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Event-triggered damping stabilization
of a linear wave equation ?

Lucie Baudouin ∗ Swann Marx ∗ Sophie Tarbouriech ∗

∗ LAAS-CNRS; Université de Toulouse; CNRS, Toulouse; France.

Abstract: The paper addresses the design of an event-triggering mechanism for a partial
differential wave equation posed in a bounded domain. The wave equation is supposed to be
controlled through a first order time derivative term distributed in the whole domain. Sufficient
conditions based on the use of suitable Lyapunov functional are proposed to guarantee that
an event-triggered distributed control still ensures the exponential stability of the closed-loop
system. Moreover, the designed event-triggering mechanism allows to avoid the Zeno behavior.
The ‘existence and regularity’ prerequisite properties of solutions for the closed loop system are
also proven.

Keywords: Distributed parameter systems, event-triggered control, Lyapunov functionals.

1. INTRODUCTION

In this paper we are concerned with a stabilization problem
by event-based control of the wave equation

∂2
t z(t, x)−∆z(t, x) = u(t, x), x ∈ Ω, t ≥ 0 (1)

in a suitable functional space, where Ω is a bounded
domain in RN , ∆ is the Laplacian operator, the Dirichlet
boundary datum of the unknown z is homogeneous and
u = u(x, t) is a distributed parameter control that can be
sampled in the time variable. One of the most classical
way to obtain stabilization and even exact controllability
is to choose u(x, t) = −α∂tz(x, t) that corresponds to a
classical damping term (see Chen (1979)).

There exist many ways to stabilize or to analyze the stabil-
ity of the wave equation. For the analysis of the stability,
let us cite the seminal paper Chen (1979), which considers
a full damping and uses some Lyapunov technique to
characterize the stability, or Lebeau (1996), which focuses
on a localized damping and follows a micro-local analysis
to provide the optimal decay rate of the solution. The
multiplier method developed in Komornik (1997) is also
a powerful tool to prove controllability and stabilization
of several partial differential equations (PDEs). For the
feedback design, we might also mention Smyshlyaev et al.
(2010) in which the backstepping method is used for sev-
eral kinds of one dimensional wave equations.

In the context of event-triggered control, two objectives
can be pursued: (1) Emulation - the controller is a priori
predesigned and only the event-triggered rules have to
be designed (see, for example, Postoyan et al. (2015),
Espitia et al. (2017) and the references therein), or (2)
Co-design - the joint design of the control law and the
event-triggering conditions has to be performed (see, for
example, Seuret et al. (2016), Heemels et al. (2013) and
the references therein). The current paper comes within
the scope of the first case, that is, of the emulation
context and, more precisely, we want to focus on the
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stabilization of the wave equation by means of an event-
triggered control. This kind of feedback strategy has been
followed in order to reduce the computational resources
of the controllers. Indeed, event-triggered controls can be
defined as controls updated aperiodically, only when it is
needed, i.e when the system becomes, roughly speaking,
too unstable. This strategy has been first applied for finite-
dimensional systems (see Åström and Bernhardsson (1999)
Tabuada (2007) or Peralez et al. (2018)) and then extended
to some infinite-dimensional systems (see Espitia et al.
(2016) for the case of boundary control of linear hyperbolic
system of first order PDEs and Selivanov and Fridman
(2016) for the case of distributed control of some diffusion
equations). Let us also mention Davo et al. (2018), where
a first order hyperbolic linear PDE is considered with a
sampled-data control, which is a control strategy closely
related to the event-triggered control. To the best of our
knowledge, the current paper is the first one dealing with a
wave equation with an event-triggered distributed control.

Let us emphasize that in the event-triggered control con-
text, the plant evolves in continuous time, whereas the con-
trol signal is updated depending on discrete-time events.
The resulting closed-loop system hence becomes a hybrid
system in the sense given in Goebel et al. (2012). Note
that coupling these two components requires to be careful.
Indeed, such a controller might produce a Zeno solution,
which is defined as “jumping” infinitely in a bounded time
interval - read (Goebel et al., 2012, Chapter 2) for a com-
plete discussion on this topic. This kind of solutions has to
be avoided, otherwise the implementation of the feedback
law might be impossible. Here, instead of considering the
hybrid framework to develop the results, we follow an
alternative route as in Tabuada (2007) and Espitia et al.
(2017).

