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Abstract 

This paper firstly describes the challenges raised by the introduction 

of Intrusion Detection Systems (IDS) in avionic systems. In 

particular, we discuss some specific characteristics of such systems 

and the advantages and limitations of signature-based and anomaly-

based techniques in an avionics context. Based on this analysis, a 

framework is proposed to integrate a Host-based Intrusion Detection 

System (HIDS) in the general Integrated Modular Avionics (IMA) 

development process, which fits avionic systems constraints. The 

proposed HIDS architecture is composed of three modules: anomaly 

detection, attack confirmation, and alert sending. To demonstrate the 

efficiency of this HIDS, an attack injection module has also been 

developed. The overall approach is implemented on an IMA platform 

running a cockpit display function, to be representative of embedded 

avionic systems. 

I. Introduction 

The threat surface of an aircraft has always been very reduced thanks 

to strong safety requirements [1], [2], design isolation of critical 

cockpit functions, and limited connectivity. The fault-tolerant 

hardware platforms were mainly dedicated to avionics domain, with 

specific operating systems, preventing them from standard malware 

attacks. However, the trend nowadays is to make aircraft systems 

connected and less expensive, for example by providing the capacity 

to update the weather data in flight or by drastically increasing the 

number of functions of mixed criticality levels on common platforms 

[3]. These evolutions increase the threat surface that an attacker could 

potentially use to compromise the system.  

Moreover, the attack techniques are evolving and even specific and 

isolated systems can be hacked [4]. Security research teams are also 

working on the security of embedded systems like cars [5] and 

aircraft [6], [7], highlighting the need for security measures on these 

systems. Even if the avionics domain remains one of the safest up-to-

now, these examples show that actual certification process and safety 

mechanisms may not be sufficient to protect against deliberate 

attacks in the future. 

There are some fundamental differences between accidental faults 

and deliberate attacks. Because accidental fault occurrences are not 

deliberate, system safety requirements are mostly based on the 

probability of fault occurrences, and protection mechanisms are 

provided to prevent single fault conditions to lead to catastrophic 

consequences.  

As a consequence, the probability of having combined accidental 

faults is considered low. However, from a security point of view, an 

attacker is likely to carry out correlated malicious actions. Attacks 

become more and more sophisticated, may use 0-day exploits (e.g. 

exploitation of non-yet patched vulnerabilities), and target a specific 

goal. In this way, an attack may cause many correlated errors to 

modify slightly the execution flow or a critical data to affect the 

integrity or availability of an avionic function. Even if, thanks to 

architectural properties such as segregation, redundancy, 

dissimilarity, it remains very hard to conduct an attack with a 

catastrophic impact on an avionic function, we argue that some 

attacks may not be covered by safety mechanisms and that some 

additional mechanisms must be included for that purpose. 

This paper presents an ongoing work aimed at developing an 

Intrusion Detection System (IDS) for Integrated Modular Avionics 

(IMA) platforms, considering the point of view of a module 

integrator. The presentation is focused on the detection architecture 

and the detailed description of its components. The detection of a 

security event may consist of 1) logging the alerts for a posteriori 

investigation and/or 2) reacting automatically on-board to recover 

from faults generated by the attack. This paper only addresses the 

first point and does not investigate how the system should react when 

an intrusion is detected. Section II describes the context and the scope 

of this study. Section III focuses on existing security mechanisms 

deployed in avionics domain and on existing IDS used in traditional 

information systems, and analyzes their advantages and limitations 

with respect to the specific constraints inherent to avionic systems. 

Then Section IV presents our approach to integrate a Host-based IDS 

(HIDS) in an avionics context. A prototype of this approach is 

presented in Section V. Some preliminary results are presented in 

Section VI. Section VII concludes and discusses future work. 

II. Context 

This section presents the different actors involved in an Integrated 

Modular Avionics process, their interactions, and the threat model 

considered in this paper. 

A. Actors involved 

Many actors are involved in a conventional Integrated Modular 

Avionics (IMA) process, with different roles, responsibilities, and 

interactions between each others: module suppliers, application 

suppliers, module integrator, system and aircraft integrators, and 

airline company. Module suppliers provide a hardware platform with 

a Real-Time Operating System (RTOS) and associated tools. 

Application suppliers are mainly involved in the avionic functional 

software development phase. The module integrator follows the 

progress of the application suppliers during development and is 

responsible for the applications integration on the IMA platform. 

System and Aircraft integrators are responsible for functional 

integration. Airline is only involved in the operation phase. 
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Table 1 summarizes these roles and phases. 

Table 1. Roles of Actors Involved in Conventional Avionic Process 

Actor Phase Role 

Module supplier 1. Module 

Development 

Develop hardware platform, RTOS 

and integration toolset 

Application 

suppliers 

2. Application 

Development 

Develop an application to provide an 

avionic functionality 

Module 
integrator 

2. Application 
Development 

Allocate resources to the different 
applications 

 3. Integration Install applications on a module and 

perform the certification of the whole 
system (module + applications) System and 

Aircraft 

integrator 

3. Integration Integration   & Functional integration 
of the whole system 

Airline 4. Operation Operate and maintain the aircraft 

 

Figure 1 presents the main interactions between the actors of the IMA 

process. The module integrator dispatches a set of available resources 

between the application suppliers using a contract-based approach 

[8]. The ARINC 653 standard [9] proposes an Application 

Programming Interface (API) that allows the application suppliers to 

develop their applications by only knowing the resources they can 

use. The software development process, functional tests, and binary 

generation (also called "loadable" in avionics domain) are managed 

by each application supplier. The application loadables only are sent 

to the module integrator whose role is to integrate them into the 

whole system, composed of the hardware module and RTOS 

provided by the module supplier, the resources configuration 

generated from the resources allocated to each application, and each 

application loadable. After the platform system and aircraft 

integration phases, the data loading of each loadable on the aircraft is 

performed by the maintenance operators of the airline, potentially all 

around the world. 

