this paper. Concerning the
embedded automotive network, security solutions can be
grouped in three main categories: 1) Cryptographic tech-
niques to authenticate or encrypt the packets on a bus; 2)
Solutions to ensure integrity of the embedded software and
3) Solutions to detect anomalies occurring in the network.
More information can for example be found in [22], [10] or
[21].

For desktop computers, intrusion detection systems are
now common and comprehensive surveys of such systems
can be found in the literature (see for example [13]).
However, in the automotive world, we could only find a
few examples of intrusion detection systems and to the best
of our knowledge, no complete implementation of such a
system has been documented.

A specification-based IDS for automotive networks was
introduced in [12]. Their system works by pairing each
ECU with a detector that checks if the frames sent or
consumed by the related ECU are compliant with a set of
rules based on specifications of both the protocol and the
ECUs. Some attacks require a communication between de-
tectors to be detected. Moreover, in the method presented
in [14], intrusion detection is performed by every node on
the network, which tries to detect if other nodes are im-
personating it by checking the frames headers. While such
approaches show interesting results, they require some
modifications of the software embedded in the ECUs. How-
ever, new vehicles are seldom designed from scratch and
numerous components are reused from previous projects
or COTS1 products that cannot easily be altered.

Müter et al. proposed two possible approaches for
network-based anomaly detection. First, [18] describes a
set of sensors to perform intrusion detection in an au-
tomotive network without theoretically raising any false
positive. [17] presents a statistical approach in which an
alert is raised when sudden variations of the entropy are
witnessed. The notion of a vehicular state (parked, driving
forward or backwards. . .), which could be modeled by a
finite state machine and determine what value of entropy
should be used as the baseline, is mentioned but not used
in their experiments.

If a well designed signature-based IDS raises very few
false positives (or even none), it requires regular updates
to maintain its signature base up to date. On the other
hand, anomaly-based intrusion detection may be able to
detect previously unknown attack patterns, but the high
complexity of an automotive network makes it difficult
to design a precise enough statistical model to prevent
false positives while still allowing exceptional but perfectly
legitimate situations.

1Commercial Off-The-Shelf

Our work expands on these previous approaches as
our goal is to implement and test an IDS that leverages
the specificities of an automotive network to perform its
tasks. More specifically, as we consider a manufacturer’s
point of view, we want to use our advanced knowledge
of the embedded network and the behaviour of the inter-
connected ECUs in order to be able to infer the state of
its nodes at any time. This then allows to detect ongoing
attacks by checking whether a frame belongs to an attack
sequence with regards to the currently recorded state of the
system. As our IDS is derived from the ECUs specifications
(assuming these specifications are correct), we do not
have to rely on statistical analysis to create our models,
therefore avoiding potential false positives.

III. Designing an automotive intrusion
detection system

The automotive IDS that we propose in this paper
aims at detecting ongoing attacks on the internal network
based on data gathered from the network traffic. This
section is devoted to the detailed presentation of this IDS:
subsection III-A describes the attack hypotheses, III-B ex-
plains our approach to detect these attacks, III-C sums
up our solution and III-D gives the formal details of our
implementation.

A. Attack hypotheses
In 2011, Checkoway et al. [5] have proven that it is

possible for an attacker to remotely gain an access to the
embedded network, as they took control over ECUs acting
as communication interfaces. They then successfully man-
aged to reproduce the attacks described in [11], effectively
remotely compromising a car from short communication
range (via Bluetooth or by indirect physical access sce-
narios where the legitimate user unwillingly connects an
infected device to his car) to very long communication
range (3G).

In our work, we assume that an attacker already gained
the ability to remotely send messages to at least one
internal bus but is not able to physically tamper with the
internal network (as this could allow him to completely
bypass any network-based security device). In other words,
our work focuses on detecting a successful breach into a
car’s embedded network but not on the possible causes of
this breach (remote attack, sabotage. . .). We also assume
that the attacker may possess advanced knowledge (such
as the network architecture or the content of specific CAN
frames) about the automotive network he is attacking.

From a network perspective, it is assumed that the at-
tacks correspond to the transmission through the network
of a frame or a sequence of frames sent in order to divert
the car from its standard behaviour. With this in mind, the
attacks we want to detect fall into the following categories:

1) Emitting frames that do not conform to the spec-
ifications (unknown identifier, data field of the
wrong size, incorrect CRC. . .).

2) Sending periodic, forged frames while the legit-
imate corresponding frames are still being sent
by the system (for example, malicious frames

requesting to turn off the beams while they are
legitimately being switched on).

3) Replacing legitimate frames by malicious ones;
the corresponding legitimate frames are no longer
seen on the network.

4) Forging event-related frames, that are only sent
asynchronously in reaction to a given event in-
stead of being sent periodically with an updated
content.

To the best of our knowledge, most approaches de-
veloped for automotive applications address the first two
categories of attacks and do not specifically focus on the
latter.

B. Proposed approach

Our goal is to develop a (relatively) cheap system which
can be deployed on current architectures and subsequently
ported to future models with a low amount of efforts. To
do so, we chose not to alter any already existing node of
the network. Hence, intrusion detection is based only on
the information gathered from the messages observed on
the buses our system has access to.

