
HAL Id: hal-01967646
https://laas.hal.science/hal-01967646

Submitted on 1 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anomaly based Intrusion Detection for an Avionic
Embedded System

Aliénor Damien, Marc Fumey, Eric Alata, Mohamed Kaâniche, Vincent
Nicomette

To cite this version:
Aliénor Damien, Marc Fumey, Eric Alata, Mohamed Kaâniche, Vincent Nicomette. Anomaly based
Intrusion Detection for an Avionic Embedded System. Aerospace Systems and Technology Conference
(ASTC-2018), Nov 2018, Londres, United Kingdom. �hal-01967646�

https://laas.hal.science/hal-01967646
https://hal.archives-ouvertes.fr

Page 1 of 11

7/22/2018

2018-01-1941

Anomaly based Intrusion Detection for an Avionic Embedded System
Aliénor DAMIEN

1,2
, Marc FUMEY

1
, Eric ALATA

2,3
, Mohamed KÂANICHE

2
, Vincent NICOMETTE

2,3

1
Thales AVS France,

2
LAAS-CNRS, Université de Toulouse, CNRS,

3
INSA

Abstract

This paper firstly describes the challenges raised by the introduction

of Intrusion Detection Systems (IDS) in avionic systems. In

particular, we discuss some specific characteristics of such systems

and the advantages and limitations of signature-based and anomaly-

based techniques in an avionics context. Based on this analysis, a

framework is proposed to integrate a Host-based Intrusion Detection

System (HIDS) in the general Integrated Modular Avionics (IMA)

development process, which fits avionic systems constraints. The

proposed HIDS architecture is composed of three modules: anomaly

detection, attack confirmation, and alert sending. To demonstrate the

efficiency of this HIDS, an attack injection module has also been

developed. The overall approach is implemented on an IMA platform

running a cockpit display function, to be representative of embedded

avionic systems.

I. Introduction

The threat surface of an aircraft has always been very reduced thanks

to strong safety requirements [1], [2], design isolation of critical

cockpit functions, and limited connectivity. The fault-tolerant

hardware platforms were mainly dedicated to avionics domain, with

specific operating systems, preventing them from standard malware

attacks. However, the trend nowadays is to make aircraft systems

connected and less expensive, for example by providing the capacity

to update the weather data in flight or by drastically increasing the

number of functions of mixed criticality levels on common platforms

[3]. These evolutions increase the threat surface that an attacker could

potentially use to compromise the system.

Moreover, the attack techniques are evolving and even specific and

isolated systems can be hacked [4]. Security research teams are also

working on the security of embedded systems like cars [5] and

aircraft [6], [7], highlighting the need for security measures on these

systems. Even if the avionics domain remains one of the safest up-to-

now, these examples show that actual certification process and safety

mechanisms may not be sufficient to protect against deliberate

attacks in the future.

There are some fundamental differences between accidental faults

and deliberate attacks. Because accidental fault occurrences are not

deliberate, system safety requirements are mostly based on the

probability of fault occurrences, and protection mechanisms are

provided to prevent single fault conditions to lead to catastrophic

consequences.

As a consequence, the probability of having combined accidental

faults is considered low. However, from a security point of view, an

attacker is likely to carry out correlated malicious actions. Attacks

become more and more sophisticated, may use 0-day exploits (e.g.

exploitation of non-yet patched vulnerabilities), and target a specific

goal. In this way, an attack may cause many correlated errors to

modify slightly the execution flow or a critical data to affect the

integrity or availability of an avionic function. Even if, thanks to

architectural properties such as segregation, redundancy,

dissimilarity, it remains very hard to conduct an attack with a

catastrophic impact on an avionic function, we argue that some

attacks may not be covered by safety mechanisms and that some

additional mechanisms must be included for that purpose.

This paper presents an ongoing work aimed at developing an

Intrusion Detection System (IDS) for Integrated Modular Avionics

(IMA) platforms, considering the point of view of a module

integrator. The presentation is focused on the detection architecture

and the detailed description of its components. The detection of a

security event may consist of 1) logging the alerts for a posteriori

investigation and/or 2) reacting automatically on-board to recover

from faults generated by the attack. This paper only addresses the

first point and does not investigate how the system should react when

an intrusion is detected. Section II describes the context and the scope

of this study. Section III focuses on existing security mechanisms

deployed in avionics domain and on existing IDS used in traditional

information systems, and analyzes their advantages and limitations

with respect to the specific constraints inherent to avionic systems.

Then Section IV presents our approach to integrate a Host-based IDS

(HIDS) in an avionics context. A prototype of this approach is

presented in Section V. Some preliminary results are presented in

Section VI. Section VII concludes and discusses future work.

II. Context

This section presents the different actors involved in an Integrated

Modular Avionics process, their interactions, and the threat model

considered in this paper.

A. Actors involved

Many actors are involved in a conventional Integrated Modular

Avionics (IMA) process, with different roles, responsibilities, and

interactions between each others: module suppliers, application

suppliers, module integrator, system and aircraft integrators, and

airline company. Module suppliers provide a hardware platform with

a Real-Time Operating System (RTOS) and associated tools.

Application suppliers are mainly involved in the avionic functional

software development phase. The module integrator follows the

progress of the application suppliers during development and is

responsible for the applications integration on the IMA platform.

System and Aircraft integrators are responsible for functional

integration. Airline is only involved in the operation phase.

Page 2 of 11

7/22/2018

Table 1 summarizes these roles and phases.

Table 1. Roles of Actors Involved in Conventional Avionic Process

Actor Phase Role

Module supplier 1. Module

Development

Develop hardware platform, RTOS

and integration toolset

Application

suppliers

2. Application

Development

Develop an application to provide an

avionic functionality

Module
integrator

2. Application
Development

Allocate resources to the different
applications

 3. Integration Install applications on a module and

perform the certification of the whole
system (module + applications) System and

Aircraft

integrator

3. Integration Integration & Functional integration
of the whole system

Airline 4. Operation Operate and maintain the aircraft

Figure 1 presents the main interactions between the actors of the IMA

process. The module integrator dispatches a set of available resources

between the application suppliers using a contract-based approach

[8]. The ARINC 653 standard [9] proposes an Application

Programming Interface (API) that allows the application suppliers to

develop their applications by only knowing the resources they can

use. The software development process, functional tests, and binary

generation (also called "loadable" in avionics domain) are managed

by each application supplier. The application loadables only are sent

to the module integrator whose role is to integrate them into the

whole system, composed of the hardware module and RTOS

provided by the module supplier, the resources configuration

generated from the resources allocated to each application, and each

application loadable. After the platform system and aircraft

integration phases, the data loading of each loadable on the aircraft is

performed by the maintenance operators of the airline, potentially all

around the world.

