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Hierarchical estimation of the region of attraction for systems subject
to a state delay and a saturated input

Alexandre Seuret1, Swann Marx1 and Sophie Tarbouriech1

Abstract— This paper addresses the local stability analysis
problem for linear systems subject to input saturation and state
delay. Thanks to the construction of a Lyapunov-Krasovskii
functional associated to Legendre polynomials and the use of
generalized sector conditions, sufficient linear matrix inequali-
ties (LMIs) are derived to guarantee the local stability of the
origin for the closed-loop system. In addition, an estimate of
the basin of attraction of the origin is provided, which does
not include the derivative of the initial condition. A convex
optimization problem leans on these conditions to maximize
the size of the estimate of the basin of attraction. Optimal
LMIs form a hierarchy, which is competitive to improve the
size criterium of the estimate of the basin of attraction. An
example illustrates the potential of the technique.

I. INTRODUCTION

This paper is concerned with the computation of regions of
attraction of time-delay systems subject to input saturations.
Taking into account these constraints is of crucial interest.
Indeed, on the one hand such a nonlinearity might make
the resulting closed-loop system unstable (see e.g. [19],
which surveys the stability analysis problem of linear finite-
dimensional systems subject to saturation). On the other
hand, it is well known that the introduction of delays in
a control loop may lead to a notable degradation of the
performance or even to instability [3], [7], [9], [12], [17].
In the situation of saturated time-delay systems, the standard
method follows a two steps design. First, the design is carried
out without taking into account the saturation. Second, we
add the saturation and provide a stability analysis based on
some Lyapunov functions.

In general, there is no hope to have a global asymptotic
result, which makes crucial the problem of computing re-
gions of attraction or at least estimate of them. Note that
tackling this particular nonlinearity in the case of finite-
dimensional system is already a difficult problem. However,
nowadays, numerous techniques are available to provide such
an analysis (see e.g., [19], [22], etc.). Most of them are based
on the Lyapunov function for the system without saturation
and some sector condition property satisfied naturally by the
saturation. Roughly speaking, this sector condition describes
some partitions of the state space where the saturation can be
approached by a linear function. In one of these partitions,
one can retrieve the stability of the system without saturation.

As mentioned above, Lyapunov functionals for the system
without saturation (which resumes to a linear time-delay
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system) are crucial. While these functionals can be computed
explicitely with LMIs in the case of linear systems without
delay, it is harder in the case with delay to obtain such
an explicit form. Indeed, even if [6, Theorem 5.9.] ensures
the existence of a Lyapunov-Krasovkii functional for stable
systems, this latter is in general difficult to compute numer-
ically. Therefore, in general, we provide an approximation
of this functional so that computations become tractable.
Numerous numerical approximations have been proposed in
recent decades (see e.g., [6] for the discretization method,
[2], [18], for the delay-partitionning method, or [11], for sum
of squares methods.)

In order to compute estimate of the region of attraction of
time-delay systems subject to saturation, most of the existing
results in the literature uses classical Lyapunov functionals,
based on the quadratic form coming from finite-dimensional
systems and integral terms (see e.g., [1], [5], [4], [10], or
[20]). A generalized sector condition is also added in order
to achieve the Lyapunov stability analysis. Unfortunately,
most of these approximations induces some conservatism.
In this paper, our approximation is based on a Legendre
polynomial setting, borrowed from [14], which leads to a
less conservative Lyapunov functional.

The latter Lyapunov functional is defined with an aug-
mented state, that is the projection of state functions to a
finite number of Legendre polynomials of degree at most
equal to N ∈ N. One of the interests is that it is possible to
built efficient functionals without including double integral
terms that depends on the derivative of the states. This indeed
leads to many complications when it comes to the estimation
of the basin of attraction, which has then to be defined using
the derivative of the initial condition (see for instance in [5]).
Another interest of this particular Lyapunov functional is that
we may increase this degree (our approximation is therefore
indexed by N ), to reduce the conservatism of the results
thanks to the hierarchical structure of the LMIs. Moreover,
this implies that, increasing the degree, we may improve
at each step of the approximation the size of the region of
attraction.