Among the four kinds of attacks described above, the
first two cases are easy to detect: 1) Erroneous frames
can be detected by checking a message against a set of
specifications, and 2) Periodic frames sent in addition
to legitimate traffic can be detected by an increase in
the frequency of the targeted frames. Attacks falling into
these categories are detected by all the IDS presented in
Section II. Indeed, such detections are easy to implement
through a set of formal rules. In such cases, analyses
on a single frame are sufficient to detect an anomaly.
However, in order to detect attacks falling within the last
two categories, taking only one frame into account may
not be sufficient as it may by itself be compliant to every
formal rule. Instead, the key to detect these attacks relies
on the correlation of contextual information about the
monitored frames. These two aspects (rules and correlation
mechanisms) of detection are considered in [18] via the
description of 8 categories of sensors detecting different
kinds of anomalies. Some of these sensors check the frames
for consistency with the system specifications while others
perform consistency checks between the content of several
frames. However, no implementation of the sensors is
presented. Besides, [17] and [16] present approaches where
the system has to learn the standard network behaviour.
While we consider that such approaches are performing
some correlation, this correlation is done with respect to
what has been observed during the learning phase, and
not to what has happened during the actual monitoring.
Moreover, such methods are more prone to false positives
since it is hard to guarantee that all possible legitimate
use cases were taken into account.

In traditional information systems and networks, IDS
must address the fact that they may not precisely know
every node of the monitored system, the whole range
of their behaviour (as people are using them) nor the
entire configuration of a network as nodes could be added
or removed very often. This results in a wide (possibly

infinite) range of possible rules and/or configurations to
be defined if one wants to be able to monitor everything.
This is not the case in a car: the embedded network
architecture usually does not change during the lifetime
of the vehicle and there are not many different possible
human inputs. This stability can be used to our advantage
as the behaviour of a (sub)system of ECUs is therefore
quite predictable. The car manufacturers have an advanced
knowledge of the system and can use the ECUs specifica-
tions as a reference point to define the expected behaviours
of the systems they want to monitor.

However, directly confronting models derived from the
specifications to the actual traffic requires a good synchro-
nization between the monitoring system and the nodes of
the network. Indeed, we may need to keep monitoring the
vehicle after a first detection (for example, if the detected
message sequence does not target a safety-critical system,
we could consider that it is not necessary to immediately
alert the driver or stop the vehicle). As our system just
witnessed a deviation from the expected behaviour, it can
no longer be sure of the state of the monitored systems.
One solution to this issue is to give the system the ability
to communicate with each ECU in order to ask them
their current state, which adds a lot more complexity to
its implementation and would defeat our objective of not
altering the already existing nodes. Therefore, we need
to find a detection method that does not require such a
perfect synchronization with the nodes.

Our idea is to base our detection on a list of forbidden
sequences (i.e. signatures) derived from such aforemen-
tioned models. The main advantage of this method is that
the analysis may resume after a de-synchronization (al-
though it may need to drop the current sequence and start
over with the next frame). Moreover, the deterministic
aspect of the automotive network can potentially allow us
to create a comprehensive signature-base which could last
for the lifetime of the car without requiring further updates
(as long as no node is replaced nor added into the network
or the specification of some nodes is updated).

In order to perform a correlation between the moni-
tored frames, we must gather and use data from previously
seen messages to infer the current state of the car (or at
least the monitored subsystem), which will allow us to
determine if a frame is consistent with the current context.
Accordingly, the information needed is:

• Similar data from distinct sources (for example
speed-related data can come from the wheels as
well as from the navigation system). Some data
can also be emitted in several distinct frames for
safety reasons. This redundancy could also be used
for security. This data may come from different
subnetworks.

• An history of the previous frames emitted by the
monitored subsystem.

Therefore, two levels of detection can be performed
for each frame: first formal checks to know whether the
frame is compliant with the specifications, then consis-
tency checks to detect if the frame is consistent with the
current state of the system.

C. IDS Overview
In this subsection, we describe the different features

of our IDS, with a specific focus on the context-sensitive
anomaly detection.

1) Location: In order to retrieve information from dis-
tinct sources, our IDS needs to be connected to all the
monitored networks. Indeed, a car’s embedded network
usually consists of two or more subnetworks of ECUs linked
together via some ECUs acting as gateways. During an
attack, such gateways become prime targets as they would
allow an attacker to reach another part of the network.
Therefore, our IDS can either be included in one of the
existing gateways or become a new node connected to
all the buses to be monitored (however this could create
a link between otherwise separated networks, potentially
increasing the risks). A distributed IDS, with several nodes
on distinct subnetworks would require the design of a
communication channel between the different components.
At the time of writing this paper, we have not tested such
a solution.

Let us consider a possible modern automotive network
architecture such as the one shown in Figure 1, based on
an example of the EVITA project [2]. Possible locations for
the IDS could be: A) on a bus shared by several gateways,
B) into an already existing gateway ECU or C) several
smaller modules distributed across the network.