From a security point of view, the role of the module integrator is

very important. He has to ensure a correct resource sharing between

applications, validating in particular the spatial and temporal

segregation between applications potentially with different criticality

levels delivered by all application suppliers. He should then ensure

that any application does not exhibit undesired interactions with other

applications. In this paper, we adopt the module integrator point of

view to address security.

A difficulty in such context is the number of different stake holders

potentially from various companies involved, implying the

confidentiality of application's documentation. Moreover, it is quite

unusual, and very unlikely that the module integrator needs to have

access to the specification and functional data of the applications he

has to integrate. Nevertheless, he has to guarantee the spatial and

temporal segregation between the applications running on the

platform. In the rest of this paper, activities presented as Module

Integrator activities may in fact be distributed between the Module

Integrator and the System/Aircraft Integrator depending on the design

of the integration process.

Figure 1. Actors Interactions in an IMA Process

B. Threat Model

Due to the complexity and the criticality of the domain, each actor

has a precise role in the certification process of an aircraft. The

application suppliers have to provide guarantees about each

functionality they implement (intended function). The module

supplier provides guarantees about the capacities of his hardware

platform, the performances of his RTOS, the relevant constraints for

the users (usage domain), and the spatial and temporal segregation

properties of his platform. The module integrator has to guarantee

that the integration is compliant with both the application

requirements and the platform capacities and constraints.

To help the other actors, the module supplier can provide a qualified

toolset with a compiler, a configuration tool, a usage domain checker,

and a load generator [8]. In particular, the application suppliers and

module integrator have to check some configuration rules to be

allowed to generate the loads. The qualified tool chain provides the

capability for each actor to generate loads that can be installed inside

an aircraft. Of course, there are mechanisms to check the integrity of

the loads, which are designed for safety purpose. There are also

mechanisms to authenticate the load (signature-based loads).

This hypothesis of mutual trust cannot be made when considering

security purposes. There are only a few companies that provide

modules or manage integration, and these companies can be trusted.

In the opposite way, there are many different application suppliers

and airlines all around the world, and we consider here that they

cannot be trusted. In particular, this makes the application

development and maintenance phases more critical.

Page 3 of 11

7/22/2018

Another threat is due to the installation of partitions with multiple

criticality levels on a same module. Considering the high safety

requirements for Design Assurance Level (DAL) A applications [2],

it should be very hard to find a vulnerability inside this type of

application. However, less critical functions are verified with a lower

level of rigor, and could be corrupted in order to perform attacks on a

more critical function through allowed interfaces.

Platforms supporting these applications are developed at the highest

criticality compared to applications (typically DAL A in avionics

context). These platforms implement a robust partitioning to protect

the platform and other hosted applications from any misbehavior of

any of these applications. An attack from an application impacting

other applications seems then very unlikely on an IMA platform.

Nevertheless, some recent examples suggest attacks are still possible

through hardware vulnerabilities [10].

These limitations raise two challenges to secure such systems:

- If a binary is malevolent, it has to be detected before it is

embedded,

- If a binary is vulnerable, its possible corruption has to be

detected at the runtime.

In this paper, we propose to adapt the IMA process and tools, to

detect such malevolent or compromised application during the

integration phase or at runtime.

III. Avionics Security State of the Art

This section presents the existing approaches to integrate security in

the avionic systems, and more precisely some studies about Intrusion

Detection Systems (IDS) in embedded systems.

A. Security in Critical Avionic Systems

Considering some recent attacks on embedded systems [11], [6], the

navigability regulation has evolved [12], [13]. Nowadays, avionics

actors have to consider on-board and ground infrastructure security.

This evolution has been included in the design of new aircraft [14].

Perimetric defenses are implemented to split the network into

different domains [15], [16]. Systematic vulnerability analysis during

the development of new platforms is also now considered, as

presented for instance in [17]. Aircraft also implement strong safety

mechanisms that are historically designed to provide protection

against accidental threats, and recently some security solutions have

been proposed to cope with malicious attacks [18].

However, to the best of our knowledge, they do not implement yet

Intrusion Detection Systems (IDS) in operation. Such mechanisms

would be useful to detect potential attacks exploiting unknown

vulnerabilities and to provide additional protection mechanisms in the

case of attacks not covered by the existing safety and other protection

mechanisms.

B. IDS in Embedded Systems

IDS are usually classified as Signature-based and Anomaly-based

IDS [19]. The first ones look for attack patterns, and the other ones

for deviations from a normal behavior. To apply these techniques to

avionic systems, the embedded IDS to be designed has to take into

account the following constraints:

- Real-time: It must not disturb the real-time execution of the

aircraft functions.

- High safety level: It should not directly affect the aircraft

safety or introduce new dependencies between applications.

- Performance: It must not consume too many resources.

- Maintenance: It should not be updated at each landing to

take into account recently discovered vulnerabilities

because of the high cost of a grounded aircraft for the

airline.

- Life time: It must be efficient during at least 20 years.

- Certification: It must satisfy the Development Assurance

Level (DAL) [2] requirements assigned to the IDS.

- Resilience to attacks: It should be protected against

malicious potential corruption.

Signature-based IDS need a database of known attacks (that does not

exist today for avionic systems) with frequent updates. They are not

suitable to detect new or sophisticated attacks. As a consequence, this

kind of IDS is not suitable for the avionics context. On the other

hand, anomaly-based IDS may generate a lot of false alarms, and the

cost of grounding a fleet due to a false alert is not acceptable.