The paper is organized as follows. Section II presents the
system under consideration and the problem we intend to
solve. Section III proposes preliminary results on Legendre
polynomials and the modified sector conditions. Section
IV is dedicated to provide the sufficient conditions for
Local stability. In section V, some optimization issues are
discussed. Section VI develops a hierarchical estimation of
the basin of attraction. The technique developed in the paper
is illustrated in Section VII. Finally, Section VIII ends the



paper with some concluding remarks.
Notation. Rn denotes the n-dimensional Euclidean space

with Euclidian norm | · |, Rn×m is the set of all n × m
real matrices. The notation P � 0, for P ∈ Rn×n,
means that P is symmetric and positive definite. The sets
Sn and S+n represent, the set of symmetric and symmetric
positive definite matrices of Rn×n, respectively. The set
of continuous functions from an interval [−h, 0] ⊂ R to
Rn which are, consequently, square integrable is demoted
as space L2([−h, 0],Rn) = L2. Let us also define the set
RnM [u] ⊂ L2 as the set of polynomials in Rn of degree less
than M . For any function f ∈ L2, the norm |f |h refers to
supθ∈[−h, 0] |f(θ)|. The symmetric matrix [A B

∗ C ] stands for[
A B
B> C

]
. diag(A,B) stands for the diagonal matrix [A 0

0 B ].
For any positive integer j ≤ n any vector x ∈ Rn and
any matrix A ∈ Rn×n, the notation Aj and xj refer to the
jth line of matrix A and the jth component of vector x,
respectively. Moreover, for any square matrix A ∈ Rn×n, we
define He(A) = A+A>. The matrix I represents the identity
matrix of appropriate dimensions. The notation 0n,m stands
for the matrix in Rn×m whose entries are zero and, when no
confusion is possible, the subscript will be ommited. For any
function x : [−h, +∞) → Rn, the notation xt(θ) stands
for x(t+ θ), for all t ≥ 0 and all θ ∈ [−h, 0]. The notation(
k
l

)
refers to the binomial coefficients given by k!

(k−l)!l! .

II. PROBLEM FORMULATION

Consider a linear time-delay system described by:{
ẋ(t) = Ax(t) +Adx(t− h) +Bu(t), ∀t ≥ 0,
x(t) = φ(t), ∀t ∈ [−h, 0],

(1)
where x(t) ∈ Rn is the instantaneous state vector, φ is the
initial conditions and A, Ad and B, are constant matrices
of appropriate dimensions. The delay h is assumed to be
constant and known. Furthermore, the input is limited in
magnitude as follows:

|ui| ≤ u0i, u0i > 0, i = 1, . . . ,m. (2)

Then, the effective control signal to be applied to the system
is given by

u(t) = sat(Kx(t)), (3)

with K ∈ Rm×n and

ui(t) = sat(Kix(t)) = sign(Kix(t))) min{u0i, |Kix(t)|},

for all i = 1, . . . ,m. Hence, the closed-loop system reads

ẋ(t) = Ax(t) +Adx(t− h) +Bsat(Kx(t)). (4)

Due to the saturation, system (4) is a nonlinear system.
Therefore, the resulting stability properties have to be re-
garded with precaution. In particular, if the open-loop system
(i.e. u = 0) is unstable, global asymptotic stability cannot be
guaranteed for the closed-loop system, and one has to look
at for regional (local) asymptotic stability criteria. One of
the possible control objectives consists in the maximization
of the estimate of the basin of attraction of the origin

for the closed-loop system. While, in the context of finite-
dimensional systems, i.e. without delay, the estimation of
the region of attraction is simply characterized by a vector
representing the possible finite-dimensional initial condition,
the infinite-dimensional case of time-delay systems is more
complicated to formulate. Indeed, it usually imposes to
relate the region of attraction to the supremum norm of the
vectorial function that represents the initial conditions. This
formulation has the drawback of being over conservative but
it is unfortunately necessary in order to provide a tractable
estimation of the basin of attraction of the origin

Note that system (4) is not affected by the problem of the
first delay interval [8], since the delay only affect the state
of the system but not the control input.