From a security point of view, the role of the module integrator is 

very important. He has to ensure a correct resource sharing between 

applications, validating in particular the spatial and temporal 

segregation between applications potentially with different criticality 

levels delivered by all application suppliers. He should then ensure 

that any application does not exhibit undesired interactions with other 

applications. In this paper, we adopt the module integrator point of 

view to address security. 

A difficulty in such context is the number of different stake holders 

potentially from various companies involved, implying the 

confidentiality of application's documentation. Moreover, it is quite 

unusual, and very unlikely that the module integrator needs to have 

access to the specification and functional data of the applications he 

has to integrate. Nevertheless, he has to guarantee the spatial and 

temporal segregation between the applications running on the 

platform. In the rest of this paper, activities presented as Module 

Integrator activities may in fact be distributed between the Module 

Integrator and the System/Aircraft Integrator depending on the design 

of the integration process. 

 

Figure 1. Actors Interactions in an IMA Process 

B. Threat Model 

Due to the complexity and the criticality of the domain, each actor 

has a precise role in the certification process of an aircraft. The 

application suppliers have to provide guarantees about each 

functionality they implement (intended function). The module 

supplier provides guarantees about the capacities of his hardware 

platform, the performances of his RTOS, the relevant constraints for 

the users (usage domain), and the spatial and temporal segregation 

properties of his platform. The module integrator has to guarantee 

that the integration is compliant with both the application 

requirements and the platform capacities and constraints. 

To help the other actors, the module supplier can provide a qualified 

toolset with a compiler, a configuration tool, a usage domain checker, 

and a load generator [8]. In particular, the application suppliers and 

module integrator have to check some configuration rules to be 

allowed to generate the loads. The qualified tool chain provides the 

capability for each actor to generate loads that can be installed inside 

an aircraft. Of course, there are mechanisms to check the integrity of 

the loads, which are designed for safety purpose. There are also 

mechanisms to authenticate the load (signature-based loads). 

This hypothesis of mutual trust cannot be made when considering 

security purposes. There are only a few companies that provide 

modules or manage integration, and these companies can be trusted. 

In the opposite way, there are many different application suppliers 

and airlines all around the world, and we consider here that they 

cannot be trusted. In particular, this makes the application 

development and maintenance phases more critical. 
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Another threat is due to the installation of partitions with multiple 

criticality levels on a same module. Considering the high safety 

requirements for Design Assurance Level (DAL) A applications [2], 

it should be very hard to find a vulnerability inside this type of 

application. However, less critical functions are verified with a lower 

level of rigor, and could be corrupted in order to perform attacks on a 

more critical function through allowed interfaces.  

Platforms supporting these applications are developed at the highest 

criticality compared to applications (typically DAL A in avionics 

context). These platforms implement a robust partitioning to protect 

the platform and other hosted applications from any misbehavior of 

any of these applications. An attack from an application impacting 

other applications seems then very unlikely on an IMA platform. 

Nevertheless, some recent examples suggest attacks are still possible 

through hardware vulnerabilities [10]. 

These limitations raise two challenges to secure such systems:  

- If a binary is malevolent, it has to be detected before it is 

embedded, 

- If a binary is vulnerable, its possible corruption has to be 

detected at the runtime. 

In this paper, we propose to adapt the IMA process and tools, to 

detect such malevolent or compromised application during the 

integration phase or at runtime. 

III. Avionics Security State of the Art 

This section presents the existing approaches to integrate security in 

the avionic systems, and more precisely some studies about Intrusion 

Detection Systems (IDS) in embedded systems. 

A. Security in Critical Avionic Systems 

Considering some recent attacks on embedded systems [11], [6], the 

navigability regulation has evolved [12], [13]. Nowadays, avionics 

actors have to consider on-board and ground infrastructure security. 

This evolution has been included in the design of new aircraft [14]. 

Perimetric defenses are implemented to split the network into 

different domains [15], [16]. Systematic vulnerability analysis during 

the development of new platforms is also now considered, as 

presented for instance in [17]. Aircraft also implement strong safety 

mechanisms that are historically designed to provide protection 

against accidental threats, and recently some security solutions have 

been proposed to cope with malicious attacks [18]. 

However, to the best of our knowledge, they do not implement yet 

Intrusion Detection Systems (IDS) in operation. Such mechanisms 

would be useful to detect potential attacks exploiting unknown 

vulnerabilities and to provide additional protection mechanisms in the 

case of attacks not covered by the existing safety and other protection 

mechanisms. 

B. IDS in Embedded Systems 

IDS are usually classified as Signature-based and Anomaly-based 

IDS [19].  The first ones look for attack patterns, and the other ones 

for deviations from a normal behavior. To apply these techniques to 

avionic systems, the embedded IDS to be designed has to take into 

account the following constraints: 

- Real-time: It must not disturb the real-time execution of the 

aircraft functions. 