Chassis
Body

Electronic
Head Unit

Communication
Unit

Diag
interface

Satnav

3G
DSRC

Door modules

Light control

HVAC

Brakes

Steering

Airbag

Audio

Display

Navigation

Telephone

Powertrain

Engine control

Transmission

A

C C

C

B

Figure 1: Possible IDS implementations in a modern auto-
motive network architecture

2) Principle: As seen in III-B, some anomalies can be
detected by checking a single frame while others require
to keep track of some of the traffic history. As we want to
be able to detect both, we need to perform two successive
analyses. Those are summed up in Figure 2. First, a pre-
processing is required for identifying the frame type (in
the case of CAN, it is done with its ID field) and therefore
preparing the content of its data field for further analyses.
The first part of the detection consists in checking whether
a frame complies with a set of rules defined by the protocol
used and/or the manufacturer’s specifications. When a rule
is violated, an alert may be raised according to the severity
and frequency of the violation (depending on the affected
system). As this is not the main focus of this paper, we
will not get into further details for this part. An example
of such rule-based system can be found in [19]. Finally,

the context-related analysis is done in a signature-based
intrusion detection fashion, through the use of finite state
automata. The signatures generation and their processing
are detailed in the following section.

D. Formalisation
In this section, we describe the proposed approach for

signature generation. In our context, a system is composed
of several ECUs involved in carrying a specific task or set
of tasks. An ECU may contribute to several functions. For
example, the system "Braking" would include the ECUs
monitoring the pedals, the handbrake, the brakes and the
(brake) lights. As such systems are often specified via state
machines, we use formal language theory as a convenient
way to describe them. For each ECU, we define their
language LECU as follows:

• The symbols are the different requests emitted
onto or received from the network, restricted to
what is relevant to the system under consideration.
An alphabet ΣECU is the set of all these symbols.

• The words are all the valid sequences of symbols,
i.e., sequences that can happen during a legitimate
use of the system.

We can then create a finite state automaton (FSA) de-
scribing this language. It represents a model of the ECU
behaviour as perceived from the network.
We remind that a FSA consists of a quintuple
(Q,Σ, δ, I, F) where

• Q is the finite set of states.
• Σ is the finite alphabet.
• δ : Q × Σ → P (Q), where P (Q) is a subset of Q,

is the transition function
• I is the set of start states.
• F ⊆ Q is the set of final (or accept) states.

A deterministic finite automaton (DFA) is a FSA where

• There is only one start state: I = {q0}
• The transition function is deterministic: for a given

current state and a given symbol, there is one and
only one state to be reached.

In the rest of this paper, all automata are considered
complete, which means that for each state, there is an
outgoing transition for every symbol of their alphabet.
States from which there is no sequence eventually leading
to a final state are called dead states. All such states can
be grouped into one unique dead state.

The language of the system denoted as Lsys, and its
corresponding FSA denoted as Asys, are defined as the
synchronized parallel composition of all the automata of
its ECUs. Their alphabet is denoted as Σsys.

The synchronized parallel composition of two complete
DFA A and B is defined as:

A ‖ B = (QA ×QB ,ΣA ∪ ΣB , δ, IA × IB , FA × FB)

Read
CAN frame

Extract signals Analyse consistency
 with system state

Process
next input

Compliant with
the rules ?

Correct
sequence(s) ?

Error
threshold
reached ?

Attack detected:
Alarm

NO

YES

YES

YES

NO

Figure 2: Flowchart of the intrusion detection process

where

δ(qA.qB , s) =

δ(qA, s).δ(qB , s) if s ∈ ΣA ∩ ΣB

δ(qA, s).qB if s ∈ ΣA ∧ s /∈ ΣB

qA.δ(qB , s) if s /∈ ΣA ∧ s ∈ ΣB

qA.qB otherwise

We remind that our goal is to detect an attack on
the network by checking whether the frame emitted on
a bus is consistent with the system behaviour history. In
other words, we want to detect when a frame belongs
to a sequence that is not part of any valid sequence of
Lsys. An invalid (or forbidden) sequence can be defined as
a sequence that is valid up to a certain point where an
unexpected symbol eventually appears. Formally, if w is
an invalid word for Lsys and w = s0s1..sn where all si are
symbols from Σsys, then:
∃v ∈ Lsys,∃k ∈ [0, n−1], s0..sk ∈ pref(v)∧s0..sk+1 /∈ Lsys

where pref(v) is the set of all the prefixes of v. To do so,
we will derive a set of such forbidden sequences from Lsys.

In the following, we describe the different steps of the
method that we adopted in order to obtain the set of
invalid sequences:

1) Starting from Lsys, we construct the set contain-
ing all the words that start as words of Lsys (i.e.,
that belong to Pref(Lsys), the set of the prefixes
of all the words of Lsys) concatenated with an
extra symbol from Σsys.

2) Let Lsys be the complement of Lsys. Lsys thus
contains every word that is not in Lsys and there-
fore every possible invalid sequence of requests.

3) By computing the intersection of the sets de-
scribed in steps 1 and 2, we therefore obtain the
set
{w ∈ Lsys|∃(x, s) ∈ Pref(Lsys)× Σsys, w = x.s}

This set corresponds to (Pref(Lsys).Σsys)∩Lsys

and contains all the invalid sequences truncated
after their first deviation from a normal be-
haviour. At that point, we have a language that
could theoretically be used to detect any deviation
from the normal behaviour as long as it is per-
fectly synchronized with the monitored system.