The problem we intend to solve can be summarized as
follows.

Problem 1: Given a state feedback gain K such that the
matrix A+Ad+BK is Hurwitz, characterize an estimate of
the basin of attraction of the origin for closed-loop system
(4).

The novelty of this paper relies on the recent developments
regarding the stability analysis of time-delay systems based
on polynomial approximation and the derivation of efficient
integral inequalities. The basic idea of this paper is to restrict
the set of allowable initial condition functions to a finite-
dimensional truncation of L2, consisting of polynomials
of limited order N . This restriction allows deriving in a
direct and less conservative manner the estimate of region
of attraction, for any initial condition in this truncated set.

III. PRELIMINARY LEMMA

A. Bessel-Legendre inequality

Let us first recall the framework introduced in [14], [15]
based on the use of sequence of Legendre polynomials,
which is orthogonal with respect to the inner product as-
sociated to the L2 norm.

Definition 2: The Legendre polynomials considered
over the interval [−h, 0] are defined by Lk(u) =

(−1)k
∑k
l=0 p

k
l

(
u+h
h

)l
, for all k ∈ N, where

pkl = (−1)l
(
k
l

) (
k+l
l

)
.

The set of Legendre polynomials {Lk}k∈N forms an
orthogonal sequence with respect to the inner product:

〈f, g〉 =

∫ 0

−h
f(t)g(t)dt, ∀f, g ∈ C. (5)

Hence, the Legendre polynomials described in Definition 2
satisfy the following properties:

Property 3: The Legendre polynomials satisfy the follow-
ing properties:

P1 Orthogonality:

∀(k, l) ∈ N2,

∫ 0

−h
Lk(u)Ll(u)du =

hδkl
2k + 1

(6)
where δkl is the Kronecker index, such that δkl = 1
if k = l and 0 otherwise.



P2 Boundary conditions:

∀k ∈ N, Lk(0) = 1, Lk(−h) = (−1)k.

P3 Differentiation:

∀k ∈ N, d
duLk(u) =

∑k
i=0

(2i+1)(1−(−1)k+i)
h Li(u).

We are now in position to recall the Bessel-Legendre
inequality, which aims at providing a lower bound of a
function x in L2 expressed in terms of a quadratic form
of its projections over a truncated sequence of Legendre
polynomials.

Lemma 4: Let h, x and R be a strictly positive number,
a function in L2 and a matrix in S+n , respectively. Then, the
inequality∫ 0

−h
x>(s)Rx(s)ds ≥ 1

h
x̃>N

R 3R

. . .
(2N+1)R

 x̃N , (7)

holds for all N ∈ N, where the projection vector x̃N is given,
for any positive integer N by

x̃N =


∫ 0

−h L0(s)x(s)ds∫ 0

−h L1(s)x(s)ds
...∫ 0

−h LN (s)x(s)ds

 .
Proof: Various proofs can be found in [14], [15]. It is

based on the calculation of the L2 norm of the error variable
zN (u) given by

zN (u) = x(u)−
N∑
k=0

2k + 1

h
Lk(u)

∫ 0

−h
Lk(s)x(s)ds.

Remark 1: The components of the vector x̃N can be
interpreted as the collection of the projections of the function
x over the N + 1 first Legendre polynomials. This notion of
projection will be used in the sequel.

B. Modified sector conditions

Let us introduce the dead-zone function ψ as follows

ψ(Kx(t)) = Kx(t)− sat(Kx(t)). (8)

Note that, ψ(Kx(t)) corresponds to a decentralized dead-
zone nonlinearity. Considering the function ψ(Kx(t)), the
closed-loop system can be re-written as

ẋ(t) = (A+BK)x(t) +Adx(t− h)−Bψ(Kx(t)). (9)

Let us define the polyhedral set

S(u0) = {v, w ∈ Rm × Rm, |(vi − wi)| ≤ u0i,
∀i = 1, ...,m} . (10)

The next Lemma, borrowed from [19] concerning the
dead-zone nonlinearity ψ(v) is recalled.