In the current paper, the design of an event-triggering
mechanism for a wave equation posed in a bounded domain
is proposed. We consider the case of a linear wave equation
submitted to an event-triggered distributed control. In
particular, under some assumptions linked with the shape



and size of the spatial domain Ω, the control mechanism is
designed to avoid Zeno solution and ensure the exponential
stability of the closed-loop system. The originality of the
approach relies on the conditions involving the parameters
of the event-triggering mechanism and the characteriza-
tion of the overshoot estimation and the exponential rate
(defining the exponential stability property). The results
are developed thanks to the use of an adequate Lyapunov
functional.

This paper is organized as follows. Section 2 describes the
system under consideration and states the problem to be
solved in a more precise way. Then, the main results of the
paper in terms of well-posedness and exponential stability
theorems are presented in Section 3. Section 4 is devoted
to the proof of the well-posedness of the closed-loop system
and Section 5 focuses on the proof of the exponential
stability using Lyapunov theory. Finally, Section 6 collects
some concluding remarks and gives further research lines
to be followed in the future.

Notation: When applicable, the partial derivative with
respect to t is denoted ∂tz = ∂z

∂t , the gradient is the vector
function ∇z = (∂xnz)n=1,...,N and the Laplacian operator

is defined by ∆z =
∑N
n=1 ∂

2
xnz. The Hilbert space of square

integrable functions over Ω with values in R is denoted by

L2(Ω) with norm ‖z‖L2(Ω) =
(∫

Ω
|z(x)|2dx

)1/2
and the

Sobolev space H1(Ω) is
{
z ∈ L2(Ω),∇z ∈

(
L2(Ω)

)N }
with ‖z‖2H1(Ω) = ‖z‖2L2(Ω) + ‖∇z‖2L2(Ω). We denote finally

C0(R+) the space of continuous functions defined over R+

and vanishing at infinity.

2. PROBLEM STATEMENT

The goal of our work is to study the stabilization of the
partial differential system

∂2
t z(t, x)−∆z(t, x) = u(t, x), (t, x) ∈ R+ × Ω

z(t, x) = 0, (t, x) ∈ R+ × ∂Ω

z(0, x) = z0(x), ∂tz(0, x) = z1(x), x ∈ Ω,

(2)

where z and u denote the state and the control variable
respectively. Before going any further, let us recall that
if u ∈ L1(R+;L2(Ω)), (z0, z1) ∈ H1(Ω) × L2(Ω) and
assuming the compatibility condition z0(x) = 0 for all
x ∈ ∂Ω (so that z0 actually belongs to the Hilbert space
denoted H1

0 (Ω)), then the initial and boundary value
problem (2) is well-posed and has a unique solution (see
e.g. Lions (1988), Lasiecka et al. (1986), Haraux (2018))

z ∈ C0(R+;H1(Ω)) ∩ C1(R+;L2(Ω)).

If one sets u(t, x) := −α∂tz(t, x), where α > 0, then the
origin of the closed-loop system is globally exponentially
stable (see e.g. Chen (1979), Chen (1981)). We can build
an explicit Lyapunov functional for such a system, which
is closely related to the natural energy (sum of the kinetic
and potential energies) of the wave equation given by

E(t) :=
1

2

(
‖∂tz(t)‖2L2(Ω) + ‖∇z(t)‖2L2(Ω)

)
(3)

In this paper, the objective relies on the way to implement
the control input u = −α∂tz, taking into account that u
is performed through a sample-and-hold mechanism. It is
not continuously updated or transmitted to the actuators.
Indeed, it is updated at certain instants {tk}k∈N, which

form a sequence of strictly increasing positive scalars. Con-
trol action is held constant between two successive sam-
pling instants (tk and tk+1) through a zero order holder.
Differently from classical digital control approaches, the
sampling interval tk+1− tk is not assumed to be constant.
Indeed, the control input can be written as

u(t, x) = −α∂tz(tk, x), ∀(t, x) ∈ [tk, tk+1[×Ω. (4)

The idea is to find an appropriate event-triggered law
for the sampling times (tk)k∈N in order to maintain the
exponential stabilization toward the origin of the closed
loop

∂2
t z(t, x)−∆z(t, x) = −α∂tz(tk, x),

(t, x) ∈ [tk, tk+1[×Ω,∀k ∈ N
z(t, x) = 0, (t, x) ∈ R+ × ∂Ω

z(0, x) = z0(x), ∂tz(0, x) = z1(x), x ∈ Ω.