4) However, as we want to be able to restart the
observation after a detection (without having to
restart the whole car), we must be able to de-
tect attacks starting at any time of a sequence,
that is to say the suffixes of an attack se-
quence. The corresponding sequences are included

in Suf(Pref(Lsys).Σsys∩Lsys), where Suf(L) is
the set of all the suffixes of a language L.

5) However, this set also contains words that are
portions of valid sequences of Lsys (i.e., they are
part of the set of factors of Lsys, or Fact(Lsys)).
Raising an alert for such words could be a false
positive. We therefore remove from this set all
words belonging to Fact(Lsys), which gives us the
following set:

Suf(Pref(Lsys).Σsys ∩ Lsys) ∩ Fact(Lsys)

That last set, called Sattacks, describes the language of
the attacks carried over an automotive network for a given
(sub)system. Sattacks is created from the rational language
Lsys and FSAs are closed under all the operations used to
perform this generation. Sattacks is therefore also a rational
language Lattacks.

IV. Example
In all the following figures, grayed states are the start

states of an automaton and double-circled states represent
final states.

Let us consider the automata shown in Figure 3 rep-
resenting 3 fictional ECUs involved in the control of the
low beams. The transitions correspond to signals sent or
received through the network (as there is no source nor
destination authentication on CAN, there is no difference
between these two cases from an observer point of view).
The "command" ECU sends instructions for the ECU
controlling the lights: turning the beams on (l), off (o)
or activating the automatic mode (a), which relies on
the data sent by the light sensor: day (d) or night (n).
When receiving l or o instructions, the lights controller
simply executes them (and ignores data coming from the
light sensor). However, when asked to switch to automatic
mode, it will send a frame telling whether it chose to turn
the lights on (a_l) or off (a_o). As we consider that the
observation can be stopped at any time, we represent those
ECUs with prefix-closed automata.

The minimized result of their synchronized parallel
composition is given in Figure 4, this automaton corre-
sponds to the language Lsys.

To illustrate the composition, let us consider for ex-
ample that the 3 ECUs represented by automata (a), (b)
and (c) are in their initial state. When the symbole o
is read, automata (a) and (c) take a reflexive transition
toward their respective initial states. The language of
automaton (b) does not contain o, therefore, (b) stays in

0

o
1l

3a
o

l

2

a

l

a

o
a,l,o

(a) Command

0

n

1
d

n

d

(b) Light sensor

0

d,l,n,o

1

a

4

a_l,a_o

l,o

a

2
n

3
d

a_l,a_o

a_l

n

d

a,a_o,l,o

a_o

n

d

a,a_l,l,o

a,a_l,a_o,d,l,n,o

(c) Light controller

Figure 3: Initial ECU automata

its current state, which is the initial state. Therefore, on
their synchronized parallel composition, symbol o labels
a reflexive transition on its initial state. However, if the
symbol l is read instead, automaton (a) takes a transition
to state 1 and automaton (c) takes a reflexive transition
to state 0. Here also, the language of automaton (b) does
not contain l, therefore, (b) stays in the initial state.
Therefore, as at least one of these automata is no longer in
its initial state, the symbol l labels a transition from the
initial towards another state on their synchronized parallel
composition.

The automaton Aattacks recognizing Lattacks is shown
in Figure 5. A forbidden sequence is detected when the
final state is reached. For example, we highlighted (with
dotted lines) the transitions corresponding to the forbid-
den sequence a,n,a_o (automatic mode is on, the light
sensor says it is night time and yet the lights controller
turns the lights off).

0

d,n,o

1

l

5

a,a_l,a_o

o

d,l,n

2

a

a_l,a_o

l

a

3

d

4
n

a_l,a_o,o

a_o

d

n

a,a_l,l,o

a_l

d

n

a,a_o,l,o

a,a_l,a_o,d,l,n,o

Figure 4: Parallel composition of automata (a), (b) and (c)

V. Scalability
In an automotive context, the processing of a frame

has to be as short as possible as a too long detection delay

could have serious consequences. Moreover, saving memory
space on an embedded software can reduce the costs of
the corresponding ECU. Both these constraints can be
expressed in terms of temporal and spatial complexity.

First, a naive implementation could consist in creating
a DFA Aattacks that corresponds to the language Lattacks,
as DFAs allow fast signature-matching performances. In-
deed, time complexity is not an issue while processing a
DFA since there is only one possibility for each (state,
transition) couple. The processing can thus be done in
linear time. For example, a simple way to represent a finite
state automaton is by using a two-dimensional array where
each line is a possible state and each column represents a
possible transition. We estimate the spatial complexity by
calculating the maximum size (i.e., the number of states)
of the automata generated by the previously described
method. Complexities in the worst-case for the required
operations on finite state automata are given in table I.
We base our calculations on results that can be found in
the literature [23], [3]. Therefore, if we suppose that the
initial language Lsys can be represented by a complete
DFA containing n states, then

1) Pref(Lsys) state complexity is n. Practically, it
is the same automaton as Lsys where every state
leading to a final state is made final too.