- High safety level: It should not directly affect the aircraft 

safety or introduce new dependencies between applications. 

- Performance: It must not consume too many resources.  

- Maintenance: It should not be updated at each landing to 

take into account recently discovered vulnerabilities 

because of the high cost of a grounded aircraft for the 

airline. 

- Life time: It must be efficient during at least 20 years. 

- Certification: It must satisfy the Development Assurance 

Level (DAL) [2] requirements assigned to the IDS. 

- Resilience to attacks: It should be protected against 

malicious potential corruption. 

Signature-based IDS need a database of known attacks (that does not 

exist today for avionic systems) with frequent updates. They are not 

suitable to detect new or sophisticated attacks. As a consequence, this 

kind of IDS is not suitable for the avionics context. On the other 

hand, anomaly-based IDS may generate a lot of false alarms, and the 

cost of grounding a fleet due to a false alert is not acceptable. 

Moreover, some difficulties may be raised with respect to 

certification if the algorithms implemented in the IDS are not 

deterministic. However, anomaly-based IDS present some interesting 

characteristics in avionics context. They are efficient to detect new 

attacks without requiring the update of an attack signature database 

[20]. Moreover, the modeling of the normal behavior of an avionic 

application can be performed with a good accuracy because the 

avionics environment is under strict control and is designed to be 

deterministic. 

A few studies have been published about IDS in embedded critical 

systems. For instance, [21] highlight some related constraints and 

challenges. [22] proposes an IDS for embedded automotive 

architectures. The use and implementation of IDS on multi-core 

architectures for real-time embedded systems is investigated in [23]. 

Some studies propose hybrid IDS to take advantage of both 

signature-based and anomaly-based techniques [24], [25]. Those 

studies are not specific to avionics domain, except the work of Silvia 

& al [26] that proposes a network-based IDS using network packets 

as input data. A limitation of this approach is that it cannot detect 

attacks that are internal to a module or to an application. 

Our research focuses on a different approach, aiming at integrating a 

Host-based IDS (HIDS) into each module that is designed to monitor 

the behavior of the hosted applications, using in particular avionic 

RTOS as a source of data.  

Considering both advantages and drawbacks of signature-based and 

anomaly-based IDS, we propose an hybrid approach with an anomaly 

detection module and an attack confirmation module based on a 

knowledge database including attack data as well as known safety-

related or false positive data. 

IV. Overall Approach 

The proposed HIDS approach aims at covering two types of threats: 

- A malevolent loadable sent to the integrator has to be 

detected during the integration phase. In this case, we 

assume that the binary only is corrupted, but that the 

documentation or activation inputs given to the integrator 

are correct.  
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- A loadable is corrupted after the integration phase (for 

example, malicious modification of a loadable on ground, 

external attack, attack from another corrupted equipment). 

It has to be detected at runtime. 

Figure 2 presents the blocks added during the integration phase and 

Figure 3 shows the blocks added during the operation phase. They 

represent on-ground (green) or embedded (blue) tasks. 

 

Figure 2. Integration Phase 

 

Figure 3. Operation Phase 

The first threat is managed by the "Static Security Analysis" 

processing block. The validity of the binary received is checked by 

comparing it with the documentation and existing knowledge about 

the application. 

The second threat is addressed by a hybrid embedded HIDS 

composed of two embedded blocks: "Anomaly Detection" and 

"Attack Confirmation". The "Anomaly Detection" block is 

configured with a "Security Domain of the Application" (SDA), built 

through the "SDA Modeling" and "SDA Validation" processing 

blocks during integration phase.  

The "Attack Confirmation" block is aimed at reducing the number of 

false alarms using signatures of already encountered anomalies, 

stored in a knowledge database. The investigation of unknown 

anomalies on the ground is represented by the "On-Ground 

Investigation" processing block. It allows to update the knowledge 

database of the "Attack Confirmation" block for a whole aircraft fleet 

after an unknown anomaly is raised by one of them. 

The following sections illustrate more precisely the definition of the 

SDA and the different blocks added to the traditional IMA process. 

A. Security Domain of the Application (SDA) 

The "Security Domain of the Application" (SDA) is a set of rules 

characterizing the normal behavior of an application (for example, 

the application A should not do more than ten API calls in one 

execution cycle). It is based on the platform resources usage of the 

application. As an application and its environment are not designed to 

evolve in real time, it should use the same resources through the 

lifetime of the aircraft (or until an update).  

Its design should be adapted to the targeted platform, taking into 

account the resources available for the HIDS (in terms of storage or 

data bandwidth), the information available on the existing platform 

(like the safety monitoring alerts, the instrumentation means, or the 

maintenance information), or the possible platform's developments. 

The main difficulty for selecting the relevant parameters involved in 

the definition of the SDA rules is to choose the simplest set of data to 

monitor, which is the most efficient and well adapted for any kind of 

application for a given system. Several approaches can be explored to 

design these parameters:  

- Select information that are already available, for example 

to be compliant with legacy aircraft. 

- Select the most critical information based on a risk analysis 

and an analysis of the effects of attacks on the system. 

- Select most common information monitored by HIDS from 

the literature (in avionics or other domains). 

- Select the information to monitor by experiment different 

HIDS under attack simulation. 