(5)

Besides, since the sampling will be aperiodic, we will have
to carefully check whether such a feedback law does not
produce any Zeno phenomenon. Denoting by ek the speed
deviation, given by the formula

ek(t, ·) := ∂tz(t, ·)− ∂tz(tk, ·), in Ω, ∀t ∈ [tk, tk+1[, (6)

the sampling instants are determined from the following
logic:

tk+1 := inf
{
t ≥ tk, ‖ek(t)‖2L2(Ω) − γ0‖z(t)‖2L2(Ω)

− γ1‖∂tz(t)‖2L2(Ω) − η0(t) ≥ 0
}
,

(7)

where γ0 and γ1 are sufficiently small positive constant
that have to be defined and η0 is a function that will be
specified later, decreasing and strictly positive.

Remark 1. We could have designed the event-triggered
law more simply with γE(t) but we wanted to keep a close
track on the respective constraints we need to impose in
position (on γ0) and velocity (γ1) of the variable z. ◦

3. MAIN RESULTS

This section collects the two main theorems of the paper.
The first one states the existence and classical regularity
of solutions for the closed-loop event-triggered controlled
system (5)-(7) and addresses the Zeno behavior.

Theorem 1. [Well-posedness] Consider the linear wave
equation (5) under the event-triggering mechanism (7).
For any initial condition (z0, z1) ∈ H1

0 (Ω) × L2(Ω), there
exists a unique solution

z ∈ C0(R+;H1(Ω)) ∩ C1(R+;L2(Ω)).

Furthermore, the Zeno phenomenon is avoided.

The second result states the global exponential stability of
the origin of the closed-loop system (5)-(7) under a specific
condition on the spatial domain.

Theorem 2. [Global exponential stability] Let α > 0 be
the damping parameter in the wave equation closed-loop
system (5). Assume that the Poincaré constant of the
bounded domain Ω, denoted CΩ (see Lemma 3), satisfies

CΩ <
√

2.

There exist γ0 > 0, γ1 > 0 and a strictly decreasing
function η0 ∈ C0(R+) such that for any initial condition



(z0, z1) ∈ H1
0 (Ω) × L2(Ω), system (5) under the event-

triggering mechanism (7) is exponentially stable:

∃K, δ > 0 such that E(t) ≤ Ke−δtE(0), ∀t > 0. (8)

Remark 2. Note that the constants γ0 and γ1, and the
function η0 can be built explicitely. This construction
is given in the fourth step of the proof of the global
exponential stability, that is written in Section 5. ◦
Remark 3. The restriction on the Poincaré constant CΩ

(see Lemma 3) given in Theorem 2 is closely related to
the shape of the domain Ω. It is important to note that
the condition can actually be viewed as a link between
the domain Ω and the velocity of the wave equation under
consideration. For simplicity, we have chosen in this paper
a wave velocity identically equal to 1. In a more general
case, the wave equation may be rewritten as

∂2
t z(t, x)− c2∆z(t, x) = u(t, x), ∀(t, x) ∈ R+ × Ω,

where c denotes the velocity, and when studying this
equation, the restriction on the Poincaré constant becomes
c−1CΩ <

√
2. Noticing that CΩ is closely related to the

diameter of the domain Ω, the latter comment implies,
roughly speaking, that a too small velocity c will not imply
a stabilization result with such an event-triggered damping
control if the domain is too large. In other words, our
stabilization result is limited to “small” ratio between the
size of the domain and the velocity of the wave equation
(and not only to “small” constants CΩ). ◦

4. WELL-POSEDNESS OF THE CLOSED LOOP
SYSTEM

The proof of Theorem 1 is divided into three steps. We
first prove that the closed-loop system (5)-(7) is well-
posed on every sample interval [tk, tk+1] in a way such
that one obtains a unique solution z ∈ C([0, T ], H1

0 (Ω)) ∩
C1([0, T ];L2(Ω)) for any T > 0. Then, we show that (5)-
(7) avoids the Zeno phenomenon. Finally, gathering these
information proves that the solution z evolves in R+ × Ω.