2) Pref(Lsys) being by definition prefix closed,
Pref(Lsys).Σsys state complexity is n+ 2 in the
worst case, as a DFA accepting (Pref(Lsys).Σsys)
can be constructed from a minimal DFA accept-
ing Pref(Lsys) and adding at most two states.
First, we create a new start state with outgoing
transitions having the same targets than those
of the original start state but with no incoming
transition (the original start state thus loses its
status). Then, we remove the reflexive transitions
on the former dead state and make it a final state.
A new dead state, reachable only from the former
dead state is then added.

3) State complexity of Lsys is n.
4) Therefore, in the worst case, the state complexity

of (Pref(Lsys).Σsys) ∩ Lsys should be O(n2).
However, as both sides of the intersection come
from the same language Lsys, they share many
similarities. Indeed, by applying a transforma-
tion to the Lsys automaton similar to what is
described in step 2), but without altering its
final states, we obtain an automaton that still
accepts Lsys but has the same structure as the
one described in 2). Therefore, an automaton
with the same structure where the final states
correspond to the states that are final in both
these previous automata accepts the intersection
of their languages and its state complexity is n+2.

5) There is a simple way to construct the automaton
describing the suffix closure of a regular language
by taking a DFA recognizing this language and
turning every state leading to a final state into an
initial state. However, this makes the automaton a
Nondeterministic Finite Automaton (NFA). Cre-
ating a DFA recognizing the same language as an

8 9
a,a_l,a_o,d,l,n,o

0

1

d

5
a,a_l,a_o

3
l

4

o

2

n

a,a_l,a_o,d,l,n,o

a_l

d

a,a_o

l

o

n

a_l,a_o,o

a

6
d

7
n

l

a,a_l,l,o

a_o

d

n

a,a_o,l,o

a_l

d

n

a_l,a_o

a

d,l,n

o a,a_l,a_o

l

d,n,o

a_o

d

a,a_l

l

on

Figure 5: Automaton Aattacks

NFA is possible (via the powerset construction).
However, in the worst case, the resulting DFA
possesses 2n states.

6) The same goes with the Factor closure of Lsys as
Fact(Lsys) = Suf(Pref(Lsys)). Here also, a DFA
recognizing Fact(Lsys) may also have 2n states in
the worst case.

Therefore, constructing a DFA Aattacks recognizing the
language has exponentially more states than the original
automaton Asys describing the system. This becomes prob-
lematic for complex systems with potentially hundreds of
possible states. In order to mitigate this potential issue,

Table I: State complexity of basic operations on finite state
automata

Automaton Size (worst case)
L1 m
L2 n

L1 m
L1 ∩ L2 mn
L1 ∪ L2 mn
P ref(L1) m
Suf(L1) m (NFA)
DF A(L1) if L1 NFA 2m

we propose the following solution:
Let Lleft = Suf(Pref(Lsys).Σsys∩Lsys) and Lright =

Fact(Lsys). We now have Lattacks = Lleft ∩ Lright.
By definition, Lright contains all the words on Σ that

are not factors of Lsys. Its intersection with Lleft ensures
that we stop (and/or restart) the observation after the first
deviation from a potentially legitimate sequence has been
detected. Therefore, we can detect words from Lattacks

by just considering an automaton accepting Lright and
stopping the observation the first time the final state is
reached. However, as Lright = Fact(Lsys), using a DFA
for this would raise the same issues as before. Instead, let
us use the fact that Fact(Lsys) = Suf(Pref(Lsys)).

Let Aright be a DFA that accept the language

Pref(Lsys). The size of Aright is O(n). Manipulating
Aright as is would still require a strong synchronization
with the monitored system. This is why we introduce the
set Sright which initially contains all the states of Aright.
This set represents all the possible states in which the
monitored system could be at the time of observation.
Whenever a new relevant signal is processed, a new set is
created: it contains the states that can be reached from
the states contained in Sright by taking the transition
corresponding to that signal.Sright then becomes this new
set for the next step. This method lets us browse Aright

as if all its states were initial states.

The delta(A, s, x) procedure in Algorithm 1 returns
the state reached after activating the transition corre-
sponding to symbol x from state s in automaton A.
The isFinal(s) procedure returns True if state s is final.
Algorithm 1 describes the procedure used to perform the
detection using these two lists when a symbol x is read. It
works as follows.

1) Whenever an incoming frame contains data that
corresponds to a symbol of Σsys, all the elements
of Sright are updated with respect to the transi-
tion function of Aright.

2) Sright corresponds to the possible evolutions in
Aright = Pref(Lsys), although we are actu-
ally interested by the elements of Fact(Lsys) =
Suf(Pref(Lsys)). Therefore, the observed se-
quence is in Fact(Lsys) iff it is not a suffix of
Pref(Lsys), i.e., iff no element of Sright corre-
sponds to a final state of Aright.

3) If such a condition is met (i.e., all the states of
Sright are not final), then the observed sequence is
Lright, and therefore in Lattack. Else, we continue
the observation.