Table 2 proposes a first list of high level observation classes to help 

designing the SDA parameters. Each information monitored should 

be composed of an observation level and a characteristic to observe. 

For example, a SDA could be composed of rules characterizing the 

number of API calls performed by an application periodically during 

its execution, the time to perform a sequence of a specific number of 

API calls, the number of data segment reads and writes or the 

diversity of instruction types executed. 

Table 2. Examples of Observation Classes for SDA Parameters 

Observation Levels 

API Call Raise an event when an API call is made by the 
application 

Code executed Raise an event when an instruction is executed by the 

application 

Communications Raise an event when a message is sent or received by the 
application 

CPU Counters Read the performance monitor registers of the processor 

Memory Raise an event when the application accesses the memory 

of the platform 

OS Errors Raise an event when an error is raised by the OS 

Characteristics 

Diversity Number of different events 

Number Number of events 

Sequence Sequence of events 

Parameters Parameters of an event 

Payload Payload of an event 

Timestamp Timestamp of an event 

Type Type of an event 

 

B. Static Security Analysis 

The Static Security Analysis block aims at detecting a corrupted or 

malevolent loadable received from an application supplier to be 

integrated. In this case, we assume that only the loadable is corrupted 

but not any other documentation received from the application 

supplier. 

Two ideas are pursued to perform this analysis:  

- Use existing anti-malware techniques on the binary. 
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- Check the compliance between the binary and its 

documentation. 

1) Binary Verification with Existing Techniques 

It is important to detect the presence of a potential malware 

embedded inside an application loadable. For example, a corrupted 

USB key could have been used to transfer the loadable, or the 

production environment could be corrupted. It is important to 

investigate the corruption and find its root cause to patch the 

vulnerability and prevent a targeted malware from using it. The 

survey published in [27] highlights different approaches used by anti-

virus products to detect a known malware. Some other research 

works also study morphological analysis of malware to recognize 

known malicious code [28]. 

2) Binary Compliance with its Documentation 

As mentioned in Section II, the module integrator receives the binary 

to integrate from the application supplier, but he should also handle 

additional documentation to carry out this verification, like the 

insertion contract, the source code, the specification, or a description. 

A static verification of the compliance between the loadable and 

these documents can be carried out, right after the loadable delivery 

from the application supplier to the module integrator. This static 

verification is automated using the Resources Usage Analyzer 

described in Section V. 

In practice, only the insertion contract is known in every case, 

because it is a formal document written by the module integrator 

describing the resources allocated to the application supplier. This 

contract contains information about memory space, CPU time, 

communication ports, specific services, or partition numbers 

allocation, but this information is not sufficient to precisely 

characterize the application's behavior. For example, the contract 

may stipulate that the application can use 3MB of Non Volatile 

Memory (NVM), without providing information about its usage. As a 

consequence, the module integrator does not know if the NVM 

services are used occasionally, periodically, or very often, a potential 

NVM flooding cannot be detected using only the information 

provided by the insertion contract. 

This document can be useful to check some security requirements at 

a high level, but it is not precise enough to perform accurate runtime 

intrusion detection. The next block (SDA Modeling) aims at 

extending the insertion contract knowledge to have a more precise 

model of the application's behavior. 

C. SDA Modeling 

The objective of this phase is to build a preliminary SDA as 

described in Section IV-A modeling the normal behavior of the 

application. It can be done directly from the application's 

documentation provided in the delivery phase (manually) if it is 

sufficient. In the most common cases, the SDA is built by running the 

application in a laboratory setup, by simulating its activation inputs 

and observing the application resources usage as defined by the SDA 

parameters. The activation inputs, also provided by the application 

supplier, must be the same as the inputs used to perform the 

functional tests on the application. It can be represented by another 

stimulation partition or a network benchmark. There are two main 

advantages of reusing the inputs used to perform the functional tests: 

limiting the development costs and observing the application in all its 

modes (as we assume that the functional tests correctly cover all the 

modes of the application).  

Figure 4 illustrates a possible implementation of this block using 

three modules: an SDA Monitor to collect data about the application, 

a Data Pre-processing Tool to format these data, and an SDA 

Learning Tool to learn automatically the application's behavior by 

using semi-supervised machine learning techniques. In this case, the 

application is stimulated using a partition that emulates the activation 

inputs. 

 

Figure 4. SDA Modeling 

D. SDA Validation 

In this phase, illustrated by Figure 5, attacks are injected in the 

application in a lab environment to test the efficiency of the 

detection. This is an iterative process with the SDA Modeling block, 

to obtain a more precise SDA. Because we don't have currently any 

example of compromised application or successful attack, our 

approach consists in injecting the consequences of a potential attack 

on an application using an Attack Injection Tool.  

 

Figure 5. SDA Validation 

For example, the attack injected can simulate the deactivation of the 

error logging process by replacing its code with nop instructions. It 

can also modify an API call by replacing or removing it. Another 

example consists in the inclusion of an infinite loop inside a process 

to block the whole partition. More information about the attack 

injection tool we developed is provided in Section V.  