Proof.

• Existence, uniqueness and regularity of the solution:
We proceed by induction. First, let us focus on the
initialization interval [0, t1], and prove that the solution
belongs to the awaited functional space and is unique.
Then, we will assume that for a fixed integer k the
regularity holds true up to tk+1, and proceed on the next
time interval.

(i) Initialization. On the first time interval, (5) reads ∂2
t z(t, x)−∆z(t, x) = −αz1(x), (t, x) ∈ [0, t1]× Ω,
z(t, x) = 0, (t, x) ∈ [0, t1]× ∂Ω,
z(0, x) = z0(x), ∂tz(0, x) = z1(x), x ∈ Ω.

This is a simple wave equation with source term. By as-
sumption, z1 ∈ L2(Ω) so that −αz1 ∈ L1(0, t1;L2(Ω)), and
one can invoke (Haraux, 2018, Theorem 1.3.2) to conclude
that there exists a unique solution z ∈ C([0, t1];H1

0 (Ω)) ∩
C1([0, t1];L2(Ω)) to the latter system.

(ii) Heredity. Fix k ∈ N and assume that

z ∈ C([tk, tk+1];H1
0 (Ω)) ∩ C1([tk, tk+1];L2(Ω)).

Denote by z2k+2 and z2k+3 the position and velocity
function values of the wave at time tk+1. Now consider
(5) over the time interval [tk+1, tk+2]:


∂2
t z −∆z = −αz2k+3, in [tk+1, tk+2]× Ω,

z = 0, on [tk+1, tk+2]× ∂Ω,

z(tk+1) = z2k+2, ∂tz(tk+1) = z2k+3, in Ω.

It is again a wave equation with source term, here
−αz2k+3, that belongs to L1([tk+1, tk+2];L2(Ω)) since we
assumed ∂tz ∈ C([tk, tk+1];L2(Ω)) and ∂tz(tk+1) = z2k+3.
Thus, applying (Haraux, 2018, Theorem 1.3.2) we con-
clude to the existence and uniqueness of the solution

z ∈ C0([tk+1, tk+2];H1
0 (Ω)) ∩ C1([tk+1, tk+2];L2(Ω)).

(iii) Conclusion. By induction, for any k ∈ N, z ∈
C([tk, tk+1];H1

0 (Ω))∩C1([tk, tk+1];L2(Ω)). Therefore, from
the extension by continuity at the instants tk, one can
conclude that (5) has a unique solution

z ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).

• Avoiding Zeno phenomenon:
The goal is to prove that with the event-triggering mech-
anism (7), there is only a finite number of sampling times
over any closed interval subset [0, T ] of R+. In fact, given
T > 0, we will show that there exists τ∗ > 0 such that
the sampling times {tk ∈ [0, T ], k ∈ N} from (7) satisfy
tk+1 − tk > τ∗.

The proof relies on the continuity of t 7→ ∂tz(t, ·) as a
function from [0, T ] to L2(Ω). The uniform continuity of
the function t 7→ ek(t, ·) defined by (6) from the compact
set [0, T ] to the Hilbert space L2(Ω) stems from ∂tz ∈
C([0, T ];L2(Ω)). The contrapositive of the definition of
this uniform continuity brings that ∀η > 0, ∃τ∗ > 0,
∀s, t ∈ [0, T ]

‖ek(t)− ek(s)‖L2(Ω) > η ⇒ |t− s| > τ∗.

Hence, applying this property to s = tk, t = tk+1, we
ultimately need to prove that we can bound from below,
independently of k, the quantity

‖ek(tk+1)− ek(tk)‖L2(Ω) = ‖ek(tk+1)‖L2(Ω)

in order to avoid the Zeno phenomenon. Now, by definition
of tk+1 in (7) and η0 (decreasing and strictly positive), we
have

‖ek(tk+1)‖2L2(Ω)

≥ γ0‖z(tk+1)‖2L2(Ω) + γ1‖∂tz(tk+1)‖2L2(Ω) + η0(tk+1)

≥ η0(T ) > η > 0,

that allows to conclude that the Zeno behavior is avoided.