Moreover, some difficulties may be raised with respect to

certification if the algorithms implemented in the IDS are not

deterministic. However, anomaly-based IDS present some interesting

characteristics in avionics context. They are efficient to detect new

attacks without requiring the update of an attack signature database

[20]. Moreover, the modeling of the normal behavior of an avionic

application can be performed with a good accuracy because the

avionics environment is under strict control and is designed to be

deterministic.

A few studies have been published about IDS in embedded critical

systems. For instance, [21] highlight some related constraints and

challenges. [22] proposes an IDS for embedded automotive

architectures. The use and implementation of IDS on multi-core

architectures for real-time embedded systems is investigated in [23].

Some studies propose hybrid IDS to take advantage of both

signature-based and anomaly-based techniques [24], [25]. Those

studies are not specific to avionics domain, except the work of Silvia

& al [26] that proposes a network-based IDS using network packets

as input data. A limitation of this approach is that it cannot detect

attacks that are internal to a module or to an application.

Our research focuses on a different approach, aiming at integrating a

Host-based IDS (HIDS) into each module that is designed to monitor

the behavior of the hosted applications, using in particular avionic

RTOS as a source of data.

Considering both advantages and drawbacks of signature-based and

anomaly-based IDS, we propose an hybrid approach with an anomaly

detection module and an attack confirmation module based on a

knowledge database including attack data as well as known safety-

related or false positive data.

IV. Overall Approach

The proposed HIDS approach aims at covering two types of threats:

- A malevolent loadable sent to the integrator has to be

detected during the integration phase. In this case, we

assume that the binary only is corrupted, but that the

documentation or activation inputs given to the integrator

are correct.

Page 4 of 11

7/22/2018

- A loadable is corrupted after the integration phase (for

example, malicious modification of a loadable on ground,

external attack, attack from another corrupted equipment).

It has to be detected at runtime.

Figure 2 presents the blocks added during the integration phase and

Figure 3 shows the blocks added during the operation phase. They

represent on-ground (green) or embedded (blue) tasks.

Figure 2. Integration Phase

Figure 3. Operation Phase

The first threat is managed by the "Static Security Analysis"

processing block. The validity of the binary received is checked by

comparing it with the documentation and existing knowledge about

the application.

The second threat is addressed by a hybrid embedded HIDS

composed of two embedded blocks: "Anomaly Detection" and

"Attack Confirmation". The "Anomaly Detection" block is

configured with a "Security Domain of the Application" (SDA), built

through the "SDA Modeling" and "SDA Validation" processing

blocks during integration phase.

The "Attack Confirmation" block is aimed at reducing the number of

false alarms using signatures of already encountered anomalies,

stored in a knowledge database. The investigation of unknown

anomalies on the ground is represented by the "On-Ground

Investigation" processing block. It allows to update the knowledge

database of the "Attack Confirmation" block for a whole aircraft fleet

after an unknown anomaly is raised by one of them.

The following sections illustrate more precisely the definition of the

SDA and the different blocks added to the traditional IMA process.

A. Security Domain of the Application (SDA)

The "Security Domain of the Application" (SDA) is a set of rules

characterizing the normal behavior of an application (for example,

the application A should not do more than ten API calls in one

execution cycle). It is based on the platform resources usage of the

application. As an application and its environment are not designed to

evolve in real time, it should use the same resources through the

lifetime of the aircraft (or until an update).

Its design should be adapted to the targeted platform, taking into

account the resources available for the HIDS (in terms of storage or

data bandwidth), the information available on the existing platform

(like the safety monitoring alerts, the instrumentation means, or the

maintenance information), or the possible platform's developments.

The main difficulty for selecting the relevant parameters involved in

the definition of the SDA rules is to choose the simplest set of data to

monitor, which is the most efficient and well adapted for any kind of

application for a given system. Several approaches can be explored to

design these parameters:

- Select information that are already available, for example

to be compliant with legacy aircraft.

- Select the most critical information based on a risk analysis

and an analysis of the effects of attacks on the system.

- Select most common information monitored by HIDS from

the literature (in avionics or other domains).

- Select the information to monitor by experiment different

HIDS under attack simulation.

Table 2 proposes a first list of high level observation classes to help

designing the SDA parameters. Each information monitored should

be composed of an observation level and a characteristic to observe.

For example, a SDA could be composed of rules characterizing the

number of API calls performed by an application periodically during

its execution, the time to perform a sequence of a specific number of

API calls, the number of data segment reads and writes or the

diversity of instruction types executed.

Table 2. Examples of Observation Classes for SDA Parameters

Observation Levels

API Call Raise an event when an API call is made by the
application

Code executed Raise an event when an instruction is executed by the

application

Communications Raise an event when a message is sent or received by the
application

CPU Counters Read the performance monitor registers of the processor

Memory Raise an event when the application accesses the memory

of the platform

OS Errors Raise an event when an error is raised by the OS

Characteristics

Diversity Number of different events

Number Number of events

Sequence Sequence of events

Parameters Parameters of an event

Payload Payload of an event

Timestamp Timestamp of an event

Type Type of an event

B. Static Security Analysis

The Static Security Analysis block aims at detecting a corrupted or

malevolent loadable received from an application supplier to be

integrated. In this case, we assume that only the loadable is corrupted

but not any other documentation received from the application

supplier.

Two ideas are pursued to perform this analysis:

- Use existing anti-malware techniques on the binary.

Page 5 of 11

7/22/2018

- Check the compliance between the binary and its

documentation.

1) Binary Verification with Existing Techniques

It is important to detect the presence of a potential malware

embedded inside an application loadable. For example, a corrupted

USB key could have been used to transfer the loadable, or the

production environment could be corrupted. It is important to

investigate the corruption and find its root cause to patch the

vulnerability and prevent a targeted malware from using it. The

survey published in [27] highlights different approaches used by anti-

virus products to detect a known malware. Some other research

works also study morphological analysis of malware to recognize

known malicious code [28].

2) Binary Compliance with its Documentation

As mentioned in Section II, the module integrator receives the binary

to integrate from the application supplier, but he should also handle

additional documentation to carry out this verification, like the

insertion contract, the source code, the specification, or a description.

A static verification of the compliance between the loadable and

these documents can be carried out, right after the loadable delivery

from the application supplier to the module integrator. This static

verification is automated using the Resources Usage Analyzer

described in Section V.