Lemma 5: Consider the function ψ defined in (8). If
(v, w) ∈ S(u0) then the relation

ψ>(v)U [ψ(v)− w] ≤ 0, (11)

is verified for any matrix U ∈ Rm×m diagonal and positive
definite.
The result in Lemma 5 can be seen as an extension of the
classical sector condition (used for instance in [21]), leading
to less conservative stability conditions.

In the sequel, Lemma 5 is used by considering:

v = Kx and w = Xx+ YN x̃N . (12)

For the sake of simplicity of the presentation, the notation
ψ(t) will stand in the sequel for ψ(Kx(t)).

IV. LOCAL STABILITY ANALYSIS OF DELAYED AND
SATURATED SYSTEMS

This section provides a solution to Problem 1, that is
providing a local asymptotic stability result for system (4),
or equivalently system (9).

Theorem 6: For a given integer N , a constant delay h,
a given controller gain K and a given diagonal positive
matrix U , assume that there exist matrices PN ∈ S+n(N+2),
S,R,W ∈ S+n , X ∈ Rm×n and YN ∈ Rm×(N+1)n such that
the set of LMIs (with i = 1, . . . ,m)

ΘN (h) =

[
PN +

1

h
SN

[
(K−X)>i
Y >Ni

]
∗ u20i

]
� 0,

ΨN (h) =

[
Ψ0
N (h) Ψ1

N (h)
∗ −2U

]
≺ 0,

ΦN =

[
W 0
∗ WN

]
− PN � 0

(13)

holds where

Ψ0
N (h) = He

(
G>N (h)PNHN

)
− hRN ,

+diag{S + hR,−S, 0(N+1)n},
Ψ1
N (h) = G>N (h)

([
X>

Y >N

]
U − PN [B0 ]

)
,

GN (h) =

[
In 0n 0n,n(N+1)

0n(N+1),n 0n(N+1),n hIn(N+1)

]
,

HN =
[
F>N Γ>N (0) Γ>N (1) . . . Γ>N (N)

]>
,

WN = diag(W, 3W, . . . , (2N + 1)W ),
SN = diag(0, S, 3S, . . . , (2N + 1)S)
RN = diag(0, 0, R, 3R, . . . , (2N + 1)R),

(14)
and where

FN =
[
A+BK Ad 0n,n(N+1)

]
,

ΓN (k) =
[
I (−1)k+1I γ0kI . . . γNk I

]
,

γik =

{
−(2i+ 1)(1− (−1)k+i), if i ≤ k,
0, if i ≥ k + 1.

(15)
Then time-delay system (1) with the saturated static state

feedback controller u(t) = sat(Kx(t)) is locally asymptoti-
cally stable for any initial conditions φ in EN (h,W ), where
the latter set is defined as follows

EN (h,W ) :=


φ ∈ L2 , φ

>(0)Wφ(0)

+

∫ 0

−h
φ>(s)(S + h(R+W ))φ(s)ds ≤ 1,

 .

(16)



Proof: Guided by the Bessel-Legendre inequality (7)
and the projections vectors involved therein, a similar Lya-
punov functional as the one presented in [13] is considered
and requires the following augmented state x̃N (t), for a
prescribed integer N ≥ 0 defined by:

x̃N (t) =


∫ 0

−h L0(s)xt(s)ds
...∫ 0

−h LN (s)xt(s)ds

 .
This augmented vector x̃N gathers the projections of the

state function xt to the N + 1 first Legendre polynomials.
The Lyapunov functional is defined as follows:

VN (xt) =

[
x(t)
x̃N (t)

]>
PN

[
x(t)
x̃N (t)

]
+

∫ 0

−h
x>t (s)(S + (h+s)R)xt(s)ds

(17)

In order to ensure the positive definiteness of the func-
tional, let us note that the positive definiteness of R and the
application of the Bessel-Legendre inequality in Lemma 4
ensure that, for all N ≥ 0∫ 0

−h
x>(s)(S + (h+s)R)x(s)ds ≥ 1

h

[
x(t)
x̃N (t)

]>
SN

[
x(t)
x̃N (t)

]
which leads to

VN (xt) ≥
[
x(t)
x̃N (t)

]>(
PN +

1

h
SN

)[
x(t)
x̃N (t)

]
. (18)

Hence, if matrix ΘN (h) is positive definite, functional VN
is positive definite.