• Conclusion:
A unique solution exists on any time interval [0, T ], for
all strictly positive T . Moreover, the Zeno phenomenon is
avoided in such bounded intervals, so that in the end, we
can write z ∈ C0(R+;L2(Ω))∩C1(R+;L2(Ω)), allowing to
end the proof of Theorem 1. 2

5. EXPONENTIAL STABILITY

This section is devoted to the proof of Theorem 2. Let us
consider the following Lyapunov functional candidate :

V (t) :=
1

2

∫
Ω

|∂tz(t, x)|2dx+
1

2

∫
Ω

|∇z(t, x)|2dx

+
εα

2

∫
Ω

|z(t, x)|2dx+ ε

∫
Ω

z(t, x)∂tz(t, x)dx, (9)



defined with ε > 0 and for the state variable z(t) ∈ L2(Ω)
of (5) and where we denoted the functional by V (t) instead
of V (z(t)) in sake of simplicity. Then, one gets:

V (t) = E(t) +
εα

2
‖z(t)‖2L2(Ω) + ε

∫
Ω

z(t)∂tz(t).

The proof is divided into four steps (for all t): the equiva-
lence between E(t) and V (t) ; the estimation from below of

V̇ (t) = dV
dt (t) under the smart choice of the parameters γ0,

γ1 of the event-triggering mechanism and of the weighting
parameter ε ; the deduction of the exponential decreasing
of the energy E of system (5) under the smart choice of
function η0(t) in (7) ; the conclusion in terms of the initial
context.

Proof.

• First Step: The energy of the system and the proposed
Lyapunov functional are equivalent if there exist two
positive constants C1 and C2 such that for all t ≥ 0,

C1E(t) ≤ V (t) ≤ C2E(t). (10)

It is indeed easy to prove, using Cauchy-Schwartz, Young’s
and Poincaré ’s inequalities recalled in appendix (with
ε = CΩ for Lemma 2), that

V (t) ≤ E(t) +
εα

2
‖z(t)‖2L2(Ω) + ε‖z(t)‖L2(Ω)‖∂tz(t)‖L2(Ω)

≤ E(t) +
εCΩ

2
‖∂tz(t)‖2L2(Ω) +

ε

2

(
1

CΩ
+ α

)
‖z(t)‖2L2(Ω)

≤ E(t) +
εCΩ

2
‖∂tz(t)‖2L2(Ω) +

εCΩ

2
(1 + αCΩ) ‖∇z(t)‖2L2(Ω)

≤
(
1 + εCΩ + εαC2

Ω

)
E(t),

so that C2 = (1+εCΩ +εαC2
Ω) in (10). On the other hand,

for the same reasons,

V (t) ≥ E(t)−ε‖z(t)‖L2(Ω)‖∂tz(t)‖L2(Ω) ≥ (1− εCΩ)E(t),

so that as soon as ε < 1/CΩ, C1 = (1− εCΩ) in (10).

• Second Step: The goal of this step is to prove that there
exists β > 0 such that for all t ≥ 0,

V̇ (t) ≤ −βE(t) +
α

2
(1 + αε)η0(t). (11)

First, the closed-loop system (5) with the event-triggering
mechanism (7) reads

∂2
t z(t, x)−∆z(t, x) = −α∂tz(t, x) + αek(t, x),

(t, x) ∈ [tk, tk+1[×Ω,∀k ∈ N
z(t, x) = 0, (t, x) ∈ R+ × ∂Ω

z(0, x) = z0(x), ∂tz(0, x) = z1(x), x ∈ Ω.