In practice, only the insertion contract is known in every case,

because it is a formal document written by the module integrator

describing the resources allocated to the application supplier. This

contract contains information about memory space, CPU time,

communication ports, specific services, or partition numbers

allocation, but this information is not sufficient to precisely

characterize the application's behavior. For example, the contract

may stipulate that the application can use 3MB of Non Volatile

Memory (NVM), without providing information about its usage. As a

consequence, the module integrator does not know if the NVM

services are used occasionally, periodically, or very often, a potential

NVM flooding cannot be detected using only the information

provided by the insertion contract.

This document can be useful to check some security requirements at

a high level, but it is not precise enough to perform accurate runtime

intrusion detection. The next block (SDA Modeling) aims at

extending the insertion contract knowledge to have a more precise

model of the application's behavior.

C. SDA Modeling

The objective of this phase is to build a preliminary SDA as

described in Section IV-A modeling the normal behavior of the

application. It can be done directly from the application's

documentation provided in the delivery phase (manually) if it is

sufficient. In the most common cases, the SDA is built by running the

application in a laboratory setup, by simulating its activation inputs

and observing the application resources usage as defined by the SDA

parameters. The activation inputs, also provided by the application

supplier, must be the same as the inputs used to perform the

functional tests on the application. It can be represented by another

stimulation partition or a network benchmark. There are two main

advantages of reusing the inputs used to perform the functional tests:

limiting the development costs and observing the application in all its

modes (as we assume that the functional tests correctly cover all the

modes of the application).

Figure 4 illustrates a possible implementation of this block using

three modules: an SDA Monitor to collect data about the application,

a Data Pre-processing Tool to format these data, and an SDA

Learning Tool to learn automatically the application's behavior by

using semi-supervised machine learning techniques. In this case, the

application is stimulated using a partition that emulates the activation

inputs.

Figure 4. SDA Modeling

D. SDA Validation

In this phase, illustrated by Figure 5, attacks are injected in the

application in a lab environment to test the efficiency of the

detection. This is an iterative process with the SDA Modeling block,

to obtain a more precise SDA. Because we don't have currently any

example of compromised application or successful attack, our

approach consists in injecting the consequences of a potential attack

on an application using an Attack Injection Tool.

Figure 5. SDA Validation

For example, the attack injected can simulate the deactivation of the

error logging process by replacing its code with nop instructions. It

can also modify an API call by replacing or removing it. Another

example consists in the inclusion of an infinite loop inside a process

to block the whole partition. More information about the attack

injection tool we developed is provided in Section V.

The application behavior under attack is monitored and characterized

using the SDA Monitor and the Data Pre-processing Tool presented

previously. It is then compared to the SDA obtained previously using

the SDA Checker. If the initial SDA was constructed from the

application's documentation only, the activation inputs can also be

simulated to assess the accuracy of the SDA. If some attacks are not

detected or if there are too many false alarms, the results are

investigated to propose a new SDA. Finally, the SDA obtained after

some iterations is considered to fit the normal correct behavior of the

application and each deviation from this behavior is considered as

possibly malicious.

E. Anomaly Detection

Once the SDA is validated, it is deployed in the aircraft for the

operational phase, as well as the application itself.

Page 6 of 11

7/22/2018

The anomaly detection block is embedded on the aircraft, for

example within the hardware, the RTOS, or in a dedicated partition.

A dedicated system partition (developed with the RTOS and provided

into the same loadable) could be a good choice to place the anomaly

detection block, as it is compliant to the IMA principles, controlled

by a trusted actor, which should facilitate the interface with the

RTOS to monitor other applications. Thus, we consider that the

anomaly detection block is placed in such partition in this paper.

The role of this block is to monitor the applications resources usage

as defined by the SDA parameters, and compare it to the SDA of

each application independently. If an anomaly is detected, it is

notified to the attack confirmation embedded block described

hereafter.

The anomaly detection partition only monitors the application and

does not interact with the other partitions. A possible implementation

of this monitoring is to modify the RTOS to capture and store the

resources usage events into a memory area dedicated to the anomaly

detection partition. This solution allows the anomaly detection

partition to collect data from the other applications without

interacting directly with them. As the partition does not interact with

critical applications and has no impact on the aircraft safety, it could

have a low DAL. However, the corruption of this partition could be

critical from a security point of view, and some measures must be

taken to ensure the security of this particular partition.

F. Attack Confirmation and On-Ground

Investigation

Even if anomaly detection has many advantages in avionics domain,

the rate of false alerts and the potential need to update the model can

be challenging. The attack confirmation embedded block is aimed at

mitigating this problem by implementing the following

functionalities:

- Anomalies characterization: It uses a knowledge database

to confirm a real attack or to exclude known false positives

or safety-related anomalies that are handled by other

components of the architecture.

- Alerts sending: It sends alerts to the crew and/or to the

ground depending on the anomalies characterization

results.

- Knowledge database updating: It updates the knowledge

database after investigation of non-confirmed anomalies on

the ground.

This block could be embedded inside a dedicated partition, a

dedicated module, or even implemented on-ground depending on its

role and the resources available. As the HIDS is designed only for

detection and not for automatic reactions as for now, and has to be

used for a fleet of aircraft, both online and offline detection might be

considered.

Online detection could allow in the future to react very quickly and

even automatically. However, it may consume a lot of computational

resources on-board and certification concerns can be raised, for

example on the crew's ability to react in case of an alert. An offline

detection could be a first step to introduce such technique inside an

aircraft, and to evaluate its efficiency in operation without interfering

with the crew, but this requires a significant amount of storage to

save each detection information raised during the flight. In this paper,

we chose to implement the offline detection option.

As this block is generic and independent of the avionic application

monitored, it is also much easier to update any of its components

from a certification point of view. Indeed, the detection application is

not critical for the safety of the aircraft.

V. Prototype Description

To assess the relevance of the overall approach, a first prototype has

been developed. Its components, presented in the previous section

and summarized in Figure 6, are described in this section:

- The Resources Usage Analyzer is used to statically check

the consistency between the resources usage of the

application and the resources allocated to it.

- The SDA Monitor captures information about the

application's usage of resources while running on the

platform.