Therefore, we are able to determine whether a sequence
is a word of Lattacks without having to build the DFA
Aattacks. The memory requirements corresponding to the
execution of this method can be estimated as follows:

Algorithm 1 Intrusion detection
1: procedure Detect(Sright, x)
2: counter ← 0
3: for i← 0, size(Sright)− 1 do
4: Sright[i]← delta(Aright, Sright[i], x)
5: if ¬isFinal(Sright[i]) then
6: counter ← counter + 1
7: end if
8: end for
9: detection← (counter2 = size(Sright))
10: return detection
11: end procedure

• n× |Σsys| for Aright

• n for Sright

Which makes a total of

n(|Σsys|+ 1)

The tradeoff in temporal complexity is that for each step,
we execute the delta function at most n times for Aright

(i.e., once for each element of Sright) instead of just once
if we were using a deterministic version of Aattacks.

Figure 6 describes a run of Algorithm 1 using the
example system from section IV:

1) First, Sright is initialized with all the states of
Aright.

2) Symbol ’a’ is read: For every state in Sright,
we retrieve the corresponding state reached when
taking the transition corresponding to ’a’ from
them on the automaton Aright, equivalent here
to the Asys of Figure 4 as Asys is prefix-closed. A
new set is then created, becoming Sright for the
next step.

3) As long as the requirement described in Algo-
rithm 1 is not met, we continue the observation
and read the next input (here, ’n’).

4) However, when symbol ’a_o’ is read, we are in
a situation where all the states of Sright are not
final (the red cases). In such a case, this means
that the sequence ’a,n,a_o’ is a forbidden one:
an alert is raised.

0 1 2 3 4 5’a’ is read
5 2 2 5 5 5

’n’ is read

4 5
5

’a_o’ is read

2 5

Alert!

Begin observation Sright

OK

OK

OK

Figure 6: A run of Algorithm 1 for the sequence a,n,a_o

In order to estimate the efficiency of this solution in
the case of large systems, we randomly generated DFAs of
different sizes (although with an alphabet size arbitrarily

fixed at 20 symbols). Each automaton is then used as
an Asys from which we derived the corresponding Aright.
For each sample, we then randomly generated a sequence
that was designed to raise an alert on the tenth symbol
and have it analysed with our method. Before each step
(i.e., whenever a new symbol is analysed), we counted the
number of elements of Sright. Figure 7 shows the results
of this experiment for minimal automata Asys consisting
of 10, 100 or 1000 states (resp. the red, green and blue
curves). We can see that the size of Sright decreases
exponentially with each step. This means that even if this
method may be too slow to detect an attack on time
against a complex system happening right after the IDS
started, a quick detection can be performed after a few
symbols have been processed, since the size of Sright will
have drastically reduced.

1

10

100

1000

0 1 2 3 4 5 6 7 8 9

S
iz
e
of
S
rig
ht

Step

10 states
100 states
1000 states

Figure 7: Evolution of the size of Sright for different sizes
of Asys

VI. Evaluation

Testing the proposed IDS on a real vehicle and under
representative traffic conditions and attack scenarios is
a very challenging task. At this stage of our work, we
assessed the performances of our method based on logs of
the CAN network traffic of a car that has been recorded
under “standard” conditions (i.e., without the injection of
malicious messages). In order to simulate some attacks, we
modified these logs by adding frames (for the cases where
an attacker inserts additional traffic in the network) or
modifying existing frames (for the cases where the attacks
consist in altering the messages sent by one or several
ECUs). We then used the altered logs to test our intrusion
detection system.

The tests were performed on an Intel Core i7-3720QM
2.60GHz processor. In order to get as close as possible
to an actual automotive hardware, we used only one core
clocked at 1.2Ghz. The early prototype used for the tests
has been developed in Python. The values presented in this
section are therefore not representative of a fully optimised
implementation of our method.

For every case presented afterwards, the results were
obtained by analysing 100 times a log that contained

310440 frames, corresponding to 205s of actual CAN traf-
fic. On average, this means we need to analyse 1514 frames
per second. We used two systems A and B, which we
cannot describe here for confidentiality reasons, to perform
the tests. The first one can be represented with an automa-
ton containing 21 states while the second one possesses
108 states. For system A, we obtained the performances
measured during the automata based checks are given in
Table II. In this table, we confronted the two methods
described in this paper. The first row shows the tim-
ings measured by computing and using the DFA Aattacks

(which contains 54 states) to perform the detection. The
second row shows the timings measured when using the
DFA Aright and Algorithm 1 introduced in section V.

As mentioned in Section III, using the DFA Aattacks al-
lows to make the automata based checks in constant time,
as evidenced by the mean time and the minimum time
being equivalent. The maximum observed time actually
corresponds to the cases where an anomaly was detected.
On the other hand, the method using Aright does have a
smaller automaton but takes more time.

The monitored CAN traffic corresponds to an average
of 1514 frames per second, or 660µs between each frame.
Therefore, for simple systems, we are able to perform an
analysis in real time with both methods since the automata
based checks take 176µs in the worst case.