(12)

Compute the time-derivative of V along the trajectories
of system (12) and use integrations by parts for all t ≥ 0,
such that t ∈ [tk, tk+1[:

V̇ (t) =
d

dt

(
E(t) +

εα

2
‖z(t)‖2L2(Ω) + ε

∫
Ω

z(t)∂tz(t)

)
=

∫
Ω

∂2
t z(t)∂tz(t) +

∫
Ω

∂t∇z(t) · ∇z(t)

+ εα

∫
Ω

z(t)∂tz(t) + ε

∫
Ω

|∂tz(t)|2 + ε

∫
Ω

z(t)∂2
t z(t)

=

∫
Ω

∆z(t)∂tz(t)− α
∫

Ω

|∂tz(t)|2 + α

∫
Ω

ek(t)∂tz(t)

+

∫
Ω

∂t∇z(t) · ∇z(t) + ε

∫
Ω

|∂tz(t)|2 + ε

∫
Ω

z(t)∆z(t)

+ εα

∫
Ω

z(t)ek(t)

= (ε− α)

∫
Ω

|∂tz(t)|2 − ε
∫

Ω

|∇z(t)|2

+ α

∫
Ω

ek(t)∂tz(t) + εα

∫
Ω

z(t)ek(t).

Now, let us estimate the two last terms of the equality
using the definition of ek in (6) and the event-triggering
mechanism (7) that gives, ∀t ∈ [tk, tk+1[

‖ek(t)‖2L2(Ω) ≤ γ0‖z(t)‖2L2(Ω) + γ1‖∂tz(t)‖2L2(Ω) + η0(t).

We obtain, using also Cauchy-Schwartz, Young and
Poincaré’s inequalities:∣∣∣α ∫

Ω

ek(t)∂tz(t)
∣∣∣ ≤ α

2
‖ek(t)‖2L2(Ω) +

α

2
‖∂tz(t)‖2L2(Ω)

≤ αγ0

2
‖z(t)‖2L2(Ω) +

α(γ1 + 1)

2
‖∂tz(t)‖2L2(Ω) +

α

2
η0(t)

≤ αγ0C
2
Ω

2
‖∇z(t)‖2L2(Ω) +

α(γ1 + 1)

2
‖∂tz(t)‖2L2(Ω)

+
α

2
η0(t)

and∣∣∣εα ∫
Ω

z(t)ek(t)
∣∣∣ ≤ ε

2
‖z(t)‖2L2(Ω) +

α2ε

2
‖ek(t)‖2L2(Ω)

≤ εC2
Ω

2
(1 + α2γ0)‖∇z(t)‖2L2(Ω) +

α2εγ1

2
‖∂tz(t)‖2L2(Ω)

+
α2ε

2
η0(t).

Therefore, gathering these estimations, we can write

V̇ (t) ≤ −ν0

2
‖∇z(t)‖2L2(Ω)−

ν1

2
‖∂tz(t)‖2L2(Ω)+

α

2
(1 + αε) η0(t)

with {
ν0 = 2ε− αγ0C

2
Ω − εC2

Ω(1 + α2γ0)

ν1 = 2α− 2ε− α(γ1 + 1)− α2εγ1

(13)

and we aim at defining γ0 and γ1 such that we can choose
ε > 0 to ensure ν0 > 0 and ν1 > 0.
(i) To have ν0 > 0, we need

ε
(
2− C2

Ω(1 + α2γ0)
)
> αγ0C

2
Ω

so that we have to define γ0 > 0 such that

2− C2
Ω(1 + α2γ0) > 0, (14)

and then, we can choose ε satisfying ε >
αγ0C

2
Ω

2− C2
Ω(1 + α2γ0)

.

Since we also have to satisfy ε < 1/CΩ from the end of the
first step, we also need to check if

αγ0C
2
Ω

2− C2
Ω(1 + α2γ0)

<
1

CΩ
. (15)

Therefore, since (14) is equivalent to γ0 <
2− C2

Ω

α2C2
Ω

and

(15) is equivalent to γ0 <
2− C2

Ω

α2C2
Ω + αC3

Ω

, the assumption

CΩ <
√

2 means that it is enough to set γ0 satisfying



0 < γ0 <
2− C2

Ω

α2C2
Ω + αC3

Ω

. (16)

(ii) To have ν1 > 0, we need ε
(
2 + α2γ1

)
< 2α−α(γ1 +1)

so that we have to define γ1 < 1 and then choose ε > 0
such that ε < (α(1− γ1))/(2 + α2γ1).