Let us consider now the derivative of VN along the
trajectories of the closed-loop system (9). To do so, let us
introduce the following augmented vector ξN (t) given by

ξN (t) =

 x(t)
xt(−h)
1

h
x̃N (t)

 , N ≥ 0,

The objective of the next developments is to derive an
upper bound of the derivative of functional VN , which is
expressed as a quadratic term of the augmented vector ξN (t)
and the dead-zone function ψ(t). The computation of this
derivative refers to classical manipulations on Lyapunov-
Krasovskii functionals and yields

V̇N (xt, ẋt) = 2

[
x(t)
x̃N (t)

]>
PN

[
ẋ(t)
˙̃xN (t)

]
+ x>(t)(S + hR)x(t)− x>(t−h)Sx(t−h)

−
∫ 0

−h
x>t (s)Rxt(s)ds.

(19)
The next step of the proof consists in expressing ẋ(t) and

˙̃xN (t) thanks to the augmented vector ξN (t). On the one
hand, we have

ẋ(t) = (A+BK)x(t) +Adx(t− h)−Bψ(t)
= FNξN (t)−Bψ(t),

where matrix FN is given in (15). On the other hand, for
any positive integer k ≤ N , an integration by parts ensures
that∫ 0

−h
Lk(s)ẋt(s)ds = Lk(0)xt(0)− Lk(−h)xt(−h)

−
∫ 0

−h
L̇k(u)xt(u)du.

Thanks to properties P2 and P3 of the Legendre polyno-
mials, the following expression is derived∫ 0

−h
Lk(s)ẋt(s)ds = xt(0)− (−1)kxt(−h)

−
k−1∑
i=0

γiNk
1

h

∫ 0

−h
Li(u)x(u)du

= ΓN (k)ξN (t)

where matrices ΓN (k) are defined in (15). Then, by putting
together all the components of ˙̃xN (t), we obtain[

ẋ(t)
˙̃xN (t)

]
= HNξN (t)−

[
B
0

]
ψ(t)

with HN defined in (14). Finally, noticing that x̃N (t) =
GN (h)ξN (t), where matrix GN (h) is given in (14), it yields

V̇N (xt) = ξ>N (t)Ψ0
N (h)ξN (t)− 2ξ>N (t)G>N (h)PN

[
B
0

]
ψ(t)

−
∫ 0

−h
x>t (s)Rxt(s)ds+

1

h
x̃>N (t)

R3R

. . .
(2N+1)R

 x̃N (t).

(20)
where we have introduced the matrix Ψ0

N defined in (14).
This manipulation imposes the introduction of the last term
of the previous expression. The Bessel-Legendre inequality
in Lemma 4 ensures that the sum of the two last terms is
negative definite, so that we have

V̇N (xt, ẋt) ≤ ξ>N (t)Ψ0
N (h)ξN (t)

−2ξ>N (t)G>N (h)PN

[
B
0

]
ψ(t).

(21)

Introducing matrix ΨN (h) in the previous expression
yields

V̇N (xt) ≤
[
ξN (t)
ψ(t)

]>
ΨN (h)

[
ξN (t)
ψ(t)

]
+2ψ>(t)U (ψ(t)−Xx(t)− YN x̃N (t)) .

by using Lemma 5 with (12).
Hence, if the matrix ΨN (h) is negative definite, then there

exists a sufficiently small scalar ε > 0, such that previous
inequality reduces to

V̇N (xt)≤−ε|x(t)|2 + 2ψ>(t)U (ψ(t)−Xx(t)−YN x̃N (t))