The application behavior under attack is monitored and characterized 

using the SDA Monitor and the Data Pre-processing Tool presented 

previously. It is then compared to the SDA obtained previously using 

the SDA Checker. If the initial SDA was constructed from the 

application's documentation only, the activation inputs can also be 

simulated to assess the accuracy of the SDA.  If some attacks are not 

detected or if there are too many false alarms, the results are 

investigated to propose a new SDA. Finally, the SDA obtained after 

some iterations is considered to fit the normal correct behavior of the 

application and each deviation from this behavior is considered as 

possibly malicious. 

E. Anomaly Detection 

Once the SDA is validated, it is deployed in the aircraft for the 

operational phase, as well as the application itself. 
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The anomaly detection block is embedded on the aircraft, for 

example within the hardware, the RTOS, or in a dedicated partition. 

A dedicated system partition (developed with the RTOS and provided 

into the same loadable) could be a good choice to place the anomaly 

detection block, as it is compliant to  the IMA principles, controlled 

by a trusted actor, which should facilitate the interface with the 

RTOS to monitor other applications. Thus, we consider that the 

anomaly detection block is placed in such partition in this paper.  

The role of this block is to monitor the applications resources usage 

as defined by the SDA parameters, and compare it to the SDA of 

each application independently. If an anomaly is detected, it is 

notified to the attack confirmation embedded block described 

hereafter.  

The anomaly detection partition only monitors the application and 

does not interact with the other partitions. A possible implementation 

of this monitoring is to modify the RTOS to capture and store the 

resources usage events into a memory area dedicated to the anomaly 

detection partition. This solution allows the anomaly detection 

partition to collect data from the other applications without 

interacting directly with them. As the partition does not interact with 

critical applications and has no impact on the aircraft safety, it could 

have a low DAL. However, the corruption of this partition could be 

critical from a security point of view, and some measures must be 

taken to ensure the security of this particular partition. 

F. Attack Confirmation and On-Ground 

Investigation 

Even if anomaly detection has many advantages in avionics domain, 

the rate of false alerts and the potential need to update the model can 

be challenging. The attack confirmation embedded block is aimed at 

mitigating this problem by implementing the following 

functionalities: 

- Anomalies characterization: It uses a knowledge database 

to confirm a real attack or to exclude known false positives 

or safety-related anomalies that are handled by other 

components of the architecture. 

- Alerts sending: It sends alerts to the crew and/or to the 

ground depending on the anomalies characterization 

results. 

- Knowledge database updating: It updates the knowledge 

database after investigation of non-confirmed anomalies on 

the ground. 

This block could be embedded inside a dedicated partition, a 

dedicated module, or even implemented on-ground depending on its 

role and the resources available. As the HIDS is designed only for 

detection and not for automatic reactions as for now, and has to be 

used for a fleet of aircraft, both online and offline detection might be 

considered.  

Online detection could allow in the future to react very quickly and 

even automatically. However, it may consume a lot of computational 

resources on-board and certification concerns can be raised, for 

example on the crew's ability to react in case of an alert. An offline 

detection could be a first step to introduce such technique inside an 

aircraft, and to evaluate its efficiency in operation without interfering 

with the crew, but this requires a significant amount of storage to 

save each detection information raised during the flight. In this paper, 

we chose to implement the offline detection option. 

As this block is generic and independent of the avionic application 

monitored, it is also much easier to update any of its components 

from a certification point of view. Indeed, the detection application is 

not critical for the safety of the aircraft. 

V. Prototype Description 

To assess the relevance of the overall approach, a first prototype has 

been developed. Its components, presented in the previous section 

and summarized in Figure 6, are described in this section:  

- The Resources Usage Analyzer is used to statically check 

the consistency between the resources usage of the 

application and the resources allocated to it. 

- The SDA Monitor captures information about the 

application's usage of resources while running on the 

platform. 

- The Data Pre-processing Tool is used to format the data 

received from the SDA Monitor. 

- The SDA Learning Tool uses the pre-processed data to 

model the application's behavior and generate the SDA. 

- The Attack Injection Tool emulates attacks on a running 

application. 

- The SDA Checker evaluates the data received from the 

SDA Monitor and identifies anomalies in the application's 

current behavior, by comparing it to its SDA. 

 

Figure 6. Prototype Architecture 

A. Resources Usage Analyzer 

The Resources Usage Analyzer aims at computing the metrics 

characterizing the usage of each type of resources used in the 

application's code. This is realistic because every resource is 

allocated statically. The tool is based on the standardized API 

ARINC653 [9], which classifies the API services provided in 

different categories described in Table 3. To compute the amount of 

resources used for a specific family of services, the API calls used to 

allocate this kind of resource have to be known.  

For example, the Non Volatile Memory (NVM) is allocated using the 

CREATE_LOGBOOK and CREATE_NOTEPAD API calls. To 

compute the global allocated memory, the tool parses the code to find 

where these API calls are used and the values of the parameters that 

declare the total size to allocate. This information is extracted by 

parsing the application's code to find function calls. Currently, the 

prototype is developed for a 32-bits PowerPC architecture where 

each instruction is coded on 32 bits. Each function call is built with 

the same structure. The avionic systems environment being static and 

deterministic, the services are always called with static parameters as 

input. 
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Table 3. Categories of API ARINC 653 Services 

Partition Management 

Process Management 

Time Management 

Inter-partition communication 

Intra-partition communication 

Error handling 

 

B. SDA Monitor 

The SDA Monitor is used to monitor the application resources usage 

during its execution. In practice, in order to have full access to the 

information of the existing platform, the debugging mode (see 

Section IV-D) is used. Currently, our prototype only monitors the 

API calls performed by the applications. The principle is to insert a 

breakpoint at each API call, and to execute a set of logging 

instructions when the breakpoint is reached. For instance, the 

following debugging script is aimed at logging the usage and the 

corresponding date of the CREATE_PROCESS API call. 

b CREATE_PROCESS 

commands 

    silent 

    printf "1,%i,%i\n",  $tbu, $tbl 

    c 

end 

 

These execution traces are collected in the GDB logging file in the 

following format: 

12,3117,4003 

14,3117,4451 

1,3117,4808 

7,3117,5133 

8,3117,6107 

 

The first number corresponds to the ID, the second one to the upper 

part of the RTOS clock, and the third one to the lower part of the 

RTOS clock. 