In order to end this step, we have to assess the feasibility
of the following estimate

αγ0C
2
Ω

2− C2
Ω(1 + α2γ0)

< ε <
α(1− γ1)

2 + α2γ1
. (17)

Since γ0 and γ1 are such that both sides are positive, we
only need to check that

αγ0C
2
Ω(2 + α2γ1) < α(1− γ1)(2− C2

Ω(1 + α2γ0))

which is equivalent to

(α2 − 2)C2
Ωγ0 + 2− C2

Ω + (C2
Ω − 2)γ1 > 0

If α2 ≥ 2 then any γ0 > 0 and γ1 < 1 are appropriate. If
α2 < 2, then it is easy to verify that if one defines actually

γ0 <
2− C2

Ω

2C2
Ω(2− α2)

and γ1 <
1

2
, (18)

estimate (17) can be satisfied.

Therefore, under appropriate conditions (16) and (18) to
satisfy for γ0 and γ1, there exists an ε satisfying (17), so
that one can define β > 0 from (13) by

β = min(ν0, ν1)

in order to get (11).

• Third Step: From estimates (10) and (11), one can write
that for all t ∈ [tk, tk+1[,

V̇ (t) ≤ − β

C2
V (t) +

α

2
(1 + ε)η0(t),

which gives
d

dt

(
V (t)e

β
C2
t
)
≤ α

2
(1 + ε)η0(t)e

β
C2
t.

Let us now choose

η0(t) = V (0)e−θt with θ >
β

1 + εCΩ + εαC2
Ω

. (19)

Then, for all t ∈]tk, tk+1], by integration between tk and t
one obtains

V (t)e
β
C2
t − V (tk)e

β
C2
tk ≤ α

2
(1 + ε)V (0)

∫ t

tk

e−θse
β
C2
sds.

Now, we calculate easily for all t ∈]tk, tk+1]

V (t) ≤ µV (0)
(
e−θtke−

β
C2

(t−tk) − e−θt
)

+V (tk)e−
β
C2

(t−tk)

where µ =
α(1 + ε)

2(θ − β
C2

)
> 0 since θ >

β

C2
.

Therefore, reasoning by recurrence on k (down to t0 = 0),
we can derive that for any t > 0, there exists a unique
k ∈ N such that t ∈ [tk, tk+1[ and

V (t)≤ µV (0)
(
e−θtke−

β
C2

(t−tk) − e−θt
)

+ µV (0)
(
e−θtk−1e−

β
C2

(tk−tk−1) − e−θtk
)
e−

β
C2

(t−tk)

+ V (tk−1)e−
β
C2

(tk−tk−1)e−
β
C2

(t−tk)

≤ µV (0)
(
−e−θt + e−θtk−1e−

β
C2

(t−tk−1)
)

+ V (tk−1)e−
β
C2

(t−tk−1)

≤ (1 + µ)V (0)e−
β
C2
t − µV (0)e−θt.

Recalling (3), in terms of the energy E of the system, we
proved

E(t) ≤ C2

C1
(1 + µ)E(0)e−

β
C2
t − µE(0)e−θt

which gives finally E(t) ≤ KE(0)e−δt with the overshoot
estimation K:

K =
1 + εCΩ + εαC2

Ω

1− εCΩ

1 +
α(1 + ε)

2(θ − β
1+εCΩ+εαC2

Ω

)

 (20)

and the exponential rate δ:

δ =
β

1 + εCΩ + εαC2
Ω

. (21)

• Fourth Step: The goal of this step is to state the
conclusion of the proof of Theorem 2 in terms of the initial
context of system (5) and event-triggering mechanism (7),
based only on γ0, γ1, CΩ and α.

Gathering all the information about the appropriate choice
of the parameters introduced in the proof, namely ε, β
and θ, it follows: ε has to satisfy ε < 1/CΩ and (17) ;
β = min(ν0, ν1) with (13) and finally θ > β/C2 as in (19).