Table II: System A – Average, minimum and maximum
durations observed during the analysis of 310440 frames

Number of Average Minimum Maximum
Method states duration duration duration
Aattacks 54 12µs 10µs 46 µs
Aright 21 38µs 33µs 176 µs

Concerning system B, the corresponding automaton
Aattacks possesses 366 states. As the analyses based on
this method are done in constant time, the correspond-
ing results are equivalent to those obtained for sytem
A. Therefore, in Table III, we only included the results
obtained using Aright and Algorithm 1. In this case, while
the minimum and average durations are still satisfactory,
the maximum is above the threshold of 660µs and can
therefore cause an occasional delay between the monitoring
and the actual traffic. The worst case with this method
corresponds to the beginning of an analysis, where the set
Sright contains all the states of Aright. However, as we saw
in Section V, the size of Sright significantly decreases with
each frame analysed. This fact can be observed here with
an average duration of 49µs that is significantly lower than
the maximum of 779µs. The major part of the analyses can
therefore be performed in real time in this case too.

Table III: System B – Average, minimum and maximum
durations observed during the analysis of 310440 frames

Number Average Min Max
Method of states
Aright 108 49µs 20µs 779 µs

As a result, before modelling all the ECUs and systems
of an embedded network, it is important to precisely

establish which systems need to be synchronized together.
Indeed, if two large systems are not correlated at all, it
may become more advantageous to carry out two separate
analyses with two smaller automata rather than a single
analysis using a more complex one. If the use of a DFA
Aattacks is no longer possible, the latter situation would
require a much bigger Sright set and would therefore
lengthen the analysis duration in the worst cases.

VII. Discussions

In this paper, we focused on the conceptual approach of
an automotive, specification-based, IDS. Using examples
from an automotive manufacturer, we have been able to
test this method and successfully generate attack signa-
tures derived from ECUs models. The implementation of
this IDS for an actual automotive network together with
the evaluation of its efficiency in a real life scenario is
the subject of ongoing work. This section is devoted to
a critical discussion about the limitations of our solution
concerning the attacks it can or cannot detect.

First, the automata used by our solution are based
on the specifications of the network and of the ECUs.
However, it can happen that parts of the actual system
do not strictly adhere to these specifications (as witnessed
in [11]) and some small deviations can occur. In such
cases, our system might consider that there is an attack
happening although it is actually observing one of such
deviations. A way to circumvent this issue could be to
generate (or assist the generation of) the Asys automata
via machine learning. However, this brings the usual issues
coming with statistical anomaly detection mentioned in
Section II.

Moreover, some attacks may never be detected if we
miss some of their initial frames. For example, let us
consider two sequences. The first one, a(xyz)*o, is legit-
imate while the second, b(xyz)*o, is forbidden and the
signals corresponding to a and b are not sent periodically.
In this case, if our system does not register the signal
corresponding to the first symbols, it will not be able to
detect the attack corresponding to the second sequence.
Therefore, if an attacker is able to conveniently force the
IDS to restart (for example if the IDS is integrated into
another ECU that can be restarted via a specific CAN
frame), he may be able to hide the attack from it.

Finally, in this paper, we are only considering "basic"
FSAs. While these are convenient as they are easy to
manipulate for initial tests, their limited expressiveness
can hinder the modeling of more complex systems. For ex-
ample, the time does not directly appear in our automata,
as we instead chose to include the timing between periodic
frames into the formal rules constituting the first step of
the detection (see Figure 2) and just focus the second step
on the order in which the frames are emitted. However,
there may be some attacks where not only the order but
also the timing between (consecutive) distinct frames could
matter. At this stage, our IDS does not detect such attacks.
An interesting evolution will be to use more expressive
automata (see for example [20]) in order to improve the
detection capacities and the efficiency of our system.

VIII. Conclusion
In this paper, we presented a solution for generating

a language that can be used for performing intrusion
detection in an embedded automotive network. Using the
fact that automotive networks are designed to operate
according to a strict set of rules, we used formal language
theory to derive a language characterizing the attacks we
wanted to detect from the network and ECU specifications.
We also described an algorithm that allows to overcome the
potentially excessive memory usage due to an exponential
increase in states that this language could cause albeit
requiring a more intensive CPU usage. However, tests of
this method on randomly generated automata showed that
the extra required operations decrease exponentially as the
monitoring progresses. We presented an evaluation of the
performances of the methods presented in this paper on an
early prototype using simulated attacks performed on logs
of an actual CAN network. We are currently working on
an instantiation of our solution on a real automobile and
on implementing the proposed IDS onto an ECU-scaled
processor.

Obviously, performing intrusion detection is only a first
step. So far, we focused exclusively on the detection of
intrusions on an automotive network. However, another
critical problem that is out of the scope of this paper
is how to react when an intrusion is detected. Different
possibilities could be distinguished: 1) logging the detected
attack sequence for forensics analysis, 2) developing au-
tomatic recovery actions that are consistent with safety
rules, and 3) alerting the driver. The question of how
to react in an automotive environment once an intrusion
is detected is an important topic which requires further
development. Indeed, one cannot disturb the driver if the
detected intrusion is not likely to have a serious safety
impact. Perhaps several levels of alerts could be used [8],
depending on the criticality of the system being targeted
by an attack.

Moreover, in-vehicle network architectures are con-
tinuously evolving and can comprise many subnetworks.
As these architectures gain in complexity, a distributed
IDS with smaller modules being installed in each of the
concerned subnetworks could prove to be an interesting
solution, both for logistic and cost reasons.