- The Data Pre-processing Tool is used to format the data

received from the SDA Monitor.

- The SDA Learning Tool uses the pre-processed data to

model the application's behavior and generate the SDA.

- The Attack Injection Tool emulates attacks on a running

application.

- The SDA Checker evaluates the data received from the

SDA Monitor and identifies anomalies in the application's

current behavior, by comparing it to its SDA.

Figure 6. Prototype Architecture

A. Resources Usage Analyzer

The Resources Usage Analyzer aims at computing the metrics

characterizing the usage of each type of resources used in the

application's code. This is realistic because every resource is

allocated statically. The tool is based on the standardized API

ARINC653 [9], which classifies the API services provided in

different categories described in Table 3. To compute the amount of

resources used for a specific family of services, the API calls used to

allocate this kind of resource have to be known.

For example, the Non Volatile Memory (NVM) is allocated using the

CREATE_LOGBOOK and CREATE_NOTEPAD API calls. To

compute the global allocated memory, the tool parses the code to find

where these API calls are used and the values of the parameters that

declare the total size to allocate. This information is extracted by

parsing the application's code to find function calls. Currently, the

prototype is developed for a 32-bits PowerPC architecture where

each instruction is coded on 32 bits. Each function call is built with

the same structure. The avionic systems environment being static and

deterministic, the services are always called with static parameters as

input.

Page 7 of 11

7/22/2018

Table 3. Categories of API ARINC 653 Services

Partition Management

Process Management

Time Management

Inter-partition communication

Intra-partition communication

Error handling

B. SDA Monitor

The SDA Monitor is used to monitor the application resources usage

during its execution. In practice, in order to have full access to the

information of the existing platform, the debugging mode (see

Section IV-D) is used. Currently, our prototype only monitors the

API calls performed by the applications. The principle is to insert a

breakpoint at each API call, and to execute a set of logging

instructions when the breakpoint is reached. For instance, the

following debugging script is aimed at logging the usage and the

corresponding date of the CREATE_PROCESS API call.

b CREATE_PROCESS

commands

 silent

 printf "1,%i,%i\n", $tbu, $tbl

 c

end

These execution traces are collected in the GDB logging file in the

following format:

12,3117,4003

14,3117,4451

1,3117,4808

7,3117,5133

8,3117,6107

The first number corresponds to the ID, the second one to the upper

part of the RTOS clock, and the third one to the lower part of the

RTOS clock.

C. Data Pre-processing Tool

This tool is dedicated to format the data received from the SDA

Monitor. Currently, as our prototype only monitors API calls, this

formatting is done in two steps:

- Reconstruct the timestamp and transform the original data

file into a list,

- Aggregate the data as API sequences with the duration

from the first to the last API call in the sequence.

The timestamp is reconstructed by concatenating the second and the

third data from each line of the file. After this first step, the resulting

data is a list of couples [ID, Absolute Timestamp].

This list is then aggregated into sequences of a given length. For

instance, if we consider sequences of four API calls, the resulting

data are represented by [ID1, ID2, ID3, ID4, duration].

The final dataset is constructed with a sliding window.

If we consider the original dataset presented in Section V-B, the

resulting data with sequences of length four is:

[12, 14, 1, 7, 1130]

[14, 1, 7, 8, 1656]

It can also be represented in two dimensions by concatenating the

IDs:

[12140107, 1130]

[14010708, 1656]

D. SDA Learning Tool

This tool is used to model the application's behavior based on the

formatted data, using semi-supervised machine learning techniques.

Indeed, machine learning algorithms can provide efficient results to

detect anomalies in observations, by means of classification

algorithms. The problem we address is related to a one-class

classifier that takes as input only elements of one class. Indeed, the

dataset collected during the elaboration of the SDA only

characterizes the normal behavior of the application. We do not have

any dataset of attacks. A one-class classifier is able to build a model

fitting the normal behavior of the application, based on the dataset of

normal observations.

Many algorithms can be used to perform anomaly detection, like the

Self-Organizing Map, Statistical, or One-Class Support Vector

Machine (OCSVM) [20]. For this first implementation of our

prototype, the technique implemented is an OCSVM, using the scikit-

learn python package. This choice has been driven by the

performance of the OCSVM algorithm (mainly its prediction speed)

and because it is easy to configure and use.

The OCSVM can be parameterized in different ways:

- 𝑘𝑒𝑟𝑛𝑒𝑙 ∈ {𝐿𝑖𝑛𝑒𝑎𝑟, 𝑅𝐵𝐹, 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙}: Global aspect of

the OCSVM.

- 𝑛𝑢 ∈ [0; 1]: Ratio of acceptable false positives.

- 𝑔𝑎𝑚𝑚𝑎 ∈ 𝑁: Level of precision around the training points.

E. Attack Injection Tool

The Attack Injection Tool is used to emulate attack consequences on

the application through code modification representing malicious

behavior. To facilitate and automate the generation of attacks, the

debugging interface is used to stop the entire module (RTOS +

applications) and modify the code area of the application, to force it

to change its behavior after continuing the execution. The tool

provides debugging scripts with different attack functions, for

example the ability to insert a loop, change the parameters of a

function call, modify an API call, or skip or erase a part of the code.

The start time and duration of the attack can also be configured. Once

prepared, the attack is directly executed from the application.

For example, the skip_instruction attack function is defined as

follows:

Page 8 of 11

7/22/2018

Skip a given instruction

define skip_instruction

ARG 0 : Address of the instruction to skip

ARG 1 : N (skip 1 over N instructions)

ARG 2 : Time limit begin

ARG 3 : Attack duration

1. Jump into the exploit:

Save skipped instruction and replace it by a

jump

save_instruction $arg0 saved_instruction

put_jmp_exploit $arg0

Save execution context (registers)

save_registers

2. Prepare exploit variables:

Exploit_size: debugger local variable

set exploit_size = restore_registers_size +

return_size

Global_counter: start and duration of the

attack

define_global_variable global_counter

Begin_value and End_value

define_global_variable begin_value $arg2

define_global_variable end_value ($arg3 -

$arg2)

define_global_variable N $arg1

3. Start the exploit:

Increment the global_counter

increment_variable global_counter

Check if the skip is performed (conditions

on starting, duration, and N)

if_state_jump (begin_value > global_counter)

(if_size*2+exploit_size)

if_state_jump (end_value < global_counter)

(if_size*1+exploit_size)

if_state_jump (global_counter % N)

(exploit_size)

If no jump is taken, skip the call: restore

the registers and return

restore_registers

return ($arg0+4)

Else, restore registers, execute the

instruction and return

restore_registers

execute saved_instruction

return ($arg0+4)

This function takes as input the instruction to skip, the starting time,

the duration, and the skip frequency as parameters. It is executed to

prepare the exploit depending on those parameters.