The final step of the proof consists then in ensuring the
negativity of the right-hand-side of the previous inequality.
To do so, let us first apply the Schur Complement to the last
row and column of ΘN (h) and pre- and post-multiply by the



vector [x>t (t) x̃>N (t)]> and its transpose, respectively. This
leads to∣∣∣Kix(t)− [Xi YNi ]

[
x(t)
x̃N (t)

]∣∣∣2
≤ u20i

[
x(t)
x̃N (t)

]> (
PN + 1

hSN
) [ x(t)
x̃N (t)

]
≤ u20iVN (xt),

where the last inequality has been obtained from inequality
(18). Therefore, we have

|(K −X)ix(t)− YNix̃N (t)|2 ≤ u20iVN (xt) ≤ u20iVN (φ)

where φ is the initial conditions of the closed-loop system.
Provided that condition ΦN � 0 holds, an upper bound of

the VN can be obtained as follows

VN (φ) ≤
[
φ(0)

φ̃N

]> [
W 0
∗ WN

] [
φ(0)

φ̃N

]
+

∫ 0

−h
φ>(s)(S + (h+s)R)φ(s)ds

= φ>(0)Wφ(0) + φ̃>N (t)WN φ̃N (t)

+

∫ 0

−h
φ>(s)(S + hR)φ(s)ds

with

φ̃N =


∫ 0

−h L0(s)φ(s)ds∫ 0

−h L1(s)φ(s)ds
...∫ 0

−h LN (s)φ(s)ds

 .
Then, by application of the Bessel-Legendre inequality to

the term φ̃>NWN φ̃N , the functionals can be upper bounded
as follows

VN (φ) ≤ φ>(0)Wφ(0)+

∫ 0

−h
φ>(s)(S+h(R+W ))φ(s)ds

Therefore, for any initial conditions φ ∈ EN (h,W ), the
inequality VN (φ) ≤ 1 holds and the assumption of Lemma
5 is satisfied and the regional stability of system (1) with the
saturated control law (3) is ensured.

Remark 2: It is worth noting that the estimation of the
basin of attraction provided in Theorem 6 only depends on
the norm of the vector φ(0) and on the L2 norm of the initial
condition φ, while in most of the results in the literature
provides such an estimation, which also contains the L2

norm of the derivative of the initial condition, i.e. φ̇. This
constitutes one of the major contribution of this paper.

V. OPTIMIZATION OF THE APPROXIMATION OF THE
BASIN OF ATTRACTION

Theorem 6 exposes some local stability conditions for
time-delay systems subject to a saturated input. These con-
ditions provide, for a given controller gain K, an estimation
of the basin of attraction defined by any initial conditions
φ ∈ L2(−h, 0,Rn) verifying (16). Compared to the case
without delays, the estimation of region of attraction is
defined over an infinite-dimensional subset of L2(−h, 0,Rn).
In order to measure the size of the estimation, one has to

include some restrictions to this set. Among the numerous
possibilities to do so, the usual assumption on the allowable
set of initial conditions consists in introducing the supremum
norm of the initial condition as follows

Esup(c) :=

{
φ ∈ L2(−h, 0), |φ|h = sup

s∈[−h, 0]

‖φ(s)‖ ≤ c

}
.

(22)
for a positive scalar c > 0 to be determined.

This leads to the following optimization scheme:
Optimization 7: For a given integer N , the minimization

problem given by

λ∗N (h) = min
{W,PN ,R,S,X,YN}

λ

subject to
ΘN (h) � 0, ΨN (h) ≺ 0,

ΦN (h) � 0 and S + h(R+W ) ≤ λ

1 + h
I

ensures that for an optimal selection of estimation of the
region of attraction is given by

φ ∈ Esup
(

(λ∗N (h))−1/2
)
.

Proof: Since matrices S and R are positive definite,
the proof consists in noting that, from Theorem 6, we have,

VN (φ) ≤ φ(0)TWφ(0)+

∫ 0

−h
φT (s)(S + h(R+W )φ(s)ds

≤ λ∗N (h)

1 + h

(
‖φ(0)‖2 +

∫ 0

−h
‖φ(s)‖2ds

)
≤ λ∗N (h)|φ(s)|2h.