C. Data Pre-processing Tool 

This tool is dedicated to format the data received from the SDA 

Monitor. Currently, as our prototype only monitors API calls, this 

formatting is done in two steps:  

- Reconstruct the timestamp and transform the original data 

file into a list, 

- Aggregate the data as API sequences with the duration 

from the first to the last API call in the sequence. 

The timestamp is reconstructed by concatenating the second and the 

third data from each line of the file. After this first step, the resulting 

data is a list of couples [ID, Absolute Timestamp]. 

This list is then aggregated into sequences of a given length. For 

instance, if we consider sequences of four API calls, the resulting 

data are represented by [ID1, ID2, ID3, ID4, duration]. 

The final dataset is constructed with a sliding window. 

If we consider the original dataset presented in Section V-B, the 

resulting data with sequences of length four is: 

[12, 14, 1, 7, 1130] 

[14, 1, 7, 8, 1656] 

 

It can also be represented in two dimensions by concatenating the 

IDs: 

[12140107, 1130] 

[14010708, 1656] 

 

D. SDA Learning Tool 

This tool is used to model the application's behavior based on the 

formatted data, using semi-supervised machine learning techniques. 

Indeed, machine learning algorithms can provide efficient results to 

detect anomalies in observations, by means of classification 

algorithms. The problem we address is related to a one-class 

classifier that takes as input only elements of one class. Indeed, the 

dataset collected during the elaboration of the SDA only 

characterizes the normal behavior of the application. We do not have 

any dataset of attacks. A one-class classifier is able to build a model 

fitting the normal behavior of the application, based on the dataset of 

normal observations.  

Many algorithms can be used to perform anomaly detection, like the 

Self-Organizing Map, Statistical, or One-Class Support Vector 

Machine (OCSVM) [20]. For this first implementation of our 

prototype, the technique implemented is an OCSVM, using the scikit-

learn python package. This choice has been driven by the 

performance of the OCSVM algorithm (mainly its prediction speed) 

and because it is easy to configure and use. 

The OCSVM can be parameterized in different ways: 

- 𝑘𝑒𝑟𝑛𝑒𝑙 ∈ {𝐿𝑖𝑛𝑒𝑎𝑟, 𝑅𝐵𝐹, 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙}: Global aspect of 

the OCSVM. 

- 𝑛𝑢 ∈ [0; 1]: Ratio of acceptable false positives. 

- 𝑔𝑎𝑚𝑚𝑎 ∈ 𝑁: Level of precision around the training points. 

E. Attack Injection Tool 

The Attack Injection Tool is used to emulate attack consequences on 

the application through code modification representing malicious 

behavior. To facilitate and automate the generation of attacks, the 

debugging interface is used to stop the entire module (RTOS + 

applications) and modify the code area of the application, to force it 

to change its behavior after continuing the execution. The tool 

provides debugging scripts with different attack functions, for 

example the ability to insert a loop, change the parameters of a 

function call, modify an API call, or skip or erase a part of the code. 

The start time and duration of the attack can also be configured. Once 

prepared, the attack is directly executed from the application. 

For example, the skip_instruction attack function is defined as 

follows:  
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# Skip a given instruction 

define skip_instruction 

 

# ARG 0 : Address of the instruction to skip 

# ARG 1 : N (skip 1 over N instructions) 

# ARG 2 : Time limit begin 

# ARG 3 : Attack duration 

 

# 1. Jump into the exploit:  

# Save skipped instruction and replace it by a 

jump 

save_instruction $arg0 saved_instruction 

put_jmp_exploit $arg0 

# Save execution context (registers) 

save_registers 

 

# 2. Prepare exploit variables: 

# Exploit_size: debugger local variable 

set exploit_size = restore_registers_size + 

return_size 

# Global_counter: start and duration of the 

attack 

define_global_variable global_counter 

# Begin_value and End_value 

define_global_variable begin_value $arg2 

define_global_variable end_value ($arg3 - 

$arg2) 

define_global_variable N $arg1 

 

# 3. Start the exploit: 

# Increment the global_counter 

increment_variable global_counter 

# Check if the skip is performed (conditions 

on starting, duration, and N) 

if_state_jump (begin_value > global_counter) 

(if_size*2+exploit_size) 

if_state_jump (end_value < global_counter) 

(if_size*1+exploit_size) 

if_state_jump (global_counter % N) 

(exploit_size) 

# If no jump is taken, skip the call: restore 

the registers and return 

restore_registers  

return ($arg0+4) 

# Else, restore registers, execute the 

instruction and return 

restore_registers 

execute saved_instruction 

return ($arg0+4) 

 

This function takes as input the instruction to skip, the starting time, 

the duration, and the skip frequency as parameters. It is executed to 

prepare the exploit depending on those parameters. 