The possibility of choosing the parameters (γ0, γ1 and
η0) of the event-triggering mechanism (7) results from the
conditions (16), (18) and (19). It can be summarized as
follows:

γ0 < min

(
2− C2

Ω

α2C2
Ω + αC3

Ω

,
2− C2

Ω

2C2
Ω(2− α2)

)
and γ1 < 1/2

if α < 2

γ0 <
2− C2

Ω

α2C2
Ω + αC3

Ω

and γ1 < 1 if α ≥ 2

and

η0(t) =

(
1

2
‖z1‖2L2(Ω) +

1

2
‖∇z0‖2L2(Ω) + ε

∫
Ω

z0z1

)
e−θt

with θ >
min(ν0, ν1)

1 + εCΩ + εαC2
Ω

, concluding Theorem 2. 2

From the proof of Theorem 2, one can state the following
result, presenting explicit numerical conditions to design
the adequate even-triggering mechanism (7).

Theorem 3. Given the damping parameter α > 0 in
system (5) and given the Poincaré constant CΩ satisfying

CΩ <
√

2, if γ0 > 0, γ1 > 0 and η0 ∈ C0(R+) satisfy:

γ0 <
2− C2

Ω

C2
Ω max(α2 + αCΩ, 2(2− α2))

and γ1 <
1

2
, if α < 2

or

γ0 <
2− C2

Ω

α2C2
Ω + αC3

Ω

and γ1 < 1, if α ≥ 2,

and also

η0(t) =

(
1

2
‖z1‖2L2(Ω) +

1

2
‖∇z0‖2L2(Ω) + ε

∫
Ω

z0z1

)
e−θt

with θ > min(ν0, ν1)/
(
1 + εCΩ + εαC2

Ω

)
,

then for any initial condition (z0, z1) ∈ H1
0 (Ω) × L2(Ω),

system (5) under the event-triggering mechanism (7) is
exponentially stable with the overshoot estimation K and
the exponential rate δ given by (20) and (21) where ε
satisfies ε < 1/CΩ and (17), and β is defined from (13) by
β = min(ν0, ν1).



From this theorem, it should be interesting to be able to
orient the choice of the parameters γ0 and γ1, thanks to
an optimization scheme. This constitutes an ongoing study
with the goal to reduce the number of control updates.

6. DISCUSSION AND CONCLUSION

We have designed an event-triggered control for a linear
wave equation. After proving that the associated event-
triggering mechanism avoids Zeno solutions, we provided
a Lyapunov stability analysis proving that the system
is exponentially stable. Explicit expressions allowing to
choose the parameters characterizing the event-triggering
rule have been proposed.

These results pave the way to many other works to be
done. Let us mention some of them:
• One first step would consist in avoiding the restriction on
the size of the domain Ω (see Remark 3 for more details).
This could be possible for instance by focusing on other
methods than Lyapunov ones, for instance the multiplier
method as in Komornik (1997), allowing to find sharp
constants for the stabilization of PDEs.
• Studying the case of a localized damping is challeng-
ing, since it is often impossible to provide a Lyapunov
functional in this situation. One uses rather a compact-
ness/uniqueness strategy, that has been applied either
for the wave equation (Saut and Scheurer (1987)) or the
Korteweg-de Vries equation (Rosier and Zhang (2006)).
Such a strategy could be followed for the sampled localized
or boundary damping of a linear wave equation.

7. APPENDIX

Lemma 1. [Cauchy-Schwartz inequality]∫
Ω

u(x)v(x)dx ≤ ‖u‖L2(Ω)‖v‖L2(Ω), ∀u, v ∈ L2(Ω).

Lemma 2. [Young’s inequality]

ab ≤ ε

2
a2 +

1

2ε
b2, ∀a, b ∈ R,∀ε > 0.

Lemma 3. [Poincaré’s inequality] There exists a constant
CΩ > 0 depending on the size, the geometry and the
regularity of the bounded domain Ω such that for any
function u ∈ H1

0 (Ω), ‖u‖L2(Ω) ≤ CΩ‖∇u‖L2(Ω).

The optimal constant CΩ in the Poincaré inequality is
sometimes known as the Poincaré constant for the do-
main Ω. For instance, if the space dimension is N = 1,
Wirtinger’s inequality gives C[a,b] = (b − a)/(2π) and in

general, if Ω ⊂ RN is a convex Lipschitzian domain of
diameter d, then CΩ ≤ d/π.
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