Therefore, if the initial condition belongs to
Esup

(
(λ∗N (h))−1/2

)
, it implies that VN (φ) ≤ 1, which

concludes the proof.

VI. HIERARCHICAL ESTIMATION OF BASIN OF
ATTRACTION

One of the main advantages of using the Bessel-Legendre
framework was demonstrated in [14], [15], [16], [23], in
which a hierarchical structure of the LMI conditions with
respect to the order N of the conditions was proven. While
in the papers cited above, the hierarchical structure aims at
demonstrating that the solutions to the LMI, for a given delay
h, obtained at a given order N , are included in the solutions
of the same condition at higher orders, this section aims at
proving that the same hierarchical structure applies to the
estimation of the basin of attraction. This is formulated in
the following theorem based on the stability conditions of
Theorem 6.

Theorem 8: For any time-delay system (1) subject to a
saturated control input (3), and any delay h, the solutions
λ∗N (h) to Optimization 7, obtained for various values of N
verify the inequality λ∗N+1(h) ≤ λ∗N (h), for any positive
integer N . In other words, the inclusion

Esup
(

(λ∗N (h))−1/2
)
⊆ Esup

(
(λ∗N+1(h))−1/2

)
holds, for any positive integer N .



Theorem 6 N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10
h=0.5 2.4356 2.7362 2.9602 3.0111 3.0267 3.0354 3.0407 3.0437 3.0454 3.0468 3.0479
h=1 1.4637 1.5705 1.7387 1.7912 1.8125 1.8247 1.8305 1.8343 1.8365 1.8383 1.8396
h=1.5 0 1.0858 1.1854 1.2574 1.2833 1.2974 1.3024 1.3063 1.3089 1.3109 1.3122

TABLE I
SOLUTION, (λ∗N (h))−1/2 OF OPTIMIZATION 7 FOR SEVERAL VALUES OF h AND N

Proof: Consider a given integer N ∈ N and the
solution to Optimization 7, λ∗N (h), associated to the decision
variables P ∗N , S∗, R∗, W ∗, X∗ and Y ∗N , which verify the
conditions ΘN (h) � 0, ΨN (h) ≺ 0 and ΦN (h) � 0, for this
value of N . Let us introduce now, the decision variables

PN+1 =

[
P ∗N 0
0 0

]
, YN+1 =

[
Y ∗N
0

]
Let us verify that these two matrices together with the

same matrices S∗, R∗, W ∗ and X∗ fulfilled the LMI
conditions at the order N + 1. It is easy to see that, by
a simple permutation

ΘN+1(h) =


P ∗N +

1

h
S∗N 0

[
(K−X∗)>i
Y ∗Ni

>

]
∗ 2N + 1

h
S∗ 0

∗ ∗ u20i

 ,
or equivalently,

ΘN+1(h) � 0 ⇔
[
ΘN (h) 0
∗ (2N + 3)S∗

]
� 0,

which is positive definite, if and only if ΘN (h) � 0 and
S∗ � 0. Following the same procedure, it is possible to
show that

ΦN+1 =

[
ΦN 0
∗ (2N + 3)W ∗

]
,

which is positive if and only if ΦN � 0 and W ∗ � 0, which
are necessary conditions for the conditions to hold at the
order N .

In order to verify that ΨN+1(h) ≺ 0 for this particular set
of decision variables, let us first note that the construction
of the matrices GN , HN , FN and S̃N imposes the following
structures

HN+1 =

[
HN 0(N+1)n,n

ΓN+1(h)

]
,

GN+1(h) =

[
GN (h) 0(N+1)n,n

0n,(N+1)n hI

]
,

From these expressions, matrix ΨN+1(h) can be expressed
using the matrix ΦN (h) as follows

ΨN+1(h) =

Ψ0
N (h) 0 Ψ1

N (h)
∗ −(2N + 3)R∗ 0
∗ ∗ −2U

 .
where Ψ0

N (h) and Ψ1
N (h) are given in (14). Thanks to

permutations of the second and third rows and columns of
the previous matrix, the following statements are equivalent

ΨN+1(h) ≺ 0 ⇔
[
ΨN (h) 0
∗ −(2N + 3)R∗

]
≺ 0,

which ensures that ΨN+1(h) is negative definite for this
particular selection of PN+1 and YN+1.