F. SDA Checker 

The SDA Checker collects data from the SDA Monitor at runtime. It 

also imports the SDA built by the SDA Learning Tool. Each data 

received is pre-processed using the Data Pre-processing Tool to 

provide a resulting couple [API calls sequence ID, 

duration]. The one-class SVM classifier identifies this couple as 

belonging or not to the model exhibited during the training phase. If 

not, an alarm is raised by the SDA checker. A percentage of 

anomalies detected by the SDA Checker is also computed by 

comparing the log generated by the application execution with the 

injected attacks, to the log obtained under a normal execution. 

G. Conclusions about the prototype 

This prototype addresses the different constraints induced by the 

avionics domain: 

- Real-time: The overhead generated by the logging of 

application events by the RTOS can be controlled in order 

to reduce the impact on the performance of the RTOS to 

deliver the API services, and the associated Worst Case 

Execution Time (WCET) to deliver such service. There are 

no other impacts on the applications. 

- High safety level: If the embedded part of the prototype is 

implemented in a dedicated partition as suggested, it will be 

compliant with the spatial and temporal segregation 

provided by the platform and should not induce 

dependencies with other applications. Also, at this stage, 

the HIDS does not have any impact on the flight as the 

alerts raised are just logged for future investigation. It is not 

designed to directly interact with the embedded safety 

mechanisms.  

- Performance: The data chosen as input are very simple and 

are computed very quickly by the OCSVM algorithm. 

However, the amount of data is not controlled and this 

should be addressed in a future prototype. 

- Maintenance: The SDA needs to be updated at each update 

of the application, and not at each newly discovered attack. 

Also, we consider that the knowledge database would 

require a few updates compared to a classical signature-

based IDS. 

- Life time: As the SDA is elaborated based on the normal 

behavior of an application, it should stay accurate during 

the life time of the application. We consider that the 

environment of the application is also not going to change. 

- Certification: The HIDS itself has no impact on the aircraft 

safety so a low DAL should be assigned to it. However, the 

problem of certified algorithms like machine learning ones, 

has to be addressed to anticipate the actions to take on-

board as a reaction to an alert. [29] 

- Resilience to attacks: As a system partition developed by 

the module supplier, this partition should be considered as 

trusted. Nevertheless, security mechanisms should be 

considered during the platform development to guarantee 

the integrity of this partition. 

VI. Preliminary Experiment 

For this first experiment, the target is an IMA module with a 32bits 

PowerPC architecture running a unique application called "IHS" for 

Interface Human System. This application is responsible for the 

display in the cockpit of information about the health of the aircraft, 

like the fuel level or the state of the motors.  

The application configuration, the loadable binary, and the insertion 

contract of this application are available to the module integrator. The 

application is considered as autonomous for this experiment (it is 

running dynamically but not stimulated, so that it always displays the 

same information and has no interaction with the pilots). 

This preliminary experiment aims at assessing the relevance of our 

overall approach in four steps: 
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- Verify the correct usage of resources of the application 

(Static Security Analysis) 

- Run the application in normal environment and build its 

SDA (SDA Modeling) 

- Inject an attack during the application is running (SDA 

Validation) 

- Investigate the corresponding data offline by comparing it 

with the application's SDA (SDA Validation) 

A. Step 1: Correct Usage of Resources 

Table 4 summarizes the information contained in the insertion 

contract for the IHS application. This information can be verified 

using the configuration or the code of the application. 

Table 4. Resources Defined in the Insertion Contract 

Resource Type 

RAM size: - Code² 

- Data² 

- Inter-partition communications¹ 

Execution Time² 

NVM size¹ 

Number of API communication ports¹ 

Specific Services¹ 

Number of Physical Resources : - A429² 

- Discrete² 

 
Number of Network Interfaces : - A664² 

- Ethernet² 

¹ Items checked using the code 

² Items checked using the configuration 

Elements that can be verified using the application configuration (like 

the RAM size allocated for code and data or the number of network 

interfaces), are checked by means of the existing configuration tool. 

This tool checks whether the configuration provided by the 

application supplier is consistent with the configuration defined by 

the module integrator.  

The other elements presented in Table 4, are handled by the 

Resources Usage Analyzer tool using the following formulas as 

inputs:  

-  RAM size for inter-partition communications: 

CREATE_SAMPLING_PORT: MAX_MESSAGE_SIZE 

CREATE_QUEUING_PORT: MAX_MESSAGE_SIZE * 

MAX_NB_MESSAGE 

 

- NVM size: 

CREATE_LOGBOOK: MAX_MESSAGE_SIZE * 

(MAX_NB_LOGGED_MESSAGE + 

MAX_NB_IN_PROGRESS_MESSAGE) 

CREATE_NOTEPAD: MAX_MESSAGE_SIZE 

 

- Number of API ports: 

CREATE_SAMPLING_PORT: 1 

CREATE_QUEUING_PORT: 1 

 

- Specific services used: for this part, we look for the API 

calls corresponding to the list of specific services and 

display the ones that are called. 