F. SDA Checker

The SDA Checker collects data from the SDA Monitor at runtime. It

also imports the SDA built by the SDA Learning Tool. Each data

received is pre-processed using the Data Pre-processing Tool to

provide a resulting couple [API calls sequence ID,

duration]. The one-class SVM classifier identifies this couple as

belonging or not to the model exhibited during the training phase. If

not, an alarm is raised by the SDA checker. A percentage of

anomalies detected by the SDA Checker is also computed by

comparing the log generated by the application execution with the

injected attacks, to the log obtained under a normal execution.

G. Conclusions about the prototype

This prototype addresses the different constraints induced by the

avionics domain:

- Real-time: The overhead generated by the logging of

application events by the RTOS can be controlled in order

to reduce the impact on the performance of the RTOS to

deliver the API services, and the associated Worst Case

Execution Time (WCET) to deliver such service. There are

no other impacts on the applications.

- High safety level: If the embedded part of the prototype is

implemented in a dedicated partition as suggested, it will be

compliant with the spatial and temporal segregation

provided by the platform and should not induce

dependencies with other applications. Also, at this stage,

the HIDS does not have any impact on the flight as the

alerts raised are just logged for future investigation. It is not

designed to directly interact with the embedded safety

mechanisms.

- Performance: The data chosen as input are very simple and

are computed very quickly by the OCSVM algorithm.

However, the amount of data is not controlled and this

should be addressed in a future prototype.

- Maintenance: The SDA needs to be updated at each update

of the application, and not at each newly discovered attack.

Also, we consider that the knowledge database would

require a few updates compared to a classical signature-

based IDS.

- Life time: As the SDA is elaborated based on the normal

behavior of an application, it should stay accurate during

the life time of the application. We consider that the

environment of the application is also not going to change.

- Certification: The HIDS itself has no impact on the aircraft

safety so a low DAL should be assigned to it. However, the

problem of certified algorithms like machine learning ones,

has to be addressed to anticipate the actions to take on-

board as a reaction to an alert. [29]

- Resilience to attacks: As a system partition developed by

the module supplier, this partition should be considered as

trusted. Nevertheless, security mechanisms should be

considered during the platform development to guarantee

the integrity of this partition.

VI. Preliminary Experiment

For this first experiment, the target is an IMA module with a 32bits

PowerPC architecture running a unique application called "IHS" for

Interface Human System. This application is responsible for the

display in the cockpit of information about the health of the aircraft,

like the fuel level or the state of the motors.

The application configuration, the loadable binary, and the insertion

contract of this application are available to the module integrator. The

application is considered as autonomous for this experiment (it is

running dynamically but not stimulated, so that it always displays the

same information and has no interaction with the pilots).

This preliminary experiment aims at assessing the relevance of our

overall approach in four steps:

Page 9 of 11

7/22/2018

- Verify the correct usage of resources of the application

(Static Security Analysis)

- Run the application in normal environment and build its

SDA (SDA Modeling)

- Inject an attack during the application is running (SDA

Validation)

- Investigate the corresponding data offline by comparing it

with the application's SDA (SDA Validation)

A. Step 1: Correct Usage of Resources

Table 4 summarizes the information contained in the insertion

contract for the IHS application. This information can be verified

using the configuration or the code of the application.

Table 4. Resources Defined in the Insertion Contract

Resource Type

RAM size: - Code²

- Data²

- Inter-partition communications¹

Execution Time²

NVM size¹

Number of API communication ports¹

Specific Services¹

Number of Physical Resources : - A429²

- Discrete²

Number of Network Interfaces : - A664²

- Ethernet²

¹ Items checked using the code

² Items checked using the configuration

Elements that can be verified using the application configuration (like

the RAM size allocated for code and data or the number of network

interfaces), are checked by means of the existing configuration tool.

This tool checks whether the configuration provided by the

application supplier is consistent with the configuration defined by

the module integrator.

The other elements presented in Table 4, are handled by the

Resources Usage Analyzer tool using the following formulas as

inputs:

- RAM size for inter-partition communications:

CREATE_SAMPLING_PORT: MAX_MESSAGE_SIZE

CREATE_QUEUING_PORT: MAX_MESSAGE_SIZE *

MAX_NB_MESSAGE

- NVM size:

CREATE_LOGBOOK: MAX_MESSAGE_SIZE *

(MAX_NB_LOGGED_MESSAGE +

MAX_NB_IN_PROGRESS_MESSAGE)

CREATE_NOTEPAD: MAX_MESSAGE_SIZE

- Number of API ports:

CREATE_SAMPLING_PORT: 1

CREATE_QUEUING_PORT: 1

- Specific services used: for this part, we look for the API

calls corresponding to the list of specific services and

display the ones that are called.

To obtain these formulas, the ARINC 653 standard [9] is used. For

example, this standard defines two services to perform inter-partition

communications: the SAMPLING and QUEUING ports. Only one

message is available in a SAMPLING_PORT, and its maximum

message size is set as parameter when calling the

CREATE_SAMPLING_PORT API call. This parameter corresponds

to the total size necessary for one declared SAMPLING_PORT. For

the QUEUING_PORT, the standard authorizes multiple messages and

its maximum number of messages is given as parameter as well as the

maximum message size when using the CREATE_QUEUING_PORT

API call. The multiplication of these two parameters gives the total

size used by a QUEUING_PORT.