References
[1] About PRESERVE. http://www.preserve-project.eu/about

(2011), [Online; accessed February-2013]
[2] Apvrille, L., El Khayari, R., Henniger, O., Roudier, Y.,

Schweppe, H., Seudié, H., Weyl, B., Wolf, M.: Secure auto-
motive on-board electronics network architecture. In: FISITA
World Automotive Congress, Budapest, Hungary. vol. 8 (2010)

[3] Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of
closed languages. In: Computer Science–Theory and Applica-
tions, pp. 84–95. Springer (2010)

[4] Charette, R.N.: This car runs on code. IEEE Spectr. 46(3), 3
(2009)

[5] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham,
H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno,
T., et al.: Comprehensive experimental analyses of automotive
attack surfaces. In: Proc. 20th USENIX Security. San Francisco,
CA (2011)

[6] Groll, A., Holle, J., Ruland, C., Wolf, M., Wollinger, T., Zweers,
F.: Oversee a secure and open communication and runtime plat-
form for innovative automotive applications. In: 7th Embedded
Security in Cars Conf. (ESCAR). Düsseldorf, Germany (2009)

[7] Henniger, O., Ruddle, A., Seudié, H., Weyl, B., Wolf, M.,
Wollinger, T.: Securing vehicular on-board it systems: The
EVITA project. In: 25th VDI/VW Automotive Security Conf.
Ingolstadt, Germany (2009)

[8] Hoppe, T., Kiltz, S., Dittmann, J.: Adaptive dynamic reaction
to automotive it security incidents using multimedia car en-
vironment. In: 4th Int. Conf. on Information Assurance and
Security. pp. 295–298. IEEE (2008)

[9] Kargl, F., Papadimitratos, P., Buttyan, L., Muter, M., Schoch,
E., Wiedersheim, B., Thong, T.V., Calandriello, G., Held, A.,
Kung, A., et al.: Secure vehicular communication systems:
implementation, performance, and research challenges. Com-
munications Magazine 46(11), 110–118 (2008)

[10] Kleberger, P., Olovsson, T., Jonsson, E.: Security aspects of the
in-vehicle network in the connected car. In: Intelligent Vehicles
Symposium (IV). pp. 528–533. IEEE, Baden Baden (2011)

[11] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T.,
Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham,
H.: Experimental security analysis of a modern automobile. In:
IEEE Symp. Security and Privacy. pp. 447–462. Oakland, CA
(2010)

[12] Larson, U.E., Nilsson, D.K., Jonsson, E.: An approach to
specification-based attack detection for in-vehicle networks.
In: Intelligent Vehicles Symposium. pp. 220–225. IEEE, Eind-
hoven, Netherlands (2008)

[13] Lazarevic, A., Kumar, V., Srivastava, J.: Intrusion detec-
tion: A survey. In: Kumar, V., Srivastava, J., Lazarevic, A.
(eds.) Managing Cyber Threats, Massive Computing, vol. 5,
pp. 19–78. Springer US (2005), http://dx.doi.org/10.1007/
0-387-24230-9_2

[14] Matsumoto, T., Hata, M., Tanabe, M., Yoshioka, K., Oishi,
K.: A method of preventing unauthorized data transmission in
controller area network. In: Vehicular Technology Conf. (VTC
Spring). pp. 1–5. IEEE, Yokohama, Japan (2012)

[15] Miller, C., Valasek, C.: Adventures in automotive networks and
control units. Last Accessed from h ttp://illmatics. com/car_
hacking. pdf on (2013)

[16] Miller, C., Valasek, C.: A survey of remote automotive attack
surfaces. Last Accessed from http://illmatics.com/remote at-
tack surfaces.pdf (2014)

[17] Muter, M., Asaj, N.: Entropy-based anomaly detection for in-
vehicle networks. In: Intelligent Vehicles Symposium (IV). pp.
1110–1115. IEEE, Baden Baden, Germany (2011)

[18] Muter, M., Groll, A., Freiling, F.C.: A structured approach to
anomaly detection for in-vehicle networks. In: 6th Int. Conf.
Information Assurance and Security (IAS). pp. 92–98. IEEE,
Atlanta, GA (2010)

[19] Nilsson, D.K., Larson, U.E.: Simulated attacks on can buses:
vehicle virus. In: Proc. 5th IASTED Int. Conf. on Communi-
cation Systems and Networks. pp. 66–72. Langkawi, Malaysia
(2008)

[20] Smith, R., Estan, C., Jha, S.: Xfa: Faster signature matching
with extended automata. In: IEEE Symposium on Security and
Privacy. pp. 187–201. IEEE (2008)

[21] Studnia, I., Nicomette, V., Alata, E., Dewarte, Y., Kaâniche,
M., Laarouchi, Y.: Survey on security threats and protection
mechanisms in embedded automotive networks. In: 2nd Work-
shop on Open Resilient Human-aware Cyber-Physical Systems.
Budapest, Hungary (2013)

[22] Wolf, M., Weimerskirch, A., Wollinger, T.: State of the art: Em-
bedding security in vehicles. EURASIP Journal on Embedded
Systems (1) (2007)

[23] Yu, S.: State complexity of regular languages. Journal of Au-
tomata, Languages and Combinatorics 6(2), 221–234 (2001)