To obtain these formulas, the ARINC 653 standard [9] is used. For 

example, this standard defines two services to perform inter-partition 

communications: the SAMPLING and QUEUING ports. Only one 

message is available in a SAMPLING_PORT, and its maximum 

message size is set as parameter when calling the 

CREATE_SAMPLING_PORT API call. This parameter corresponds 

to the total size necessary for one declared SAMPLING_PORT. For 

the QUEUING_PORT, the standard authorizes multiple messages and 

its maximum number of messages is given as parameter as well as the 

maximum message size when using the CREATE_QUEUING_PORT 

API call. The multiplication of these two parameters gives the total 

size used by a QUEUING_PORT. 

B. Step 2: SDA Modeling 

The target application is first loaded inside the module and the SDA 

Monitor is parameterized to log the type and timestamp of each 

called API. The application is run during 25 seconds to have a 

sufficient amount of data (around 45.000 data lines that cover each 

part of the code many times). The application initialization is not 

taken into account in this prototype. The resulting data are pre-

processed by the SDA Learning tool to be formatted into [API 

sequence ID, duration] couples with sequences of length 

four. This sequence size is chosen arbitrarily for this experiment for 

the sake of illustration, but other lengths can be considered. The data 

are also normalized between 0.0 and 1.0 to be easily used by the 

classifier. These formatted data are then exported into .csv files and 

constitute the inputs of the OCSVM algorithm.  

 

Figure 7. Dataset Obtained by Monitoring the Type and Timestamp of API 

Call in the Absence of Attack 

70% of the dataset is used to train the OCSVM, and 30% are used to 

test its accuracy. The OCSVM is parameterized with a RBF kernel, 

𝑛𝑢 = 0.01, 𝑔𝑎𝑚𝑚𝑎 = 1000. We obtained 1.45% of false positives 

on the testing set with this OCSVM.  
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Figure 7 plots the testing data obtained with the OCSVM trained. 

This OCSVM is exported in a .plk file of size 13,4𝐾𝑜. 

C. Step 3: Attack Injection 

Using the Attack Injection Tool, we emulated a Denial of Service on 

the IHS display. This attack has been carried out in two different 

ways: 

-  Full attack: The IHS display is completely disabled from 

the starting of the partition, 

- Partial attack: After one second of normal working, half of 

the frames are disabled, making the screen blinking during 

three seconds. 

The data collected under injection are collected with the same SDA 

Monitor script as the one used in the previous step. 

D. Step 4: SDA Checking 

The attack data are formatted using the Data Pre-processing Tool into 

[API calls sequence ID, duration] couples with 

sequences of length four, and then exported in a .csv file. 

The resulting .csv file is passed to the OCSVM previously defined 

and each point of the attack file is evaluated as normal or as an 

anomaly using the predict() function of the scikit-learn python 

package. The results are summarized in Table 5. The OCSVM raised 

8.14% of anomalies in the full attack dataset. This rate is 

significantly higher (ratio of 5.60) than the false positive rates 

(1.45%) found in the step two on the normal dataset (used for 

testing). As a consequence, the classifier is able to differentiate the 

attack from the normal behavior of the application. The anomaly rate 

is less important in the partial attack dataset (3.29%), but this can be 

explained by the shorter duration of this attack compared to the full 

attack. 

These results are obtained with only one type of attack injected in 

two different modes. This preliminary experiment provides some 

positive and encouraging feedback. In particular, the attack is 

discriminated whereas it does not induce new API call sequences, 

meaning that the duration is a very interesting data to monitor in such 

context. However, more extensive and significant experiments should 

be carried to assess the detection effectiveness and performance of 

the proposed HIDS, including a large set of different attacks and a 

large number of experiments to obtain statistically significant results. 

The application used for the prototype should also be stimulated to 

build an SDA covering its overall behavior, including user 

interactions and fault-recovery situations. The SDA modeling 

parameters should also be challenged, including nu and gamma 

parameters, but also the sequence size and the amount of data to use 

for training. Such experiments are planned for future work. 

Table 5. Results: Percentage of anomalies on normal and attacked datasets 

Dataset Anomalies Rate 

Testing (Normal) 1.45% 

Full Attack 8.14% 

Partial Attack 3.29% 

 

VII. Conclusion and Future Work 

This paper discussed the challenges related to the use of traditional 

IDS techniques in the context of real-time critical avionic systems. 

We also presented the principles of an anomaly-based intrusion 

detection approach aimed at modeling and monitoring the behavior of 

an avionic application through a HIDS process adapted to avionics 

constraints. The integration of this approach into a conventional IMA 

process is also described. A prototype of this approach has been 

developed and some preliminary results have been presented. 

In the future, we plan to go further in the development of the 

prototype. In particular, we are currently implementing other 

functionalities in the Resources Usage Analyzer to check the 

consistency between the resources declared and their usage. We are 

also improving the Attack Injection Tool to formalize different 

classes of attacks, and create an automatic attack injection campaign, 

to perform a more extensive validation experimentation. As regards 

the SDA modeling, we plan 1) to carry out sensitivity experiments in 

order to evaluate the best parameters for our selected OCSVM 

algorithm (nu, gamma, kernel, and length of the sequences), and 2) to 

implement other anomaly detection techniques like statistical ones. 

We also plan to test other relevant parameters to be monitored by the 

SDA Monitor. Finally, we plan to improve the prototype by using it 

on a stimulated IHS application and on other kinds of applications to 

evaluate the approach on a more realistic environment. 
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