B. Step 2: SDA Modeling

The target application is first loaded inside the module and the SDA

Monitor is parameterized to log the type and timestamp of each

called API. The application is run during 25 seconds to have a

sufficient amount of data (around 45.000 data lines that cover each

part of the code many times). The application initialization is not

taken into account in this prototype. The resulting data are pre-

processed by the SDA Learning tool to be formatted into [API

sequence ID, duration] couples with sequences of length

four. This sequence size is chosen arbitrarily for this experiment for

the sake of illustration, but other lengths can be considered. The data

are also normalized between 0.0 and 1.0 to be easily used by the

classifier. These formatted data are then exported into .csv files and

constitute the inputs of the OCSVM algorithm.

Figure 7. Dataset Obtained by Monitoring the Type and Timestamp of API

Call in the Absence of Attack

70% of the dataset is used to train the OCSVM, and 30% are used to

test its accuracy. The OCSVM is parameterized with a RBF kernel,

𝑛𝑢 = 0.01, 𝑔𝑎𝑚𝑚𝑎 = 1000. We obtained 1.45% of false positives

on the testing set with this OCSVM.

Page 10 of 11

7/22/2018

Figure 7 plots the testing data obtained with the OCSVM trained.

This OCSVM is exported in a .plk file of size 13,4𝐾𝑜.

C. Step 3: Attack Injection

Using the Attack Injection Tool, we emulated a Denial of Service on

the IHS display. This attack has been carried out in two different

ways:

- Full attack: The IHS display is completely disabled from

the starting of the partition,

- Partial attack: After one second of normal working, half of

the frames are disabled, making the screen blinking during

three seconds.

The data collected under injection are collected with the same SDA

Monitor script as the one used in the previous step.

D. Step 4: SDA Checking

The attack data are formatted using the Data Pre-processing Tool into

[API calls sequence ID, duration] couples with

sequences of length four, and then exported in a .csv file.

The resulting .csv file is passed to the OCSVM previously defined

and each point of the attack file is evaluated as normal or as an

anomaly using the predict() function of the scikit-learn python

package. The results are summarized in Table 5. The OCSVM raised

8.14% of anomalies in the full attack dataset. This rate is

significantly higher (ratio of 5.60) than the false positive rates

(1.45%) found in the step two on the normal dataset (used for

testing). As a consequence, the classifier is able to differentiate the

attack from the normal behavior of the application. The anomaly rate

is less important in the partial attack dataset (3.29%), but this can be

explained by the shorter duration of this attack compared to the full

attack.

These results are obtained with only one type of attack injected in

two different modes. This preliminary experiment provides some

positive and encouraging feedback. In particular, the attack is

discriminated whereas it does not induce new API call sequences,

meaning that the duration is a very interesting data to monitor in such

context. However, more extensive and significant experiments should

be carried to assess the detection effectiveness and performance of

the proposed HIDS, including a large set of different attacks and a

large number of experiments to obtain statistically significant results.

The application used for the prototype should also be stimulated to

build an SDA covering its overall behavior, including user

interactions and fault-recovery situations. The SDA modeling

parameters should also be challenged, including nu and gamma

parameters, but also the sequence size and the amount of data to use

for training. Such experiments are planned for future work.

Table 5. Results: Percentage of anomalies on normal and attacked datasets

Dataset Anomalies Rate

Testing (Normal) 1.45%

Full Attack 8.14%

Partial Attack 3.29%

VII. Conclusion and Future Work

This paper discussed the challenges related to the use of traditional

IDS techniques in the context of real-time critical avionic systems.

We also presented the principles of an anomaly-based intrusion

detection approach aimed at modeling and monitoring the behavior of

an avionic application through a HIDS process adapted to avionics

constraints. The integration of this approach into a conventional IMA

process is also described. A prototype of this approach has been

developed and some preliminary results have been presented.

In the future, we plan to go further in the development of the

prototype. In particular, we are currently implementing other

functionalities in the Resources Usage Analyzer to check the

consistency between the resources declared and their usage. We are

also improving the Attack Injection Tool to formalize different

classes of attacks, and create an automatic attack injection campaign,

to perform a more extensive validation experimentation. As regards

the SDA modeling, we plan 1) to carry out sensitivity experiments in

order to evaluate the best parameters for our selected OCSVM

algorithm (nu, gamma, kernel, and length of the sequences), and 2) to

implement other anomaly detection techniques like statistical ones.

We also plan to test other relevant parameters to be monitored by the

SDA Monitor. Finally, we plan to improve the prototype by using it

on a stimulated IHS application and on other kinds of applications to

evaluate the approach on a more realistic environment.

References

1. SAE International, 2010, “ARP4754A: Guidelines for

Development of Civil Aircraft and Systems”,

doi:10.4271/arp4754A.

2. RTCA, 2011, “DO-178C: Software Considerations in Airborne

Systems and Equipment Certification”.

3. Prisaznuk, P. J., 1992, “Integrated Modular Avionics”, In

Proceedings of the IEEE 1992 National Aerospace and

Electronics Conference@m_NAECON 1992, 39–45 vol.1,

doi:10.1109/NAECON.1992.220669.

4. Chen, T. M., and Abu-Nimeh S., 2011, “Lessons from Stuxnet”,

Computer 44 (4): 91–93, doi:10.1109/MC.2011.115.

5. “Jeep Hacking Incident Leads to Fiat Chrysler Recall of 1.4M

Vehicles”, 2015, Claims Journal. 27 July 2015,

https://www.claimsjournal.com/news/national/2015/07/27/2647

66.htm.

6. Biesecker, C., 2017, “Boeing 757 Testing Shows Airplanes

Vulnerable to Hacking, DHS Says”, Avionics, 8 November

2017, https://www.aviationtoday.com/2017/11/08/boeing-757-

testing-shows-airplanes-vulnerable-hacking-dhs-says/.

7. Teso, H., 2013, “Aircraft Hacking - Practical Aero Series”,

presented at the Hack In The Box (HITB) Conference,

Amsterdam, April.

8. Conmy, P., Nicholson, M., and McDermid, J., 2003, “Safety

Assurance Contracts for Integrated Modular Avionics”, 10.

9. Prisaznuk, P. J., 2008, “ARINC 653 Role in Integrated Modular

Avionics (IMA)”, In 2008 IEEE/AIAA 27th Digital Avionics

Systems Conference, 1.E.5-1-1.E.5-10,

doi:10.1109/DASC.2008.4702770.