To conclude the proof, it suffices to note that a solution
to Optimization 7 at order N + 1 is built based on the
solution obtained at order N . This means that Optimization 7
recovers at least the solution obtained at previous orders
and that λ∗N+1(h) ≤ λ∗N (h) and the inclusion of the sets
Esup(−1/2((λ∗N (h))−1/2) straightforwardly follows from the
previous inequality.

VII. NUMERICAL APPLICATION AND ILLUSTRATIONS

Let us consider the time-delay system driven by (1) and
with the saturated static state feedback controller u(t) =
sat(Kx(t)), with the following matrices

A =

[
0 1
1 0.1

]
, Ad =

[
0 0
1 0

]
, B =

[
0
1

]
, K = −

[
2
1

]>
,

and U = 1. It is easy to note that matrices A and A + Ad
are not Hurwitz. This ensures that, when h = 0, only a
local stability guarantee can be obtained. The gain K has
been chosen so that matrix A+Ad +BK is Hurwitz. This
ensures that, at least, when the delay is zero or sufficiently
small, the system can be regionally stabilized to the origin.

Table I shows the numerical values of (λ∗N (h))−1/2 ob-
tained for h = 0.5, 1 and 1.5 for N = 0 to 10. One can see
from this table that increasing the delay leads to a decrease
of the size of the estimation of the basin of attraction. This
behavior corresponds to the expected effect of delays. The ta-
ble also shows that increasing the order of the LMI provides,
for this example, an increase of estimation of the domain
of attraction. Even though these improvements are quite
small when N is large, the augmentation of (λ∗N (h))−1/2

is relatively notable. This illustrates the hierarchical result
provided in Theorem 8.

Another way to understand the hierarchical structure of
the contributions of this paper is presented in Figures 1 and
2. These figures present the evolution of (λ∗N (h))−1/2 with
respect to h in [0, 1.6], for N = 0 to 6. Figure 2 shows a
zoom of Figure 1, where the vertical axis is constrained to
the interval [0, 5]. One can see in Figure 1 that the size of
the domain of attraction increases notably, when the delay
tends to zero. Figure 2 allows us to see that increasing N
for all values of h can only provide a larger estimation of
the domain of attraction. Alternatively, Figure 2 illustrates
the reduction of the conservatism of the stability conditions
of Theorem 6 by noting that the maximal allowable delay
for which a solution is obtained increases with N . One can
also see that the size of the domain has a for any N .
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Fig. 1. Evolution of (λ∗N (h))−1/2 with respect to h in [0, 1.6], for
N = 0 to 6.
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Fig. 2. Zoom of Figure 1.

VIII. CONCLUSIONS

In this paper, the stability analysis problem for linear
systems subject to input saturation and time-delayed state
have been addressed. Considering a Lyapunov-Krasovskii
functional associated to Legendre polynomials and gener-
alized sector conditions, sufficient conditions based on a set
of LMIs were derived to guarantee the regional stability of
the origin for the closed-loop system. An estimate of the
basin of attraction of the origin was also characterized. A
convex optimization problem associated to these conditions
allowed to maximize the size of the estimate of the basin
of attraction. We have then showed that the optimal LMIs
form a hierarchy, which is competitive to improve the size
criterium of the estimate of the basin of attraction. An
example finally illustrated the potential of the technique.

This paper paves the way for future works. In particular, it
should be interesting to extend the conditions, and therefore
the hierarchical expansion, to the context of stabilization, that
is to be able to determine in the same step the controller and
the estimation of the basin of attraction. Furthermore, the
study of the influence of the hierarchical conditions to some
performance level purposes could be carried out.
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