10. Kocher, P., Genkin, D., Gruss, D., Haas, W., et al., 2018,

“Spectre Attacks: Exploiting Speculative Execution∗”, January,

16.

11. Parkinson, S., Ward, P., Wilson, K., and Miller, J., 2017, “Cyber

Threats Facing Autonomous and Connected Vehicles: Future

Challenges”, March, 18, doi:10.1109/TITS.2017.2665968.

https://www.claimsjournal.com/news/national/2015/07/27/264766.htm
https://www.claimsjournal.com/news/national/2015/07/27/264766.htm
https://www.aviationtoday.com/2017/11/08/boeing-757-testing-shows-airplanes-vulnerable-hacking-dhs-says/
https://www.aviationtoday.com/2017/11/08/boeing-757-testing-shows-airplanes-vulnerable-hacking-dhs-says/

Page 11 of 11

7/22/2018

12. RTCA, 2014, “DO-326A_Airworthiness Security Process

Specification”.

13. RTCA, 2018, “DO-356A_Airworthiness Security Methods and

Considerations”.

14. Hintze H., and God R., “Using Model-Based Security

Engineering in the Development of Complex Aircraft Cabin

Systems”, SAE Int. J. Aerosp. 8(1):2015, doi:10.4271/2015-01-

2445.

15. ARINC Industry Activities, 2017, “664P5 Aircraft Data

Network, Part 5, Network Domain Characteristics and

Interconnection”, SAE ITC, October

16. Netkachova, K., Müller, K., Paulitsch, M., and Bloomfield, R.,

2015, “Investigation into a Layered Approach to Architecting

Security-Informed Safety Cases”, In 2015 IEEE/AIAA 34th

Digital Avionics Systems Conference (DASC), 6B4-1-6B4-12,

doi:10.1109/DASC.2015.7311447.

17. Dessiatnikoff, A., Nicomette, V., Alata, É., Deswarte, Y., et al.,

2013, “Securing Integrated Modular Avionics Computers”, In

2013 IEEE/AIAA 32nd Digital Avionics Systems Conference

(DASC), 4A3-1-4A3-11, doi:10.1109/DASC.2013.6712577.

18. O’Neill, K., Newell, G. R., and Odiga, S. K., 2016, “Protecting

Flight Critical Systems against Security Threats in Commercial

Air Transportation”, In 2016 IEEE/AIAA 35th Digital Avionics

Systems Conference (DASC), 1–7,

doi:10.1109/DASC.2016.7777979.

19. Pharate, A., Bhat, H., Shilimkar, V., and Mhetre, N., 2015,

“Classification of Intrusion Detection System”, International

Journal of Computer Applications 118 (7): 23–26,

doi:10.5120/20758-3163.

20. Wu, S. X., and Banzhaf, W., 2010, “The Use of Computational

Intelligence in Intrusion Detection Systems: A Review”,

Applied Soft Computing 10 (1): 1–35,

doi:10.1016/j.asoc.2009.06.019.

21. Tabrizi, F. M., and Pattabiraman, K., 2015, “Flexible Intrusion

Detection Systems for Memory-Constrained Embedded

Systems”, In Dependable Computing Conference (EDCC), 2015

Eleventh European, IEEE, doi:10.1109/EDCC.2015.17.

22. Studnia, I., Alata, E., Nicomette, V., Kaâniche, M., et al., 2014,

“A Language-Based Intrusion Detection Approach for

Automotive Embedded Networks”, In The 21st IEEE Pacific

Rim International Symposium on Dependable Computing

(PRDC 2015), Zhangjiajie, China,

doi:10.1504/IJES.2018.089430.

23. Yoon, M.-K., Mohan, S., Choi, J., Kim, J.-E., et al., 2013,

“SecureCore: A Multicore-Based Intrusion Detection

Architecture for Real-Time Embedded Systems”, In Real-Time

and Embedded Technology and Applications Symposium

(RTAS), 2013 IEEE 19th, 21–32. IEEE,

doi:10.1109/RTAS.2013.6531076.

24. Kim, G., Lee, S., and Kim, S., 2014, “A Novel Hybrid Intrusion

Detection Method Integrating Anomaly Detection with Misuse

Detection”, Expert Systems with Applications 41 (4): 1690–

1700, doi:10.1016/j.eswa.2013.08.066.

25. Om, H., and Kundu, A., 2012, “A Hybrid System for Reducing

the False Alarm Rate of Anomaly Intrusion Detection System”,

In Recent Advances in Information Technology (RAIT), 2012

1st International Conference On, 131–136. IEEE,

doi:10.1109/RAIT.2012.6194493.

26. Gil Casals, S., Owezarski, P., and Descargues, G., 2013,

“Generic and Autonomous System for Airborne Networks

Cyber-Threat Detection”, doi:10.1109/DASC.2013.6712578.

27. Jacob, G., Debar, H., and Filiol, E., 2008, “Behavioral Detection

of Malware: From a Survey towards an Established Taxonomy”,

Journal in Computer Virology 4 (3): 251–66,

doi:10.1007/s11416-008-0086-0.

28. Bonfante, G., Kaczmarek M., and Marion J-Y, 2009,

“Architecture of a Morphological Malware Detector”, Journal in

Computer Virology 5 (3): 263–70, doi:10.1007/s11416-008-

0102-4.

29. Bhattacharyya S., Cofer D., Musliner D., Mueller J., et al., 2015,

“Certification Considerations for Adaptive Systems”, In 2015

International Conference on Unmanned Aircraft Systems

(ICUAS), doi: 10.1109/ICUAS.2015.7152300

Contact Information

Aliénor DAMIEN,

PhD Student in Embedded Security

e-mail: alienor.damien@laas.fr

Abbreviations

API Application Programming

Interface

DAL Design Assurance Level

HIDS Host-based Intrusion

Detection System

IDS Intrusion Detection System

IHS Interface Human System

IMA Integrated Modular Avionics

NVM Non-Volatile Memory

OCSVM One-Class Support Vector

Machine

RTOS Real-Time Operating System

SDA Security Domain of the

Application

mailto:alienor.damien@laas.fr

